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ABSTRACT

The stability of nonlinear systems is analyzed by the direct Lyapunov’s
method in terms of Lyapunov matrix functions. The given paper surveys the
main theorems on stability, asymptotic stability and nonstability. They are
applied to systems of nonlinear equations, singularly-perturbed systems and
hybrid systems. The results are demonstrated by an example of a two-
component system.
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1. INTRODUION

In 1979, A. A. Martynyuk (see [32]) gave a description of two-indexed system of

functions called matriz Lyapunov function (MLF). In later works, [17, 20, 22], some main

concepts of MLF’s were developed. As it is well-known in the theory of Lyapunov stability, the

notion of definiteness of the scalar Lyapunov function V is of importance, for V is a positive

measure in one of the variables. The definiteness remains essential also for MLF’s.
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2This work has been completed during the author’s short visit at Florida Institute of Technology, U.S.A.
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2. THE DEFINITENESS OF MATRIX-FUNCTIONS

Let (Rn,
an open ball centered at the origin with radius p; let D-=R x B(p) be the Cartesian product of

=[--oo,+o] and B(p). Moreover, we shall consider an open connected time-invariant

neighborhood N C_ n of point z-=--0 and intervals To={t: o _< < +oo}, to E T, T C_ R and

Tv={t" v _< t < +oo), r E , where T is the set of initial values.

Consider a perturbed motion equation

-tz---=f(t, x), f(t, 0)=0, (2.1)

where z fi Rn and f
Suppose that a solution X(i; t0, z0) of (2.1) is continuous for all t fi TO and

X( o; to,
Since the definitions of stability of the trivial solution of (2.1) with respect to T,

attraction with respect to T and asymptotic stability with respect to T are given in [5, 7], and the

same concepts relative to a part of variables are introduced in [16], we omit this notions here.

Matrix-Function (MF). Together with (2.1) we consider a two-indexed system of

functions

U(t, x)=(uij(t z)), i, j {1, ..., m}, rn > 1 (2.2)

with uij C( Tr x B(p), gO).

The notion of the definiteness of an auxiliary function (that is used in the direct

Lyapunov’s method) is a main one [15], since this behaves as a scalar function having all norm

properties. The definiteness of the MF can be defined in terms of the definiteness of a

corresponding scalar function whose construction is based on the MF.

By means of the matrix-function U, we can introduce the following scalar functions

1. Uo(t, x)=maz{ uij(t, z)" 1 <_ i, j <_ m};
2. Uo(t, z)=T U(t, z), where E IR’ or E C[n, ], (0)=0;

rn
u0( , E

i, j=l

1)

Definition 2.1. Matrix-function U: Tr x RnNm x m is called

positive definite on Tr iff there exists a time-invariant connected neighborhood N C_ Nn

mof point z=-O, a positive definite function, w: N--,N+, and a vector N+ or

a vector-function C[N, t], (0)=0 such that

u=C(T 
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b) U(t, 0)=0 VtE

c) function Uo(t, x), defined by 1, 20 and 3, satisfies the condition

Uo(I x) > w(x) V(/, x # 0) e Tr x Rn.
2) positive definite on Tv x S iff the above conditions a) c) are satisfied for

N=S (where S Rn is an arbitrary set);
3) positive definite in the whole on Tv iff the conditions a) c) are satisfied for

N=Rn;
4) negative definite (in the whole) on Tr x N (on Tr) iff (- is pitive

definite (in the whole) on Tr x N (on Tr).
Remark 1 The expression "on Tr" in Definition 2.1 will be dropped if all above

requirements are satisfied for every r .
Remark. 2 If the (i, j)-th element uij" RnR does not depend on tfi Tr, the

conditions of Definition 2.1 are simplified, in particular, condition 1 c) is reduced to

U’0( > 0 V(x 0) en, ( 0) e

Remark 3 The definition of the semidefiniteness of the MF is formulated via

Definition 2.1 and Definition 10 from [7, p. 23].
Remark 4 In the case when m=l and Tr=R Definition 2.1 is reduced to the original

definitions of positive semidefiniteness (in the whole) introduced earlier by Lyapunov [15] and

Barbashin/Krassovsky [11].

1)

3)

Defitdtion 2.2. Matrix-function U: Tr x Rn--,m x m is called

decreasing on TT. 7" , iff there exist a time-invariant neighborhood N C_ n of point
m such tha thez’=O, a positive definite function u: N--,, and a vector [+

conditions 1 a) and 1 b) of Definition 2.1 are satisfied and

v0(t, < v(, # o)e e

decreasing on Tr x S, iff the above conditions 1) hold for N=S (S C_

decreasing in the whole on Tr if the conditions of 1) hold for N=Iin.

3. MATRJX LYAPUNOV FUNCTION

First observe that the definiteness of MF’s [17] was based on a generalization of the so-

called "maximum function" introduced by LaSalle [14] for the case of vector functions. Later [18,

30], the concept of the definiteness has been modified, however no formal definition was

introduced. We now introduce the definition of MLF’s based on the definiteness of the MF from
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Section 2 (whose special case agrees with the classical definiteness via Lyapunov [15]

(of., [11, 12, 381).
We define the total derivatives of the matrix-function (2.2) by virtue of system (2.1) as

D+ U(I,z )=(D+ uij(t, ); i, j e { 1,..., m}),

where

D+uij(t, z)=lim suPtuij(t+O z+Of(t,z ))-uij(t, z)]o-l:o---,O+};
D+ U(t, x)=(e+uij(t ); i, j e {1, ..., m}),

where

D+uij(t z)=lim in]([uij(t+O z+O](t, z))-uij(t, C)]o--l:o-’*Oq’}.
Unless specified, D’U is either D+ U(t, z)or D+ U(t, x).

(3.1)

(3.2)

Definition 3.1. The two-indexed system of functions (2.2) is called a matrix

Lyapunov function for system (2.1) if on Tv N

a) the function U is definite;

b) D* U is semidefinite and has either the same sign as U or the opposite sign of U.

It is clear that the function U (cf. (2.2)) and it’s total derivative in terms of (2.1) solves

the stability problem of state z’=0 of equation (2.1).
Definition 3.1 can be specified for various dynamic properties of state z’-=-0. Denote S()

the set of MLF’s that solve the stability problem.

Trx Nif

1)

Definition 3.2. A MF U: TrxRn-Rmx is called a MLF of S()- type on

U is positive definite (decreasing),

D+ U is nonpositive definite and D+ U(t, 0)=0 Vte Tr.
Let AS(C) be the set of MLF solving the problem of asymptotic stability of state x=-0.

Trx Nif

1)

2)

Definition 3.3. A MF U: TrxRnRmXm is called a MLF of AS()-type on

U is positive definite (decreasing),

D+ U is negative definite and

D+U(t, 0)=0 Vie Tr.
Let NS() be the set of MF’s solving the problem of instability of state
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Definition 3.4. A MF U: Tr Rn._,Rm m is called a Lyapunov-Chetayev MF of

NS(ff)-type if there exist a o E T, a A > 0, such that ( A C N and an open set W C B( A

such that on TO x W

b)

)

d)

0 < U(t, z) < (7, where C is an m x m real-valued matrix;

tTD+ U(t, z)$ > a(v(t, z, )), a is an element of Hahn class K

ocow;
U=O on To x (O Wfq B( )).

4. THEOREMS OF DIRECT LYAPUNOV METHOD IN TERMS OF MATPAX-FUNGIONS3

The meaning of the introduced definition of MLF’s is revealed in view of the following

classical results of stability theory of motion.

Theorem 4.1. In order that the trivial solution of the equation (.1)
(uniformly) stable, it is necessary and sufficient that for (e.1) there exists a MLF

U: Tv rt...,rn x m of S()-type for any positive integer m.

to be

Theorem 4.2. in order that the trivial solution of the equation (.1) to be

(uniformly) asymptotically stable, it is necessary and sufficient that for (e.1) there exists a MLF

U: Tr n...m m of AS()-type for any positive integer m.

Theorem 4.3. In order that the trivial solution of the equation (.I) be unstable it

is necessary and sufficient that for (.1) there exists a Lyapunov-Chetayev MF

U’: T7. x n...,m x m of NS()-type for any positive integer m.

R.eark 5 For m=l Theorems 4.1 4.3 are reduced to the classical results on

stability, asymptotic stability and non-stability obtained in ([11, 12, 38]). For autonomous

systems results similar to Theorems 4.1 and 4.2 are given in [6], in terms of the MF (2.2) with a

given vector b(b O, i=1, ..., m) (see Remark 2).

5. METHODS OF CONSTRUCTION OF MLFs

We consider time-invariant nonlinear system

3The proofs to Theorem 4.1-4.3 are not yet published and are contained in a monograph by the author

that will appear later.
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--=f(z), (5.1)

where z E Rn and fE C(Rn, Rn) is subject to physical or mathematical decomposition into m

interconnected subsystems

t=gi(xi)+hi(x)A=fi(x), i=1, 2,..., m. (5.2)

Here x E hi, z"-----(xlT, x2
T xTm)T, f=(, f2T fTm)T, E , tO=O. The free subsystems

corresponding to the system (5.2), contain the main information on dynamic properties of the

system (5.2):

t=gi(xi), E {I, ..., m} (5.3)

Assumption 5.1..._ There exist open connected neighborhoods N of states xi=O
Vi {1, ..., m} such that

a) motions xi(t Xio of subsystems (5.3) are continuous on

R+ x N and zi(0 Zio)=O Vi E {1, ..., m};

b) motion z(i, x0) of system (5.1) is continuous on E R+ x N, where N=N1 x...N,n
and z(0, x0)=0.

The decomposition of system (5.1) into interconnected subsystems (5.2) is called the first level

decomposition, which corresponds to the following approach of the construction of the MLF.

In matrix function (2.2) the diagonal elements vii(x), are subject to the dynamical

properties of the free subsystems (5.3) and the non-diagonal elements vij(xi, zj) are constructed

in response with interconnections hi(x), Vi,j {1, ..., m}. Therefore, the MLF for the system

(5.2) has the form

=

Vll(Xl) Vl2(Xl 2)’ "’" Vlm(Xl’ Xm)

Vml(Xm’ Xl) Vm2(Xm’ 2), "’" Vmm(Xm)

The definiteness of this MLF is defined according to Definitions 2.1 and 2.2 and Remark 2.

It is possible by the construction of a vector-function to implement the interconnections

hi, i=1,..., m. ttowever, even in this case, the use of a MF improves the estimate of the region of



Analysis of Stability Problems Via Matrix Lyapunov Functions: Martynyuk 215

asymptotic stability [cf., 36].
Example 1_. (See [3]). Let x E Rn and let system (5.1) be linear.

z (:T’ zT2)T’ where x E hi, "1 +n: = n, we have

Then, setting

d__.z =dt
All A12

A21 A22

The elements of the matrix U are taken in form

for i, j= 1, 2. For the function

v(x, rI)=r/T U(x)r/, r/( !2 (5.5)

we obtain the estimate

v( x, 7) >_ uTBTCBu,

where B=diag(l,

Cii=)min Dii)
/2 D DTCij=-sign(rli, yj), max,.ijij,, i, j= 1, 2.

Obtaining the total derivative of the function v in (5.5) by virtue of system

t =Aiixi+ Aijxj,
i=1

it is easy to get the upper bound

Dv(z,rl) <_ uTQu, (5.8)

where Q is a 2x e-matrix constructed in terms of certain estimates of the derivatives of the

components of the ME U [cf. 2, 28]. The stability conditions for the state (xT, 2" Tx2) =0 of system

(5.7) are formulated by means of the definiteness of the matrices A and Q.

For an autonomous nonlinear large scale system (LSS) an algorithm for construction of

estimate of asymptotic stability (ASD) is developed by means of a MLF (see [9]). The algorithm

is as follows. Consider a class of MF’s, whose m x m elements are positive definite forms. A class

of scalar functions (SF) is also, constructed based on the class of MLF’s as a subclass of MF’s, i.e.

for U (x, Bij) MF, Bij=B. > 0 the function

o
v(x, r Bij)=T U(z, Bij)rl, rl e R s
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O
$is constructed, where (7, Bij)E + x=S is a space of admissible parameters.

matrix-function U(z, Bij MF, the estimate of the ASD of LSS

Given

={, e a". (,, 0, B) < (, B)}
is made such that

Dv(:r., rl, Bij)=yTDu(x, Bij)r < 0 V(x # O)

and

I.t(rl, Bij)=min v(x, 1, Bij),

The hypervolume of the set in n is taken as its measure, and the problem of ASD extension is

reduced to the problem of the conditional maximization.

Remark 6 In the MF (5.4) the diagonal elements vii(xi) are constructed in

order to satisfy the inequalities

;;;( II ; !!) _< v.(;) < "ffiii !1 i I! ), i=1, 2, ..., m,

where ii, "ii > O, i, i K are of Hahn class K(KIR), and nondiagonal elements satisfy the

inequalities

(5.10)

where -ij, -ij=cns, (i # j) {1,...,m}.
Another way of a MF construction for system (5.1) appeared in [21] where there were

considered pairs (i, j), (i-- j) e { 1,..., m} of the interconnected subsystems

dx
--=qi(xi, xj);

(5.11)

where qi Nni x Nnj--[ni; qj: NnJ ",X ni---,n: qi(O, O)=qj(O, 0)=0 for all i, j e {I,..., m}.
Such a decomposition is naturally referred as the second level decomposition, and the MF here

is regarded as a hierarchical one [27, 9]. The MF elements

U(z)=(vij )), i, j e {1, ..., m}

are defined as
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vi5=

vii(Xi) for

vij(xij for < j;

() fo > j, (i # j) e {,...,m}.

The functions vii nixnj, R] correspond to the (i, j)- pairs of (5.11). Under some

assumptions on the functions Vii and their total Dini derivatives by virtue of systems (5.11) and

interconnected system (5.1), sufficient conditions for stability of equilibrium state x=-0 are

obtained (see [9, 21]).

6. MATKIX-FUNC’IONS FOR SINGULARLY-PERTURBED SYSTEMS

It is known that systems of the type

dx/dt=f(t, :r,, y), (6.1)

pdy/dt=g(t, x, y, p), (6.2)

where (xT, yT)TE m+n, p E [0, 1] and and g are vector-functions continuous in all their

arguments, are of a considerable importance for applications. This is the most general example of

systems admitting the motion separations for p0. In [19, 33], it was proposed to use the

matrix-function

V21(/, X, y, ].t), V22(t y,

for solving the problem on stability of equilibrium of state x=0 in the equations (6.1), (6.2).
We consider two concrete classes of systems (6.1), (6.2) and matrix-functions corresponding to

them.

CASE A. Linear singularly-perturbed system has the form

dx/dt=A11x+A12Y, (6.4)

l.tdy/dt=A21xWA22Y, (.5)

where A11...A12 are constant matrices of the corresponding dimensions.

elements of matrix-function (6.3) are taken in the form

For convenience, the

v12(x, Y, #)=v21(x, Y, I.t)=pxTB3Y,
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where matrices B1, B2 are symmetric positive-definite and B3 is a constant matrix, similarly to

the conditions from Example 1, for various types of stability of state z-=-0 of (6.4), (6.5) were

obtained by means of functions of the type of (5.5) for ] E (

(0, #0] and for/---,0, (see [34]).

7. STABILITY OF IIYBRID SYSTEMS

The problems of hybrid system stability in sense of Lyapunov are of essential interest both in

theoretical and application aspects. Recently a problem of hybrid system practical stability has

also been considered (see [20, 25]). The hybrid interconnected system (HIS) is a model of a really

functioning system, a part of which is usually described by a (not necessarily linear) operator L

and the rest of which is described by a system of ordinary differential equations (ODE’s). In

many cases, the operator/, describes the object and the system of ODE’s describes the regulator.

In general, the operator L may represent either finite-dimensional system ODE’s, infinite-

dimensional system, delay equations, partial differential equations, Volterra integral equations or

integro-differential equations. For the systems constructed by the operator L, are introduced the

Banach space E = YI Ei is introduced, where E are Banach spaces corresponding to the
i=1

subsystems (o’k. gk),k {1, ..., m} with norms I1" ]1 k" Here o’k is a free k-th subsystem, gk is

the k-th interconnection function, the pair (o.k, gk) determines the k-th interconnected subsystem

O" k

To be specific, we suppose that the HIS consists of isolated subsystems

dxi
o.i: -- Xi(t, zi), Xi(t,0) = 0,i 1,2,...,m, (7.1)

where Xi: Tr x Ei---,E are connected by interconnection functions

gi: gi- gi(t’Xl,’",Xm), e {1,...,m} (7.2)

and such that gi: Tv E1 ... x Em---,Ei.

The fixed interacting k-th subsystem is described by the pair

dxk
W = +

where xk Ek. We introduce some assumptions.

Assumption 7.1. There exist connected neighborhoods

Vi = 1,2,..., m such that

(7.3)

NiC_Ei of states zi =0

the motions zi(t, to, zi) of subsystems (7.1) are continuous on (t, xio TrXN
where z(0; to, Xio = 0, = 1,2,...,m;
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b) the motion z(t; to, z0) of HIS is continuous on (/,Xo) E rr x N, where

N = N1 x N2 x... x Nm and z(0; to, :o)= 0.

Let U E C[TrxE, Rmxm] be a MF for system (7.3). Like the functions Uo(t,x for the

system of ordinary differential equations by (2.3), Theorems 4.1 4.3 are formulated for hybrid

system (7.1)-(7.2).
Further we consider a vector approach in terms of matrix-function. Define a vector-function as

L(t, x) = AU(t, x), (7.4)

where A is a constant m x rn matrix, E R m+ or C[Rn,R+],((0)=0). For (t,z)TrxE
we introduce the Dini derivative of vector-function L(t,z) by the formula

D + L(t,z) = tim suPh[L(t + h,z + hX(t,z))- L(t,z)]. (7.5)
h0 +

It should be noted that if m then+,

D + L(t,z) = AD + U(t,x),

where D + U(t,z) is defined similarly to (7.5).

1)

Lemma 7.1. Let there exist

a matrix.function U(t,z) C[N + x E,Rm x m], such that U(t,z) is localt I, ipschitz in

x for (t,x) E N + x E;
o

a constant m m matrix A, a vector Rm+ and a vector l R+ such that

rITL(t,x) >_ a( !1 II ), (7.7)

where a is from Hahn class K.

a vector-function G C[R + x m m such that G(t, u) is quasimonotone+ +,

nondecreasing on u for every t + and such that the estimate

D + L(t,x)<_ G(t,L(t,x))

holds.

a maximal solution r(t, to, Uo) of the system

du/dt = G(t, u), u(to) = uo >_ 0

on interval [to, oo).
Then the inequality

to, <- to, Uo),

holds with respect to the solutions x(t, to, Xo)= (xT(t, to, Xio),...,xTm(tt, tO, Xm))T of hybrid system

(7.3) as long as
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z(t0, 0) -< "0. (7. )

The lemma is proved in a standard way by the comparison method (see [12] and [13]).
Lyapunov stability of hybrid system (7.3) will be investigated with respect to a measure

p = il II, where II II = II I1 +... + II ,, II . For such a choice of measure for system (7.3)
defined in spaces Lp, norms are defined by the formula

b

!1 II/p = f II ()II Pd)1/, P e IX, ),
a

1 < s < m. To formulate stability definitions for (7.3) we suppose that

1) Xk(t, Zk) = 0 for :k 0 and gk(t, O,..., O) 0, k = 1,2,...,m; (7.13)
2) G(t,u) = 0 for u = 0 for all t E R+.

Definition 7.1. The equilibrium state z = 0 of hybrid system (7.3) is called

conditionally equi-stable, if for every e > 0 and o E R + there exists 8 = d(to, e) > 0 such that

II x0 I! < implies II x(t, t0,z0)II < e for all t >_ to.

Definition 7.2. The trivial solution u = 0 of comparison system (7.9) is called

conditionally equi-slable, if for every e* > 0 and o R + there exists 6" = 6*(to, e* such that
m m

uo e H + C R and Uio < imply the inequality ui(t, to, u0) < e* for all > to.
i=1 i=1

Theorem 7.1. Let

1) conditions 1.3 of Lemma 7.1 be satisfied
) zero solution of (7.8) be

a) conditionally equi-stable;

b) uniformly asymptotically stable;

Then the equilibrium of state z = 0 of (7.3) is

a) conditionally equi.stable;

b) uniformly asymptotically sable, if for some function b of class K

0
T(t, ) _< b( II I! ).

The theorem can be proved in a standard way applied for the proofs of stability theorems in

the comparison method for equations in Banach spaces.

8. STABILITY ANALYSIS OF TWO-COMPoNENT SYSTEM

We consider a system consisting of two subsystems, one of which is modeled by an ordinary
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differential equation and the other one by a partial differential equation (see [1]). Let the interval

To = [to, + c) and a bounded domain be given in space k. Consider the problem

a:/at = x(t,:(t)) + gx(t,,:(t), ,(t, )), :(to) o,

a/at = z(t, =,) + p2(t,z,z(t), w(t,z)),

w(t’z) = w(z)’i(t’z’ )

Here # > 0 is a small positive parameter, z: roH,H

(S.1)

w" T0xfl--,Q, QC_Rm; X: T0xH--*Rn; gl: T0xflxHxQ--Ra;

L: BIB2, M" B1---,B2, M: B1---B3, w0 E B4; g2: To x ft x H x Q-.-.Rrn.

Because of the presence of the small parameter t in the interconnection functions of subsystems

dx/dt = X(t,x(t)),X(to) = Xo;

dw/dt = L(t,z,z)w, W(to, Z = wO(z);

the system (8.1)- (8.2) is a weakly connected hybrid systems (see [30]).
Assumption 1. There exist

1)

2)

3)

4)

(8.3)

(8.4)

functions Vll ( C[To x Nx, R + ], such that v11(t,x is locally Lipschitz in z,

v22 E C[To x N,,R + ], such that v22(t,z is locally Lipschitz on w, and

Nz C_ H, Nw C_ B1 are open connected neighborhoods of points z = 0 and w = 0

respectively;

functions i( !1 !!) and i( II w II) of Hahn class K, = 1, 2;

functions Vx2(t, x w) v21(t,X, W), v12 C[T0 x Nx x Nw, R], such that

v12(t,x,w and v21(t,x,w are locally Lipschitz in x and w;

positive constants
_

ii and it, = 1, 2, and arbitrary constants
_

12 and

12 for which the estimates

a)

b)

)

1112( II II) _< Vll(t, X) --< 11( II !1 );

hold.

Assumption 1 implies the following lemma.

Lemma 8.1. If all conditions of Assumption 1 are satisfied and matrices
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-- 11 -- 12 11 12
A2 ---- 21 c 22 21 22

12--C21; C21 = 12

are positive-definite, the function

v(t, x, w) = Tu(t, x, w),

(where cT = (r/1 r/2)_ r/l, r/2 > 0) is posilive.definite and decreasing.

i)

)

Assumption 2. There exist

functions vij(t mentioned in Assumption 1;

constants ik, i = 1, 2; k = 1, 2,..., 8, functions ’1 = if1( il z II) and if2( II w II ),

’1, ’2 are of Hahn class K and estimates

a) D +t vii -l-(D z
+ Vll)TX __< O;

b) (D x
+ Vll)Tgl __< ]2212 -t- fl1312;

c) D +t v22 + (D w+ v22)TL _< 0;

d) (D w+ v22)Tg2 _< fl22I + fl2312;

e) D +
V12 q-(D + Vl2)Tx _< fl14’ + fl1512;

f) (D; ,x:)TL _< :1 + &q:;

h) (O v12)Tg2 fl26 + f123lff2 + fl28
hold.

Consider matrix C(/) in form

c(,) =
Cll C12

C12 C21
C: C::

(8.6)

with the elements
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C = r/ufl2 + 2rhr2(fl4 + #6 +/26);

c = (,Zx +,Z) +(Z+ +ar+

Introduce designations a p, q; 1, P2, P3,4 by formul

a = I2[I12 + 2I(fl16 + fl26)][222 + 2I(13 + 28)]-
1 2 27)];

P = l2{[1f124(lf112 + 2116 + 2226) + 214(222 + 2118 +
1 2

Further consider a value of parameter , whose boundary value is determined by the conditions

Bo. If a > 0, p > 0, then o = min(l, 2)"
BI. If a > 0 and p is arbitrary, then o = min(l, 2, P3)-
B2. If a > 0 and p > 0, then Po = min(p, P2, P4)"
The validity of the following lemma is eily verified.

Lemma 8.2. If all conditions in Assumption are satisfied and he inequalities

a) o2Zxa < 0;

b) Z12 +22(+ 2) > 0;

c) fl < 0;

e) 4fl14- (fl15 + 25)2 > 0,

hod true, then the matri C() is negative-deyinite for e ]0,o[ and 0, here o is defined
by one of lhe condilions B0 B2.

In view of condition 2, Assumption 2, we have for function (8.5) the following estimate of Dini

derivative

D + (t, ,) ZC(), (8.7)

whr Z = (( II II ),( II II )),, e ]0,
Threm 8.1. If lwo-component system (8.1)- (8.2) is such tha all condilions of
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Lemmas 8.1 and 8. are satisfied, then its equilibrium state z=0, w=0 is nniformly

asymptotically stable for l* E ]0,/0[ and for t--0.
The proof of the theorem follows from the conditions satisfied by the function (8.5) and its

Dini derivative (8.7).

Remark In consequence of conditions 2 a) and 2 c) of Assumption 2, the

hybrid system (8.1) (8.2) consists of (nonasymptoticMly) stable subsystems and uniform

asymptotic stability of equilibrium state z = 0, w = 0 is achieved due to the interconnection

functions stabilizing effect.
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