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1. Introduction

Queueing systems that allow servers to take vacation have a wide range of applications
in many engineering systems such as flexible manufacturing environments, production,
computers, communication networks, and telecommunication systems. Servers’ vacations
are useful for the systems in which the servers want to utilize their idle times for different
purposes. For instance, servers’ vacations may be due to lack of work, servers’ failure, or
some other tasks being assigned to the servers which occur in applications like computer
maintenance and testing, preventive maintenance job in a production system, priority queue,
and so forth (see [1]).

In general, queueing systems with vacations can be classified as systems with a
single server or multiple servers involving single vacation or multiple vacations. The servers
may take vacations at a random time, after serving utmost k customers (k-limited) or
after all the customers in the queue are served (exhaustive). Also, depending on the
applications, when the server finishes a vacation and there is no customer to be served,
the server may take another vacation (multiple vacation model) or it may wait ready
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to serve until a new customer arrives (single vacation model). The queueing systems
with single and multiple vacations have been first investigated by Levy and Yechiali
[2].

Another interesting and important vacation model is Bernoulli vacation scheduling
service. The Bernoulli vacation scheduling service discipline has been proposed by Keilson
and Servi [3]. In this service discipline, when the server visits a queue, at least one
customer, if any, is served. After the completion of its service, the server switches to the
next vacation if there are no customers. If customers remain, however, in the queue, the
next customer is served with probability q, and the server repeats this procedure, or the
server switches to the next vacation with probability p(= 1 − q). The important merit of the
Bernoulli vacation scheduling service discipline is the existence of a control parameter q. By
adjusting the value of q, we can control the congestion of the system. We note that when
q = 1, the Bernoulli vacation scheduling service discipline is equivalent to the exhaustive
service discipline, and q = 0 corresponds to the 1-limited service discipline. Servi [4] has
proposed an approximate procedure to calculate the average waiting time of an asymmetric
polling system under the Bernoulli scheduling service discipline. Further, Tedijanto [5] has
investigated in detail the stochastic behavior of a polling system under the Bernoulli vacation
scheduling service discipline and has obtained the average waiting time of a symmetric
system. For comprehensive and excellent surveys/monographs on queueing systems with
server vacations, see [1, 6–8], and the references therein.

In the literature, there are only a limited number of studies on multiple server vacation
models. The multiserver queue with exponentially distributed vacations is first studied by
Levy and Yechiali [9]. Using partial generating function technique, the system size has been
obtained. Vinod [10] and Kao and Narayanan [11] have discussed the M/M/c queue with
multiple vacation of the servers using matrix geometric approach. Further, Chao and Zhao
[12] have investigated the multiserver vacation models of both synchronous (servers taking
the same vacation together) and asynchronous types and provided some algorithms for
computing the stationary probability distributions and expected performance measures. The
M/M/c queue with phase-type synchronous vacations has been analyzed by Tian and Li
[13]. An M/M/c queue with multiple vacations and 1-limited service has been discussed
by Tyagi et al. [14]. Recently, Krishna Kumar and Pavai Madheswari [15] have analyzed an
M/M/c queue with Bernoulli vacation scheduling service.

The study on multiserver queueing system generally assumes the servers to be
homogeneous in which the individual service rates are the same for all the servers in the
system. This assumption may be valid only when the service process is mechanically or
electronically controlled. In a queueing system with human servers, the above assumptions
can hardly be realized. It is common to observe servers rendering service to identical jobs
at different service rates, that is, the service time distributions may be different for different
servers. As noted earlier, the study of vacation queueing system incorporates the secondary
jobs in the modelling. The analysis of queueing systems with heterogeneous servers and
related vacation models helps to study the impact of secondary jobs on system performance.

Neuts and Takahashi [16] have pointed out that for the queueing systems with more
than two heterogeneous servers, analytical results are intractable and one may have to use
algorithmic approach to study even the asymptotic behavior of the performance measures
like stationary distribution of system size and tail probability of waiting time of a customer
in the system.

Based on the above observations, in this paper, we consider a vacation queueing
system in which customers arrive according to a Markovian arrival process (MAP) involving
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only two heterogeneous servers availing Bernoulli vacations. The service times follow phase-
type distributions (PH distributions), and vacation times of servers follow exponential
distributions with heterogeneous vacation rates.

The organization of the paper is as follows. In Section 2, after recalling the definition
of the MAP used as input process, we describe the model under investigation. We also study
the steady-state probability of system size and some important and interesting performance
measures of the system in this section. Next, the waiting time distribution and its related
characterizations are discussed in Section 3. Section 4 presents some illustrative numerical
examples of the system performance measures. Conclusions are given in Section 5.

2. Source characterization and model description

In this section, we provide information about the Markovian arrival process (MAP) which
has been assumed for the customers arrival process. We also describe the model under study.

2.1. Markovian arrival process

In order to allow bursty type traffic in our system, we have chosen the input process as
the MAP. The MAP is particularly a tractable point process which is in general nonrenewal
and which lends itself very well to modelling bursty arrival processes commonly arising in
communications (see [17]). Further, the MAP has made it much easier to develop numerically
tractable queueing models which take correlation into account (see [18, 19]). The MAP is
a rich class of processes which includes the phase-type renewal process and the Markov-
modulated Poisson process as special cases.

An MAP can be considered as a Markov process {N(t), J(t)} on the state space
{(i, j); i ≥ 0, 1 ≤ j ≤ l} with an infinitesimal generator Q∗ having the structure

Q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

D0 D1 0 0 · · ·
0 D0 D1 0 · · ·
0 0 D0 D1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.1)

where D0 and D1 are l × l matrices, D0 has negative diagonal elements and nonnegative off-
diagonal elements, D1 is nonnegative, and (D0 + D1)el = 0, where el is an l-dimensional
column vector of ones. An arrival process can be associated with this Markov process as
follows. An arrival occurs whenever there is a state transition into a state corresponding to a
D1 block, and there is no arrival otherwise. Here, N(t) = i represents the number of arrivals
in (0, t), and J(t) = j represents an axillary state or phase variable. Let η be the stationary
probability vector of the generator D = D0 + D1. That is, η is the unique vector satisfying
η(D0+D1) = 0 and ηel = 1. The fundamental arrival rate of this process is given by δ = ηD1el.
The constant δ is the expected number of arrivals per unit time in the stationary version of
the MAP.

2.2. Model description and analysis

Consider a two-server vacation queueing system in which the service time distributions of
the servers are not identical. Customers arrive singly, according to MAP, to an infinite waiting
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space and form a single waiting line. Customers are served under the first-come-first-served
(FCFS) discipline. There are two heterogeneous servers. The service times of server-1 and
server-2 are assumed to be phase-type distributions (PH-distributions) PH(1) and PH(2) with
representations (α,S) of order m with Sem = −S0 and (β, T) of order n with Ten = −T0,
respectively. We follow matrix formalism of PH-distributions as represented by Neuts [20].
The servers take Bernoulli vacation scheduling service as described by Keilson and Servi [3],
that is, after each service completion, the server-i (i = 1, 2) takes a vacation with probability
pi and with probability qi = 1 − pi, it starts serving the next customer, if any, in the system.
If the system is empty, the servers always take vacations. At the end of a vacation period,
service commences if a customer is present in the queue. Otherwise, the server takes another
vacation immediately and continues in the same manner until it finds at least one customer
waiting upon returning from a vacation (multiple vacations). This process holds good for
both servers 1 and 2.

The length of vacations’ duration {Vi,r ; r = 1, 2, 3, . . .} of the two servers is assumed to
be independent and identically distributed exponential random variables with parameters,
θi for i = 1, 2, and is independent of the length of the service times and the arrival process.
The Bernoulli vacation scheduling service queueing model with heterogeneous servers
under consideration can be formulated as a continuous time Markov chain (CTMC). By
appropriately keeping track of the various states, such as the number of customers in the
system, the phase of the arrival process, the phases of the service processes of server-1 and
server-2, and the status of the server-1 and server-2, the state space of the Markov chain
describing the model is given as follows.

The set of states {(k, 0, j0); k ≥ 0; 1 ≤ j0 ≤ l} represents that there are k customers
in the system, both servers are on vacation and the phase of the arrival process is j0; the set
of states {(k, 1, j0, j1); k ≥ 1; 1 ≤ j0 ≤ l; 1 ≤ j1 ≤ m} indicates that there are k customers in
the system, server-1 is busy in the system serving a customer in phase j1 while server-2 is on
vacation, and j0 represents the phase of the arrival process; the set of states {(k, 2, j0, j2); k ≥
1; 1 ≤ j0 ≤ l; 1 ≤ j2 ≤ n} indicates that there are k customers in the system, server-2 is busy
in the system serving a customer in phase j2 while server-1 is on vacation, and the arrival
process is in phase j0; the set of states {(k, 3, j0, j1, j2); k ≥ 2; 1 ≤ j0 ≤ l; 1 ≤ j1 ≤ m; 1 ≤ j2 ≤ n}
represents that there are k customers in the system, both servers 1 and 2 are busy in the system
serving the customers in phases j1 and j2, respectively, and the arrival process is in phase j0.

We define levels 0, 1, 2, . . . ,k, . . . as the set of states:

0 = {(0, j0); 1 ≤ j0 ≤ l},
1 = {(1, 0, j0) ∪ (1, 1, j0, j1) ∪ (1, 2, j0, j2); 1 ≤ j0 ≤ l; 1 ≤ j1 ≤ m; 1 ≤ j2 ≤ n},
k = {(k, 0, j0) ∪ (k, 1, j0, j1) ∪ (k, 2, j0, j2) ∪ (k, 3, j0, j1, j2);

k ≥ 2; 1 ≤ j0 ≤ l; 1 ≤ j1 ≤ m; 1 ≤ j2 ≤ n},

(2.2)

where the elements of the sets are arranged in lexicographical order.
In the sequel, we use the following notations.
en: a column vector of order n × 1 with all its elements equal to 1.
e = el+lm+ln+lmn: a column vector of order (l + lm + ln + lmn) × 1 with all its elements

equal to 1.
el+lm+ln(l): a column vector of order (l + lm + ln) × 1 with the 1st l elements equal to 1,

and other elements are zeros.
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el+lm+ln(lm): a column vector of order (l + lm + ln) × 1 with the (l + 1)st to (l + lm)th
elements equal to 1, and other elements are zeros.

el+lm+ln(ln): a column vector of order (l+ lm+ ln)× 1 with (l+ lm+ 1)st to (l+ lm+ ln)th
elements equal to 1, and other elements are zeros.

el+lm+ln+lmn(l): a column vector of order (l + lm+ ln+ lmn)× 1 with the 1st to l elements
equal to 1, and other elements are zeros.

el+lm+ln+lmn(lm): a column vector of order (l + lm + ln + lmn) × 1 with the (l + 1)st to
(l + lm)th elements equal to 1, and other elements are zeros.

el+lm+ln+lmn(ln): a column vector of order (l + lm + ln + lmn) × 1 with (l + lm + 1)st to
(l + lm + ln)th elements equal to 1, and other elements are zeros.

el+lm+ln+lmn(lmn): a column vector of order (l + lm+ ln+ lmn)× 1 with (l + lm+ ln+ 1)st
to (l + lm + ln + lmn)th elements equal to 1, and other elements are zeros.

Using elementary arguments, the infinite-state Markov chain for the model under
study has a transition rate matrix Q which has a block-tridiagonal structure given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00 B01

B10 B11 B12

B21 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3)

The entries of Q are given by the following block matrices. The boundary matrices are defined
by

B00 = D0, B01 = [D1, 0, 0], B10 =
[
0,S0 ⊗ Il,T0 ⊗ Il

]T
,

B11 =

⎡
⎢⎢⎣

D0 − (θ1 + θ2)Il θ1α ⊗ Il θ2β ⊗ Il

0 S ⊕ D0 0

0 0 T ⊕ D0

⎤
⎥⎥⎦ ,

B12 =

⎡
⎢⎢⎣

D1 0 0 0

0 Im ⊗ D1 0 0

0 0 In ⊗ D1 0

⎤
⎥⎥⎦ ,

B21 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

p1S0 ⊗ Il q1S0α ⊗ Il 0

p2T0 ⊗ Il 0 q2T0β ⊗ Il

0 T0 ⊗ (Im ⊗ Il) In ⊗ (S0 ⊗ Il)

⎤
⎥⎥⎥⎥⎥⎦
.

(2.4)



6 Journal of Applied Mathematics and Stochastic Analysis

The square matrices A0, A1, and A2 are of order l + lm + ln + lmn and are given by

A0 =

⎡
⎢⎢⎢⎢⎢⎣

D1 0 0 0

0 Im ⊗ D1 0 0

0 0 In ⊗ D1 0

0 0 0 In ⊗ Im ⊗ D1

⎤
⎥⎥⎥⎥⎥⎦
,

A1 =

⎡
⎢⎢⎢⎢⎢⎣

D0 − (θ1 + θ2)Il θ1α ⊗ Il θ2β ⊗ Il 0

0 (S − θ2Im) ⊕ D0 0 θ2β ⊗ (Im ⊗ Il)

0 0 (T − θ1In) ⊕ D0 In ⊗ (θ1α ⊗ Il)

0 0 0 (T ⊕ S) ⊕ D0

⎤
⎥⎥⎥⎥⎥⎦
,

A2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

p1S0 ⊗ Il q1S0α ⊗ Il 0 0

p2T0 ⊗ Il 0 q2T0β ⊗ Il 0

0 p2T0 ⊗ (Im ⊗ Il) In ⊗ (p1S
0 ⊗ Il) (q2T

0β ⊕ q1S
0α) ⊗ Il

⎤
⎥⎥⎥⎥⎥⎦
,

(2.5)

where ⊗ and ⊕ are the Kronecker product and Kronecker sum, respectively (see [21]).
We now derive the condition for the system to reach steady state. To accomplish this,

we define A = A0 + A1 + A2. Then, the matrix A can be written as

A =

⎡
⎢⎢⎢⎢⎣

D − (θ1 + θ2)Il θ1α ⊗ Il θ2β ⊗ Il 0

p1S0 ⊗ Il (S + q1S0α − θ2Im) ⊕ D 0 θ2β ⊗ (Im ⊗ Il)
p2T0 ⊗ Il 0 (T + q2T

0β − θ1In) ⊕ D In ⊗ (θ1α ⊗ Il)

0 p2T0 ⊗ (Im ⊗ Il) In ⊗ (p1S0 ⊗ Il) (T + q2T0β) ⊕ (S + q1S0α) ⊕ D

⎤
⎥⎥⎥⎥⎦
,

(2.6)

where D = D0 + D1.
It is clear that the order of the square matrix A is l+lm+ln+lmn, and it is an irreducible

infinitesimal generator matrix [20, page 82], and so there exists 1×(l+lm+ln+lmn) stationary
probability vector π of A satisfying πA = 0 and πe = 1. The vector π is denoted by π =
(π(0),π(1),π(2),π(3)) whose components are

π(0) = (π(k, 0, 1), π(k, 0, 2), . . . , π(k, 0, j0), . . . , π(k, 0, l)) for k ≥ 0,

π(1) = (π(k, 1, 1), π(k, 2, 1), . . . , π(k, j0, j1), . . . , π(k, l,m)) for k ≥ 1,

π(2) = (π(k, 1, 1), π(k, 2, 1), . . . , π(k, j0, j2), . . . , π(k, l, n)) for k ≥ 1,

π(3) = π(k, 1, 1, 1), π(k, 2, 1, 1), . . . , π(k, j0, j1, j2), . . . , π(k, l,m, n) for k ≥ 2.

(2.7)

Here, π(0) is the stationary probability vector when both servers are on vacation, π(1) is
the stationary probability vector when server-1 is busy and server-2 is on vacation, π(2)
is the stationary probability vector when server-2 is busy and server-1 is on vacation and
π(3) is the stationary probability vector when both servers are busy. Further, π(k, 0, j0) is the
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stationary probability that there are k (k ≥ 0) customers in the system, both servers are on
vacation, and the underlying arrival process MAP is in phase j0 (1 ≤ j0 ≤ l); π(k, j0, j1) is the
stationary probability that there are k (k ≥ 1) customers in the system with the underlying
arrival process MAP in phase j0 (1 ≤ j0 ≤ l), the server-1 is busy serving a customer with
the underlying service process PH(1) in phase j1 (1 ≤ j1 ≤ m), and server-2 is on vacation;
π(k, j0, j2) is the stationary probability that there are k (k ≥ 1) customers in the system with
the underlying arrival process MAP in phase j0 (1 ≤ j0 ≤ l), server-2 is busy serving a
customer with the underlying service process PH(2) in phase j2 (1 ≤ j2 ≤ n), and server-
1 is on vacation. Finally, π(k, j0, j1, j2) is the stationary probability that there are k (k ≥ 2)
customers in the system with the underlying arrival process MAP in phase j0 (1 ≤ j0 ≤ l),
both server-1 and server-2 are busy serving customers with the underlying service processes
PH(1) in phase j1 (1 ≤ j1 ≤ m) and PH(2) in phase j2 (1 ≤ j2 ≤ n), respectively.

As the Markov process has the QBD structure, it is well known [20, page 83] that the
standard drift condition

πA0e < πA2e (2.8)

is the necessary and sufficient condition for the stability of a QBD process.
After some algebraic manipulation, the stability condition turns out to be

π(0)D1el +π(1)(em ⊗ D1el) +π(2)(en ⊗ D1el) +π(3)(enm ⊗ D1el)

< π(1)(S0 ⊗ el) +π(2)(T0 ⊗ el) +π(3)
[
(T0 ⊗ em) ⊕ (en ⊗ S0)

] ⊗ el.
(2.9)

Remark 2.1. As the LHS of (2.9) is the rate of flow into the system, and RHS of (2.9) is the
maximum rate of flow out of the system, (2.9) should be a necessary and sufficient condition
for positive recurrence.

Under stability condition (2.9) of the system, there exists the steady-state probability
vector X satisfying XQ = 0, Xe∞ = 1. The stationary probability vector X, partitioned as
X = (X(0),X(1),X(2), . . .), is given by

X(0)B00 + X(1)B10 = 0, (2.10)

X(0)B01 + X(1)B11 + X(2)B21 = 0, (2.11)

X(1)B12 + X(2)(A1 + RA2) = 0, (2.12)

X(k) = X(2)Rk−2, k = 3, 4, 5, . . . (2.13)

and by the normalizing equation

X(0)el + X(1)el+lm+ln + X(2)(I − R)−1el+lm+ln+lmn = 1, (2.14)
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where

X(0) = (x(0, 0, 1), x(0, 0, 2), . . . , x(0, 0, j0), . . . , x(0, 0, l)),

X(1) = (x(1, 0, 1), x(1, 0, 2), . . . , x(1, 0, j0), . . . , x(1, 0, l),

x(1, 1, 1, 1), x(1, 1, 2, 1), . . . , x(1, 1, j0, j1), . . . , x(1, 1, l,m),

x(1, 2, 1, 1), x(1, 2, 2, 1), . . . , x(1, 2, j0, j2), . . . , x(1, 2, l, n)),

(2.15)

and for k ≥ 2,

X(k) = (x(k, 0, 1), x(k, 0, 2), . . . , x(k, 0, j0), . . . , x(k, 0, l),

x(k, 1, 1, 1), x(k, 1, 2, 1), . . . , x(k, 1, j0, j1), . . . , x(k, 1, l,m),

x(k, 2, 1, 1), x(k, 2, 2, 1), . . . , x(k, 2, j0, j2), . . . , x(k, 2, l, n),

x(k, 3, 1, 1, 1), x(k, 3, 2, 1, 1), . . . , x(k, 3, j0, j1, j2), . . . , x(k, 3, l,m, n)).

(2.16)

Here, x(k, 0, j0) refers to the joint probability that there are k (k ≥ 0) customers in the system,
both servers are on vacation and j0 (1 ≤ j0 ≤ l) corresponds to the phase of the arrival process;
x(k, 1, j0, j1) refers to the joint probability that there are k (k ≥ 1) customers in the system,
server-1 is busy serving a customer, server-2 is on vacation, j0 (1 ≤ j0 ≤ l) corresponds to the
phase of the arrival process, and j1 (1 ≤ j1 ≤ m) corresponds to the phase of the service
process PH(1) provided by server-1; x(k, 2, j0, j2) refers to the joint probability that there
are k (k ≥ 1) customers in the system, server-2 is busy serving a customer, server-1 is on
vacation, j0 (1 ≤ j0 ≤ l) corresponds to the phase of the arrival process, and j2 (1 ≤ j2 ≤ n)
corresponds to the phase of the service process PH(2) provided by server-2; x(k, 3, j0, j1, j2)
refers to the joint probability that there are k (k ≥ 2) customers in the system, both servers
are busy serving customers, j0 (1 ≤ j0 ≤ l) corresponds to the phase of the arrival process,
j1 (1 ≤ j1 ≤ m) and j2 (1 ≤ j2 ≤ n) correspond to phases of the underlying service processes
PH(1) and PH(2) provided by server-1 and server-2, respectively. I is the identity matrix of
order l + lm + ln + lmn, and the matrix R is the minimal nonnegative solution with spectral
radius less than 1, that is, Sp(R) < 1 of the matrix quadratic equation [20, pages 82-83]:

R2A2 + RA1 + A0 = 0. (2.17)

Since the system is stable, and the square matrices A0, A1, and A2 are of order l + lm + ln +
lmn,R is also a square matrix of order l+ lm+ ln+ lmn and is obtained from the above matrix
quadratic equation and from the following relation:

RA2e = A0e. (2.18)

Equation (2.18) implies that the rate of transition from a state with k customers to a state with
k + 1 matches the transition rate from k to k − 1.
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The matrix R is approximated by the following iterations :

R(0) = 0,

R(n + 1) = −A0A−1
1 − R2(n)A2A−1

1 , for n ≥ 0.
(2.19)

The values of R will converge, since −A−1
1 and (A0 + R2A2) are positive. Hence, after

each iteration, the elements of R will increase monotonically. Iteration will be continued until
maxi,j[Rij(n+1)−Rij(n)] < ε is satisfied, where R(n) is the value of R in the nth iteration, and
ε is the degree of accuracy required. The accuracy may be checked by (2.18) with ε = 10−12

[20].
The boundary probability vectors X(0), X(1), X(2) and the probability vectors

X(k), k ≥ 3, can be obtained form (2.10) to (2.14). These steady-state joint probability vectors
are then used to find the following system performance measures.

2.3. Performance measures

We will list some important performance measures which are used to bring out the qualitative
behavior of the queueing model under study.

(1) The mean and second moments of the number of customers in the system can be
obtained exactly as

E(N) = X(1)el+lm+ln + X(2)
[
2(I − R)−1 + R(I − R)−2]e,

E(N2) = X(1)el+lm+ln + 4X(2)e − X(2)
[
(I − R)−1 + (I − R)−2 + 2(I − R)−3 − 4I

]
e,

(2.20)

where N is the system size at an arbitrary time. The variance of the system can also
be found.

(2) The probability that no customer in the system and both servers are on vacation is
given by

P0 = X(0)el. (2.21)

(3) The probability that both the servers are on vacation is given as

V0 = X(0)el + X(1)el+lm+ln(l) + X2(I − R)−1el+lm+ln+lmn(l). (2.22)

(4) The probability that server-1 is busy serving a customer and server-2 on vacation is
given by

P1 = X(1)el+lm+ln(lm) + X(2)(I − R)−1el+lm+ln+lmn(lm). (2.23)
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(5) The probability that server-2 is busy serving a customer and server-1 on vacation is
given as

P2 = X(1)el+lm+ln(ln) + X(2)(I − R)−1el+lm+ln+lmn(ln). (2.24)

(6) The probability that both servers are busy is obtained as

P12 = X(2)(I − R)−1el+lm+ln+lmn(lmn). (2.25)

(7) The mean number of customers E(NV ) present in the system when both the servers
are on vacation is given as

E(NV ) = X(1)el+lm+ln(l) + X(2)
[
2(I − R)−1 + R(I − R)−2]el+lm+ln+lmn(l). (2.26)

(8) The mean number of customers E(NB) present in the system when both the servers
are busy serving customers is given as

E(NB) = X(2)
[
2(I − R)−1 + R(I − R)−2]el+lm+ln+lmn(lmn). (2.27)

(9) The mean number of customers E(N1) present in the system when server-1 is busy
and server-2 on vacation is given as

E(N1) = X(1)el+lm+ln(lm) + X(2)
[
2(I − R)−1 + R(I − R)−2]el+lm+ln+lmn(lm). (2.28)

(10) The mean number of customers E(N2) present in the system when server-1 on
vacation and server-2 being busy is obtained as

E(N2) = X(1)el+lm+ln(ln) + X(2)
[
(I − R)−1 + 2(I − R)−2]el+lm+ln+lmn(ln). (2.29)

3. Waiting time distribution

We now analyze the waiting time of an arriving customer in the queue by first-passage time
analysis. We then show how the mean waiting time can be determined.

Let W(t), t ≥ 0, be the distribution function for the waiting time in the queue of
an arriving (tagged) customer, that is, W(t) denotes the probability vector of order 1 × mn
that an arriving tagged customer has to wait utmost t time units until it is served. For
the multiserver queue with Bernoulli vacation scheduling service, we have W(0+) = 0,
because an arrival must either wait for a service completion or a vacation termination
of servers. States corresponding to the number of customers are present in the system
{0, 1, 2, . . .}, and an absorbing state {∗}forms the state space of the CTMC. Thus, the state
space of the CTMC is {∗} ∪ {0, 1, 2, 3, . . .}. Note that the customer arrival process is not
required, since we are discussing an FCFS queue discipline, and hence, customers that
arrive after the tagged customer do not have any impact on the waiting time of the tagged
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customer. Therefore, the absorbing state {∗} is a vector of order 1 × mn given by ∗ =
((∗, 1, 1), (∗, 2, 1), . . . , (∗, j1, j2), . . . (∗, m, n)), level 0 has the single component (0, 0), level 1 is
a vector of order 1 × (1 +m + n) given by

1 = {(1, 0), (1, 1, 1), (1, 1, 2), . . . , (1, 1, j1), . . . , (1, 1, m),

(1, 2, 1), (1, 2, 2), . . . , (1, 2, j2), . . . , (1, 2, n)},
(3.1)

and levels i ≥ 2 are vectors of order 1 × (1 +m + n +mn) given by

i = {(i, 0), (i, 1, 1), (i, 1, 2), . . . , (i, 1, j1), . . . , (i, 1, m),

(i, 2, 1), (i, 2, 2), . . . , (i, 2, j2), . . . , (i, 2, n),

(i, 3, 1, 1), (i, 3, 2, 1), . . . , (i, 3, j1, j2), . . . , (i, 3, m, n)},
(3.2)

where j1 and j2 are the phases of the service time distributions PH(1) and PH(2), respectively.
On entering the absorbing state ∗, a tagged customer starts receiving service. Clearly,

this happens at the arrival of a server either from vacation or after the completion of a service
when the customer is at the head of the queue. The transition rate matrixQ1 for this absorbing
Markov chain is given by

Q1 =

∗ 0 1 2 3 4 . . .

∗
0

1

2

3

4

...

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 . . .

C0 E0 0 0 0 0 . . .

C1 E10 E1 0 0 0 . . .

C2 0 E21 E 0 0 . . .

0 0 0 E2 E 0 . . .

0 0 0 0 E2 E

...
...

...
...

. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3)

where

C0 = e′n ⊗ θ1α + θ2β ⊗ e′m,

C1 =
[
0, e′n ⊗ q1S

0α + θ2β ⊗ eme′m, ene
′
n ⊗ θ1α + q2T

0β ⊗ e′m
]T
,

C2 =
[
0, 0, 0, ene′n ⊗ q1S

0α + q2T
0β ⊗ eme′m

]T
,

E0 = −(θ1 + θ2), E10 =
[
0, p1S

0, p2T
0]T ,
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E1 =

⎡
⎢⎢⎣
−(θ1 + θ2) θ1α θ2β

0 S − θ2Im 0

0 0 T − θ1In

⎤
⎥⎥⎦ ,

E21 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

p1S0 q1S0α 0

p2T0 0 q2T0β

0 p2T0 ⊗ Im In ⊗ p1S0

⎤
⎥⎥⎥⎥⎥⎦
,

E2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

p1S
0 q1S

0α 0 0

p2T
0 0 q2T

0β 0

0 p2T0 ⊗ Im In ⊗ p1S
0 q2T

0β ⊕ q1S0α

⎤
⎥⎥⎥⎥⎥⎦
,

E =

⎡
⎢⎢⎢⎢⎢⎣

−(θ1 + θ2) θ1α θ2β 0

0 (S − θ2Im) 0 θ2β ⊗ Im

0 0 (T − θ1In) In ⊗ θ1α

0 0 0 T ⊕ S

⎤
⎥⎥⎥⎥⎥⎦
. (3.4)

It is observed that the customer arrival rates have not appeared in matrix Q1.
To obtain the distribution of waiting time W(t), t ≥ 0, of the tagged customer,

the first step is to determine the stationary probability distribution of the system’s state
immediately after its arrival. This is actually the stationary distribution of the number of
customers in the system as seen by this tagged customer at its arrival time. Denote by
Y(0) = (Y0(0),Y1(0),Y2(0), . . .) the probability distribution which can be obtained from X =
(X(0),X(1),X(2), . . .) by a standard method, that is, Y (0) can be interpreted as a conditional
probability distribution of the system’s state conditioned on the occurrence of the tagged
customer arrival. Due to the Markovian property of the arrival process, it is seen that the
arrival-stationary probability distribution of the number of customers in the system is given
by

Y0(0) = X(0)
D1el
δ

, Y1(0) = X(1)
(

Il+lm+ln ⊗ D1el
δ

)
,

Yk(0) = X(k)
(

Il+lm+ln+lmn ⊗ D1el
δ

)
for k ≥ 2,

(3.5)

where δ is the fundamental arrival rate of the MAP as given in Section 2.1.
Now we define Y(t) = (Y∗(t),Y0(t),Y1(t), . . .), where Yi(t) is a row vector of order

1 × (1 + m + n + mn), when i ≥ 2, Y0(t) is of order 1 × 1 and Y1(t) is a row vector of order
1 × (1 + m + n), and its elements represent the probability that at time t, the CTMC with
generator Q1 is in the respective state of level i. Clearly, Y∗(t) gives the probability that the
tagged customer is in the absorbing state at time t.Hence, the vector waiting time distribution
is W(t) = Y∗(t) for t ≥ 0. In finding the waiting time distribution of the tagged customer
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at arrival time, it is assumed that the process starts with initial probability vector Y(0) =
(Y0(0),Y1(0),Y2(0), . . .).

The differential equation Y′(t) = Y(t)Q1 for t ≥ 0 reduces to

Y′
∗(t) =

2∑
k=0

Yk(t)Ck,

Y′
0(t) = Y0(t)E0 + Y1(t)E10,

Y′
1(t) = Y1(t)E1 + Y2(t)E21,

Y′
k(t) = Yk(t)E + Yk+1(t)E2, k ≥ 2,

(3.6)

where the prime denotes the derivative of the function concerned with respect to t.
The tagged customer at arrival time finds the system in level k with probability Yk(0),

for k ≥ 2, the Laplace-Stieltjes transform (LST) of the first passage time to level 2 is given by
the row vector χ(s).

As in [20], we get

χ(s) =
∞∑
i=2

Yi(0)
[
(sI − E)−1E2

]i−2
. (3.7)

Let Φ(i, s) be the LST of the absorbing time to the state {∗} given that the process starts
from level i = 0, 1, 2. On the basis of Q1, we can write the following relations for the matrices
Φ(i, s):

Φ1×mn(0, s) = (sI − E0)
−1C0, (3.8)

Φ(1+m+n)×mn(1, s) = (sI − E1)
−1E10Φ(0, s) + (sI − E1)

−1C1, (3.9)

Φ(1+m+n+mn)×mn(2, s) = (sI − E)−1E21Φ(1, s) + (sI − E)−1C2 . (3.10)

Finally, it can be seen that the LST W̃(s) for the waiting time distribution is given by

W̃(s) = Y0(0)Φ(0, s) + Y1(0)Φ(1, s) + χ(s)Φ(2, s). (3.11)

3.1. Mean waiting time

The mean waiting time of an arriving customer is computed from W̃(s)

E(W) = −Y0(0)Φ′(0, 0)emn − Y1(0)Φ′(1, 0)emn − χ′(0)e1+m+n+mn − χ(0)Φ(2, 0)emn. (3.12)

The first two terms give the mean time to reach an absorbing state {∗} by the tagged customer
if the system is in a level ≤ 1. On its arrival, the third and fourth terms represent the time to
reach the absorbing state {∗} if the system is in a level ≥ 2.
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To compute the mean waiting time of the tagged customer, we must calculate the value
of each term in (3.12). Differentiating (3.8) with respect to s and setting s = 0, we get

Φ(0, 0) = (−1)(−E0)
−1C0. (3.13)

Similarly, differentiating (3.9) and (3.10) with respect to s and setting s = 0, we obtain

Φ′(1, 0) = (−1)(−E1)
−2E10Φ(0, 0) + (−E1)

−1E10Φ′(0, 0) + (−1)(−E1)
−2C1, (3.14)

Φ′(2, 0) = (−1)(−E)−2E21Φ(1, 0) + (−E)−1E21Φ′(1, 0) + (−1)(−E)−2C2. (3.15)

Thus, formulae (3.13)–(3.15) permit the recursive computation of the matrices Φ′(i, 0), 0 ≤ i ≤
2.Using (3.13) to (3.15) and absorbing the initial condition Y(0) = (Y0(0),Y1(0),Y2(0), . . .),we
can compute the first two terms of (3.12).

The value of χ(0) =
∑∞

i=2Yi(0)U
i−2,where U = (−E)−1E2, is obtained by substituting s =

0 in (3.7), and it needs to be evaluated numerically. Since Ue1+m+n+mn = e1+m+n+mn, owing to
the relation E2e1+m+n+mn+Ee1+m+n+mn = 0, we have that χ(0)e1+m+n+mn = 1−Y0(0)−Y1(0)e1+m+n.
The value of χ(0)e1+m+n+mn can also be used, as mentioned in [11], to evaluate an approximate
value of χ(0) by finite summation. Using (3.13) and (3.14), we get the value of Φ′(2, 0), for
the fourth term of (3.12).

To compute the third term of (3.12), differentiating (3.7) with respect to s and setting
s = 0, we obtain

χ′(0) = −
∞∑
i=1

Y2+i(0)
i−1∑
j=0

Uj(−E)−1Ui−j . (3.16)

Since U is a stochastic matrix, and using the relationship Ue1+m+n+mn = e1+m+n+mn, it follows
that

−χ′(0)e1+m+n+mn =
∞∑
i=1

Y2+i(0)
i−1∑
j=0

Uj(−E)−1e1+m+n+mn. (3.17)

To obtain the value of −χ′(0)e1+m+n+mn from (3.17), we modify the technique used by Kao and
Narayanan [11] and Neuts and Lucantoni [22]. Now, construct a stochastic matrix U2 such
that I−U+U2 is nonsingular and generalized inverse of (I−U). In cases where U is irreducible,
the matrix U2 may be chosen as U2 = e1+m+n+mnu0, where u0 is the invariant probability vector
of U, that is, u0U = u0 and u0e1+m+n+mn = 1. This follows from the classical theorem on finite
Markov chains given in the work of Kemeny and Snell [23, page 100].

Further, the following relation is satisfied owing to the property UU2 = U2U = U2:

i−1∑
j=0

Uj(I − U + U2) = I − Ui + iU2, for i ≥ 1. (3.18)
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Figure 1: E(N) versus δ for μ1 = 31.94, μ2 = 10.
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Figure 2: E(NB) versus δ for μ1 = 31.94, μ2 = 10.

Substituting (3.18) in (3.17) and simplifying, we obtain

−χ′(0)e1+m+n+mn =
{
Y2(0)(I − R)−1 + Y2(0)

[
(I − R)−2 − (I − R)−1]U2 − χ(0)

}

×(I − U − U2)
−1(−E)−1e1+m+n+mn.

(3.19)

Thus, all four terms of (3.12) have been computed, and the mean waiting time can be
obtained.

Hence, we are able to compute the values of steady-state joint probabilities and mean
waiting time using algorithms for this queueing system with Bernoulli vacation scheduling
service.
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Figure 3: P0 versus δ for μ1 = 31.94, μ2 = 10.
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4. Numerical examples

In this section, we discuss some interesting numerical examples that qualitatively describe
the performance of the queueing system under investigation. To gain an understanding of
the performance measures of the Bernoulli vacation scheduling service queueing model, we
study the effect of the system parameters on the following items:

(i) the expected number E(N) of customers in the system,

(ii) the expected number E(NB) of customers in the system when both servers are busy,

(iii) the probability P0 of no customers in the system,

(iv) the probability P12 that both servers are busy, and

(v) the mean waiting time E(W) of an arriving customer.
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For the arrival process, we consider the MAP input which is characterized by the
matrices:

D0 =

[−λ λ

0 −λ

]
, D1 =

[
0 0

λ 0

]
. (4.1)

In other words, the continuous-time Markov chain, which governs the input, has two states.
For various values of λ ranging from 4 to 13, this MAP has the fundamental rate δ ranging
from 2 to 6.5.
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Next, we consider the phase-type (PH) service time processes for server-1 and server-2
as

α = (0.85, 0.14, 0.01), S =

⎡
⎢⎢⎣
−200 0 0

0 −20 0

0 0 −0.5

⎤
⎥⎥⎦ , S0 =

⎡
⎢⎢⎣

200

20

0.5

⎤
⎥⎥⎦ ,

β = (1, 0), T =

[−20 20

0 −20

]
, T0 =

[
0

20

]
.

(4.2)

The average intensities of the services of server-1 and server-2 are given by μ1 = 1/−αS−1e3 =
31.94 and μ2 = 1/ − βT−1e2 = 10, respectively.

In Figures 1 and 2, the values of E(N), the mean numbers of customers in the system
and E(NB), the mean number of customers in the system when both servers being busy
are plotted against the fundamental rate δ for chosen values of μ1, μ2, θ1, θ2, p1, and p2

satisfying stability condition (2.9).
By considering higher vacation rates (of order 105) in the vacation model under

study, we obtain approximate results for corresponding nonvacation model. By fixing μ1 =
31.94, μ2 = 10, θ1 = 4, and θ2 = 5, the values of E(N) versus the fundamental rate δ are
plotted in Figure 1 for the following cases:

(1) 1-limited service policy (p1 = p2 = 1),

(2) Bernoulli vacation scheduling service (p1 = 0.4, p2 = 0.5),

(3) exhaustive service policy (p1 = p2 = 0),

(4) with no vacation system.
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In all the cases, it is observed that E(N) steadily increases as δ increases and decreases with
decreasing values of p1 and p2. Figure 2 indicates that E(NB), the mean of the system size
when both servers being busy for 1-limited service policy, Bernoulli vacation scheduling
service, and exhaustive service with multiple vacation grow at a faster rate than nonvacation
system for increasing values of the fundamental arrival rate δ.

In Figure 3, the values of P0, the probability that there is no customer in the system,
and both server-1 and server-2 on vacation are plotted against the fundamental arrival rate
δ for the chosen parametric values of the system satisfying the stability condition (2.9). It is
seen that the probability P0 steadily decreases as the values of δ increase, and it decreases for
increasing values of p1 and p2.

In Figure 4, we plot the probability P12 that both server-1 and server-2 are busy versus
the fundamental arrival rate δ for the different values of p1 and p2. It is seen that the
probability P12 exhibits the opposite trend to that of the probability P0 in the sense that it
increases with increasing δ as expected. However, P12 decreases for increasing values of p1

and p2. Moreover, for the case of nonvacation system, the value of P12 is seen to be more than
that for any of the vacation policies under discussion.

The trends of the average waiting time E(W) are depicted in Figures 5–7. The
computation of the mean waiting time E(W) of customer at the arrival epoch for the
exhaustive service policy is carried out in accordance with procedure given in the work of
Kao and Narayanan [11] and in the case of 1-limited service discipline, the approach due
to the work of Tyagi et al. [14] is followed. It is observed from Figure 5 that E(W) grows
in an unbounded fashion for system with/without vacation for increasing values of δ. For
nonvacation system and exhaustive service discipline (p1 = p2 = 0), the growth of E(W) is
not much faster whereas in the cases of Bernoulli vacation scheduling service (p1 = p2 = 0.5)
and 1-limited service discipline (p1 = p2 = 1), there is a steep increase in E(W) for larger
values of δ.

Figure 6 illustrates the trend of expected waiting time E(W) of the customer at arrival
epoch versus the fundamental arrival rate δ if server-1 follows Bernoulli vacation scheduling
service and server-2 follows either of the following: (i) 1-limited service policy, (ii) Bernoulli
vacation scheduling, (iii) exhaustive service discipline, and (iv) no vacation system. In all
the cases, the expected waiting time E(W) increases for increasing values of δ. Finally,
Figure 7 exhibits a similar trend wherein the service disciplines of server-1 and server-2 are
interchanged corresponding to Figure 6.

5. Conclusions and further research

A queueing system with two heterogeneous servers and Bernoulli vacation has been
presented. Customers arrival pattern is described by the MAP, and service times have
PH distributions. Based on the matrix geometric method, the stationary queue length
distribution, mean system size, and other system performance measure have been computed.
This system subsumes the 1-limited service discipline and the exhaustive service discipline
as special cases. Moreover, the expected waiting time of the customer at arrival epoch has
been analyzed in detail. Results of numerical experiments giving insight into behavior of
the systems are presented. We expect that the method of analysis adopted in this paper can
be used to discuss other complex queueing systems such as multiserver retrial queue with
Bernoulli vacation policy.
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