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ABSTILACT

The authors study the input, output and queueing processes }n a gene-
ral controlled sngle-server bulk queueng system. It s supposed that nter-ar-
r}val time, service time, batch sze of arr}vng units and the capacity of the ser-
ver depend on the queue length.

The authors establ}sh an ergod}c}ty criterion for both the queueing pro-
cess with continuous time parameter and the embedded process, study their
transient and steady state behavior and prove ergodic theorems for some func-
tionals of the nput, output and queue}ng processes. The following results are
obtained: Invariant probability measure of the embedded process, stationary
dstr}but}on of the process w}th continuous tme parameter, expected value of
a busy period, rates of input and output processes and the relative speed of con-
vergence of the expected queue length. Various examples (including an optimi-
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1. INTRODUCTION

Let (t) denote the number of units in a single-server queueing system at time t > 0 and let

n = (tn + 0), n = 1,2,..., where tn are successive moments of service completions. We assume here

that the server capacity, service time and the input process depend upon the number of units in the

system as follows. If at time n + 0 the number of units n is j then:

within the random time interval (tn, tn + ) the input flow of units is a compound Poisson
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process with interarrival rate ,j and with batch size distributed according to {a!J);i = 1,2,...} and

with mean a[j].

the server takes for service the nth group of units of size rain{j, m(j)} (where re(k) is the ser-

ver capacity, k = 0,1, ...), provided that j > 0. If j = 0 the server begins its idle period which ends as

soon as a next group of units arrives at the system. This group is of random size a(0) and the server

takes min{c!), m(0)} units for the next service.

the nth group is being served a random time with the distribution function Bj E {Bo B1,

...} of general type with the finite first moment bj.

Such a system supplements and generalizes the established class of single-server bulk queues

with state dependent parameters, therefore, including a larger variety of real situations subject to sto-

chastic control. Many authors, who treated queueing processes in special models of this class (pioneer-

ed by Finch [12]) (el. [3-5,7-9,12-16]) analytically, were facing real problems to justify results obtain-

ed and to reduce a solution to an explicit form. Some other authors (cf. [11]) instead developed nu-

merical algorithms. While there is no doubt about the need for queueing systems with broad stochas-

tic control, it is also desirable to improve the analysis of existing results.

In the present paper the authors consider the queueing, input, output processes and some

functionals of them in the above queueing system. After a formal description of all participating pro-

cesses, the authors treat the embedded process {n} and establish a necessary and sufficient criterion

of its ergodicity. The transient and stationary distribution of {n} and the stationary distribution of

{(t)} are found .in terms of their generating functions. In the last section, besides the queueing pro-

cess, the authors study the input and output processes obtaining explicit formulas for expected rates

of these processes and establishing several ergodic theorems. Various examples, including an

optimization problem, demonstrate applications of the general results obtained in this article.

2. FORMAL DESCPAPTION OF THE SYSTEM

The stochastic process {f, if, (PX)zcQ (t) t >_ 0} ---, Q = {0,1,...} or shortly {(t)} de-

scribes the number of units in a single-server queueing system at time t. Other processes are related

to {(t)} as follows. Denote by

a) {f2, , (PX)xeQ n nEN0=NU{0} (t0:=0)}---,(IR+,B+) (where!B+ --.!B(IR+) is

the Borel it-algebra) the point process of successive moments of service completions;

b) {f2, , (PZ)zeQ, Cn: = (tn +) n No} Q the embedded process over the moments

of time {tn};

c) {re s N} a stationary Poisson point process with rate A describing the flow of groups

of arriving customers;
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d) {N(t); t>_ 0} the associated compound Poisson counting process with as: = N(rs+l)
N(rs) as the size of the sth arriving batch. {as} is assumed to be a lattice renewal process indepen-

dent of {(t)} and {tn} and such that a(z): = E[zas] = > 1 aizi, z E B(0,1) U { 1,1}, (where

B(zo,R is an open ball in C (with Euclidean norm) centered at z0 and with radius R), 0 < a: =
E[as] < c, s = 1, 2,

e) {vJ) s N} the jth partial input process that will govern the flow of group of units on

those intervals (tn, tn + ) when n = J, i.e. let {J); s e N} be a stationary Poisson point process

with rate Aj then

. o x (t., t. + )
o (., e )),

where IA denotes the indicator function of a set A. The corresponding controlled arrival point pro-

cess denoted by {f2, , (PX)xcQ rs s E N } --, (R +, iB +) is then the superposition of partial input

processes {rJ)}, j = 0,1,...

f) {Nj(/); l>_ 0} the compound Poisson counting process associated with the above point

process {r!J)}. It should count only those units that arrive during the intervals (t,,t,+ 1) when

n = J" More formally, let {.j(/)} be a compound Poisson process with rate j, the batch size distri-

buted according to {a!J);i = 1,2,...} and the batch size mean a[J]). Then

With the formalism like in d) we have: J)’=. N(-’(j).+l)-N(rj)) denotes the size of sth arrival

batch of units on those intervals (tn,ln+ 1) when n- J" Unlike {as}, the process (a) depends

upon {n} and {tn} But we assume that given n the random variables a(n) .(n) a(n)On uOn+l On+2
(,)

", On + 1, are conditionally independent (on (tn, n + 1)), where On = inf{s e N: rs >_ tn}.

Denote aj(z) --- E[zaj) a!j) B(0,1) U } 0 < < x), si> 1 z’, ze ( 1,1 a[Jl’: E[z s

= 1,2,...

g) {N(t)) the arrival counting process associated with the controlled point process {rs).

{N(t)} is the sum of all partial counting processes {Nj(t)), i.e. N(t)= j>_o Nj(t).

The Poisson processes introduced in c) and d) will be considered as special cases of the cor-

responding controlled processes described in e)- g). In this event, the associated superscripts will be

dropped.

Units arrive at the system in accordance with processes introduced in e)-g) and they are
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placed in a line in a waiting room of an infinite capacity. Arriving groups of units obey the FIFO dis-

cipline. Within any group the order is arbitrary. At nth moment of servicing time following tn, the

server takes for service the nth group of units of size M(n) defined as

min{o(rOn), m(0)}, n = 0
(2.1) M(n)-

min{n, m(n)}, n > 0

where m(-) denotes the capacity of the server. Observe that the server takes units for service at time

tn + O, on a busy period, and at time r) + 0, at the end of a corresponding idle period. The service

time n of the nth batch is distributed according to Bn picked from a given sequence {B0, B1 ,...}
of distribution functions each of which is concentrated on R + and with the properties Bi(0 + = 0,

Bi(+cx) = 1, hi: = E[rn In-1 = i] e (0,), i= 0,1, The service times n are supposed to be

conditionally independent given n, n = 1,2,

We introduce another notion. Let {C(t)} be the counting process associated with the point

process {tn}. Then, the first group of units that arrives in interval (tc(t) tc(t)+ 1) will be of size

where tgt:- inf{s E N" rs _> to(t) }. Then, as in (2.1), we can si-N(T$t), and it arrives at time TOt
milarly define the size of group which the server takes for service in interval (tc(t) tc(t)+ 1)"

min{rO(rt), m(0)}, ’(t) 0
(2.2) M((t))

min{(t), m((t))}, if(t) > 0

where (t) denotes the value of the queueing process (t) at time tC(t).
a .ote, i.iti  of the {(t)} we u,e ro . the u.i 

mass e= to emphasize that the process started from a state {z}. The corresponding conditional proba-

bilities and expectations are denoted by px and E=.

3. EMBEDDED PROCESS {n}

Let un be the number of units arriving at the system during the service in (tn, n + 1)" Obvi-

ously, for every n = 0,1,..., the elements of the process {n} are connected by the following relation:

[n- m(n)] + + Un, n > 0
,n + 1 = tc(n) m(O)) +On

+Un, n=O,

(where (u) +: = sup{u,O}). Due to the nature of the arrival process, it follows then that {tn} is a se-

quence of stopping times relative to the canonic filtering cr((u); u _< t) (t-past r-algebra of the pro-

cess (t)) and that {,Y, (PZ)zeQ (n, tn): n 0,1,...) --, (Q x R +, !8(Q R +)) is a Markov rene-

wal process (that will appear again in section 6). {n} is a homogeneous Markov chain whose transi-
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tion probability matrix is denoted by A = (aij i,j E o)" We assume that for some N (which may

be arbitrarily large)

and

Aj = , aj(z) = a(z), j = N + 1, N +2, ...,

m(N+l)=m(N+2)= =:m(<_N+l)

BN+ 1 = BN+2=...=’B
Under the above restrictions, the transition probability matrix A of the Markov chain {n} is

reduced to a so-called Am, N.matrix
(3.1) A = (aij" i,jE Q; aij- kj_i+m, i> N, j> i-m; aij=O i> N, j< i-m)
studied earlier by Abolnikov and Dukhovny [2], where the values kj_i+ m of the corresponding

entries aij can be determined from formula (3.3) given below.

Let K(z)" = E j > o kjzj and Zi(z E j >_ o aij zj" The evaluation of A results

(3.2) Ao(z) = i = 1 ai (1- -m())+ z O z(i-m(O)) +
i>1

(3.Za) Ai(z = z(i- m(i))+gi(z), i= 1,2, ..., N,

(3.25) Ai(z = zi-mg(z), i- N+ 1, N+ 2, ...,

(3.3) Ki(z = fli(Ai- Aiai(z)) i= 0,1,..., K(z) -/3(A- Aa(z)),
oo
( o)B(,) (0 > Oexp(-Oz)Bi(dx i- 0 1 fl(O) = f owhere fli(O):- f o

The following two theorems were established by Abolnikov and Dukhovny [2]"

3.1 Theorem. Let {n} be an irreducible aperiodic Markov chain with the transition probabili-

ty matrix A in the form of a Am, N-matrix (3.1). {n} is recurrent-positive if and only if
(3.4) tim d Zi(z < , i-0,1, ..,N,

z-*l: zeB(0,1) dz
and

(3.5) lira d K(z) < m.
z-*l: zeB(O, 1) dz

The condition (3.5) is equivalent to

(3.5a) p:- ab < m

3.2 Theorem. Under the condition of (3.5) the function zm- K(z) has exactly m roots that

belong to the closed unit ball (0,1)- {z e C: II z ll _< 1}. The roots lying on the boundary 0B(0,1)

of B(0,1) are simple and all of them are rlh roots of 1 for some r.

Introduce the following notation:

!) e{ = 3, = 0,,... ) {po), )= = ), r = 0,1,...,

#)(z) E >_ o p)z, () = E >_o p!r), V()- {o(), (), ""},
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w(z,z) = ECj_>0 j()z, Ii < 1, zl < 1,

Pi = r--,oolim p!r), P(z) = E j > 0 Pj zJ’ P = {P0, Pl,’" }"

We put some well-known relationships between vectors P, p(r), U(x) and matrix A that will be used

in the next section:

(3.6) p(r + x) = p(r)z

As {n} is ergodic (under the conditions in Theorem 3.1) the invariant probability measure P is a

unique solution of the matrix equation

(3.7) Y-- YA, Y1 1, Y (ix, II II)
Taking into account equations (3.6) and (3.7) we have

(3.8) U(x) U(x)A + p(O)

In the following section we will threat the generating functions w(x,z) and P(z).

4. TNSIENT AND STATIONARY PROBABILITIES OF PROCESS

4.1 Theorem. The generating function w(z,z) of the transient probabilities of the Markov

chain {n} with the transition probability Am, N-matrix A = (aij) satisfies ihe following equalions

z E N
0 ui(x)[zmAi(z)- ziK(z)] + zmP()(z)

(4.1) w(z,z)
zm- zK(z) II z II _< 1, I < 1

(4.2) lim E ui(z)[ zi xAi(z)]- P()(z) =0 k-0,1, rs-1 s=1 S,
-,,(=) 5- = o "" ’""

where s(x) are the roots of function zN + 1-m(zm--xK(z)) inside B(0,1) with their multiplicities rs
ssuch that
s 1 re N+ 1. The system of equations (4.2) has a unique solution Uo, ,uN for all

x such that 0 < I1 < 1.

Proof. From equation (3.8) we get (4.1) after elementary transformations. Then, by

Rouche’s theorem, for any fixed z from interval (- 1,1) the function z zN + 1 XZN + 1- inK(z) has

exactly N+ 1 roots inside the unit ball B(0,1). Rewriting (4.1) in form

N zj p(0)(z)z: ,": o ,,, .,,l .: (.,,, +,._ z:., :o +
zN + 1-m[zm_ xK(:)]

and observing that the function in the left-hand side of the last equation is analytic in B(0,1) for

every fixed z E (- 1, 1) we get (4.2).

It only remains to prove that the system of equations (4.2) has a unique solution. Assume

that v= (v0,... VN) is another solution of (4.2). Consider w in (4.1) as an operator applied to a

vector-function n = (Uo,...,UN) (in notation w(u)[x,z]), w(v)[z,z] is clearly analytic in z within the

unit ball B(0,1) and continuous on the boundary c0B(0,1) for every xl < 1. As in Theorem 1,
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Dukhovny [s], it can be shown that the coefficients v(z) of the expansion of w(v) in Maclaurin series

in powers of z form a sequence Y* which is an element of (l1, I1" II) for every fixed z < 1. Now

because of (4.1) Y*= (v), v,...)satisfies (3.8)and due to (4.2) v = v, i=O,...,N (but its

components certainly differ from ui, = 1,..., N). Thus, we have two different solutions U and V* of

(4.2) in 1 which yields the following contradiction

II u- v" II II z(u- V*)A II < II(U- V*)A II < II U- V* I! ]1A I! < !] U- V* II 0

4.2 Theorem. The invariant probability measure P of the Markov chain (n) with the transi-

tion probability Am, N.matrix A exists if and only if p < m, where p:--AabN + 1" Under this condi-

tion, the generating function P(z) of the invariant probability measure P satisfies the following rela.

tions:

(4.3)

(4.4) EN
i=0 Pi [Ai(z)- zi] = O, k- 0,..., rs- 1, s = 1,...,S

ZZ$

(4.5) E .Ni=o Pi[Ai’(1)- i+ m-p] = m-p

where Ai(z satisfy formulas (3.2)-(3.3) and zs are the roots of the function
sinside the ball B(0,1) not equal 1 with the multiplicities rs, such that s

of equations (4.4)-(4.5) has a unique solution Po,’",PN"

Proof. The necessary and sufficient condition for the ergodicity of (n) follows from Theo-

rem 4.1, where the condition (3.4) is obviously satisfied and the condition p < rn follows directly

from (3.7). Now taking into account (3.4) and (3.5a) from equation

m(0))+ ,,, E[z(- .(.)) +

= j > o Aj(z) PX{n = j} we obtain formula (4.3).

Proceeding similarly as in Proof of Theorem 4.1 we get equations (4.4) and (4.5). As in

Theorem 4.1, we can show that the non-uniqueness of the solution of the system of equations (4.4)-

(4.5) would imply the non-uniqueness of the invariant probability measure P which is impossible

after we meet the ergodicity condition.

4.3 Example. We did not discuss how to evaluate the roots of the functions in Theorems 4.1

and 4.2 assuming that in general they can be found by various numerical methods. However, for a

wide class of special systems it is possible to find the generating function P(z) in an explicit form,

avoiding numerical procedures. As an illustration to Theorems 4.1 and 4.2, consider a special case of

the bulk queueing system under the assumption that the server takes for service all units available in

the system provided it does not exceed N and a service is not initiated right after an idle period. In

other vords, assume that re(j) = j, j = 1,...,N, re(j) = m, j = N / 1, N + 2, The capacity of the
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server at the beginning of a busy period m(0) remains under the general assumptions. In addition,

assume that B = B1, )’i = 1 and ai(z = a:t(z), i= 1,...,N. Then, in (3.2a) Ai(z are reduced to

Kl(Z), i= 1,...,N.

Let k(z) and .0(z) be Nth degree interpolating polynomials of gl(z and Ao(z), respective-

ly, taking on the values of K(z) and Ao(z and all its derivatives up to (rs- 1)st order at z = zs,
s = 1,...,S, and at z = 1. Then, denoting c = Pl + + PN we have

N-’ :i o pj[Aj(z) zj] = PoAo(z) + cKx(z E 7= o Piz’

and from (4.4) it follows that
N(4.6) -, j = o Pjz: = Porto(z) + Cgl(Z)

Substituting (4.6) into (4.3) we obtain

(4.7) P(z) = pofao(Z) + ;(z) + z
"[A(z) "(z)] + c[g(z) [l(Z)]

g(z)

To find the unknown constants Po and c we set up a system of two equations following the condi-

tions P(1) = 1 and P(0) = Po and taking into account (4.6) and (4.7):
(4.8) = poAo(O)+ c q(o)

( A’(I)-" ’(1)) c( Pl "-/1’(1))(4.9) l=Po 1+ m-p + 1+ m-p

The system (4.8)-(4.9) along with (4.6) is equivalent to the system (4.4)-(4.5) in Theorem 4.2, thus

it has a unique solution when p < m. Observe that the form of the polynomials 0(z) and l(z) de-

pends upon a relation between m(0), N and m. For instance, if a function f is analytic at zero and

thus f(z)- j >_ o fj zj’ and if is its interpolating polynomial defined in the same way as k
and fio for K1 and A0, respectively, then can be represented in the form

)(z) = + ? + ? +

where j’*(z) is the interpolating polynomial of the series f*(z) j > N + 1 m fj zi + m- N- . It

takes on the values of f* and all its derivatives up to (rs- 1)st order at z = zs, s = 1,...,S, and at

z = 1, where zs are the roots of zm- K(z) in (0,1).

Let m = 1. Then

Ao(Z)- -/N-o1"= aoiZi+zN Ei_>N aoi’ (z)= E N-I kj+zNEj>N_ k, kj"I=DjKl(z),
where D is defined as

d1 lim (z).Die- xO dx’
From (4.6) we have in this ce

pi=poaoi+ck, i=O,1,...,N-1; pN=PO i>N aoi+Ci>Nk
while (4.9) yields

[ j>N (i-N)k:11 j > N aoi(i N) (1 a00 1 + ’h’- pP0 = 1 / m : p + k
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Consider the system with N = 1 and m = 2. In this case the function z2 K(z) has a unique

root zI E B(0,1), thus

A0(z = 1 + (z- 1)[Ao(Zl) 1](zI 1)- 1

kl(Z = 1 -I-(z-- l)[K1(Zl)- l](zI I)- I

and c = Pl" The probabilities P0 and p: can be found from (4.8) and (4.9):
Ao(za) 1

p1 l+(m_p)-:(Ao,(l)_Ao(zl) -I) Ao(zl)-l[ ( K1(zl)-l)]= Zl_: +Zl_Kl(Zl ) 1-.I-(m-p) 1
Pl- Zl_ 1

Another interesting particular case arises when aoi = O, > re(O), and Kl(z = Ko(z
= Ao(z). Then (4.6)turns into

while (4.7) reduces to

E }v= o ko(Z)( +

(4 10) P(z) = (Po + c) zmK(z)- K(z)Yf(z)
g(z)

Now Po + c is obtained from P(1) = 1"

(4.11) P0 + c = (m- p) m- ,o + ,% 0’(1)
Pollaczek-Khintchine formula follows from (4.10) and (4.11) for Ko = K, N = O, m = 1.

5. CONTINUOUS TIME PARAMETER, PROCESS

Recall that the successive instants of the service completions {tn; n o} are stopping times

for {(t)} and that {f2,65,(PX)zQ, (n,tn)" n = 0,1,...}---, (QxR+, !8(QxR+))isa Markov rene-

wal process. In other words, tn’s are the moments of "Markov regeneration" of {:(t)} and thus it is

a semi-regenerative processes relative to the point process {tn}. The stationary probability measure r

of {:(t)} exists under the same ergodicity conditions as the invariant probability measure P for the

embedded Markov chain (:n) (as was stated in Theorem 3.1).

Clearly,

Introduce the following probabilities:

&k(t) P{(t) = kit1 > r) + t, o(r)) i} P{N(t) k-il O" > }

5jk(t) = PJ{(t) = h > t} = PJ{N(t) = k-j rl > t} j > O.

[z(t) tI > r{) + t,/9o(r)) i] E k > z -isk(t) exp[- A0(1 ao(Z))t

For each j and k denote KJ(, t): = PJ{((0 = k, 1 > t}. We will call the matrix

(KJ(k, t); (j,k) e Q x Q)

a semi-regenerative kernel. Obviously,
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A0te j=k=0

u oE ki=l ai iotAoexp[_Ao(t_ )]Sik(U)(l_Bo(u))du, j=0, k>0

5jk(t)[1 Bj(0], 0 <_ j _< k

O, O<_k<j,j>O,

Therefore, the generating function of the jth row of the semi-regenerative kernel is

,ot[ e.Xotao(z(5.1) ] I > o K(k’t)z = e 1 + A0ao(z 0
)u(1 Bo(u)) du]

(5.1a) E k > 0 zk KJ(k, t) = zJ(1 Bj(t)) exp[ Aj(1 aj(z))t], j > O

The direct integrability of each element of the semi-regenerative kernel (KJ(k,t), j, k = 0,1,...,) suf-

fices for the existence of the steady state probabilities rk, k = 0,1,..., of the queueing process {(t)}
in formula (5.2) below. We may apply the Main Convergence Theorem for semi-regenerative proces-

ses (cf. C.inlar [6]). Denoting by H the integrated semi-regenerative kernel(fK1(k,t)dt,
(j,k) . Q x Q) we have the equation for stationary probability measure r of the process {(t)} in

matrix form

PH(.) = p--

where fl (bo +oo1’ b, b2,... )T, bj--EJ[rl]- f o z Bj(dz), j= 0,1,... ). Observe that Pfl can be

interpreted as the expected stationary "inter-service" time.

Now from (5.1) and (5.1a) we find the generating function hi(z) of the jth row of the

integrated semi-regenerative kernel H:
1 1 -/3’0(A0 Aoao(z))

(5.3a) hi(z) zj
1 flj(ij- ,kjaj(z))

j(1 aj(z))
j > 0

Finally, using (5.3) and (5.3a) we obtain from (5.2) a relation between the generating function r(z)
of the stationary probability measure rr and the generating function P(z) of the invariant probability

measure P.

where
1 Kj(z)

and

gj(z) ----. g(z) = gN "t" 1( z)’ J- N+ 1, N + 2,...

1P,5’- ET=o(bj-b)pj+b+Poo,



On Some Queue Length Controlled Stochastic Processes: Abolnikov, Dshalalow, and Dukhovny 237

where N / 1 probabilities pj in the right-hand side of (5.7) are determined from equations (4.4-4.5).
The above results can be summarized as the following statement.

5.1 Theorem. The steady state of the queueing process {(t); t> 0} exists if and only if
p < m and, under this condition, the limiting distribution in form of the generating function r satis-

fies formulas (5.4-5.7).

We introduce the following notions.

5.2 Definitions.

(i) Let : = (Po + a[O] Pl *02 )T. Then

the system.

we call P the (stationary expected) capacity of

(ii) Let Mj = E:r[M(n) ln = j] be the expected number of units taken for service given

that after a preceding completion of service there were j units in the system. If r: = (M0, M,...)T

then the value PM gives the stationary expected number of units taken for service. We call PM the

(stationary expected) capacity of the server.

The following statement will be used throughout the remainder of this paper:

5.3 Theorem. Given the equilibrium condition p < m, the capacity of the system and the

capacity of the server are equal.

Proof. From (2.1) we have by elementary probability arguments:

E m(0) ia + E m(0) 0
1 re(O) + 1 ai’ j = 0

(
(5.8) Mj = min(j, m(j)) j = 1,...,N

m, j>N.

Now the statement follows from (4.3) by using the identity P(1) 1.

5.4 Examples.

(i) It follows from (5.4-5.6) that
P0(5.9) r0 = 0p/

(ii) Let % denote the expected value of a busy period in the equilibrium. Taking into ac-

1count that the expected length of an idle period is , we obtain another expression for 7ro

1

)0

Then, from the last equation and (5.9) we get a formula for the expected length of a busy period in

the steady state

(5 10) % Pc/ 1
Po ,ko
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(iii) If the input stream is independent of the states of the system we have from (4.3) and

(5.4-5.6):

(5.11) .(z)lPZ
= P0 K0(z)[1 a(z)] + P(z)(1 zm) + E 7= o Pj[zmAj(z) zJKj(z)]

(iv) Under the additional assumptions as those in Example 4.3, we can use Po and= o Pj (evaluated there for various special cases) needed for (5.10) and (5.11). This also takes

place in (vi), formula (5.15) below.

(v) Under the condition of (iii) assume that m(0) = 1, i.e. after an idle period the server is

in a "warm-up mode" by reducing its initial capacity. Then, from (5.8) we have Mo = 1 and by

Theorem 5.3 it follows that

(5.12) P’fi = )aP = PVI- Po + = 1Pj min(j,m(j)) + m j >_ N + 1 Pj

(vi) Assuming in addition re(j)= 1, j = 0, 1, 2, ..., (i.e. there is no batch service) we obtain

from (5.12)
1(5.13) Pfl = A’

Equations (5.11), (5.13) and Theorem 5.3 lead to the following elegant formula

(5 14) r(z) a(1 z)P(z)
1 a(z)

Recall that the ergodicity condition in this case is p < 1. This is a formula of Pollaczek-Khintchine

type. It reduces to the "eollaczek-Khintchine relation" when a(z) = z shown by Schgl [16] for a simi-

lar system with state dependent service (note that Schgl did not give a formula for rr(z) = P(z) but

just stated this relation). Formula (5.10) for the expected value of a busy period is then reduced to

(5.15) =
1ap..___qo
aPo

(vii) Assuming further that the group size is distributed geometrically, a = pqS-1, = 1,

2,..., we obtain from (5.14)
qzr(z) = P(z)1 V

that enables us to obtain an explicit relation between r and P:

Prk-- f Po k-O

Pk- qPk-1, k >_ 1

6. CONVERGENCE TIIEOREMS FOR SOME FUNCTIONALS OF INPUT, OUTPUT AND

QUEUEING PROCESSES

In this section we will treat the input, output and queueing processes that are special in cont-
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rolled systems. Observe that for a standard compound Poisson process {N(/)} with rate A and batch

size average a its renewal function E[N(t)] equals Aat. in our case, since the rates of the input pro-

cess {N(t)) are constant only within each random interval (tn,tn+ 1) for every j E Q, what will

the corresponding function E[N(t)] be for the input process controlled by the queueing process

{(t)} ? The output rate of processed units is another valuable characteristics of the system. As re-

gards the queueing process {(t)} we will be interested in the relative speed of convergence (or diver-

gence) of its mean for large t.

First we will introduce some auxiliary processes and their functionals. For the Markov rene-

wal process {fl,, (PX)xO., (n, tn): n = 0,1,...} (Q x+, (QxR+)) consider for each x and j

the Markov renewal function

which gives the expected number of entrances of the embedded Markov chain (n) in state {j}

during time interval [0,t] given that the process started from state {z}. Another process of interest

(which we introduced in section 2) is the minimM semi-Markov process

sociated with the above Markov renewal process. The proce {((t)} is right continuous with al-

most every path a simple function on any compact interval. We formulate and prove below some

limit theorems for functionals of the Markov renewal process, queueing process and semi-Markov pr

cess. Note that these results hold true for general semi-regenerative processes.

6.1 a. If p < m the limits in (i-ill) exist and satisfy the given below formulas:

(ii) lira I P{(()=j}d=j

(iii) I o I{,,...}(jl + p

Pro4

(i) Let 7o = inf{n > 0: (n = J, o = }, 7k = inf{n > 7-" (n = J, (o = }" Then

k 0} is a delayed renewal process (embedded in the point process {n})" Clearly, {7k; 0} is

recurrent if and only if p < m. Then it follows from Cinlar [6] and due to lira P{7o < } = 1 for

p < m that
Rx(j, t)lira =

where j is the inverse of the expected time between two subsequent returns to state {j}. On the

other hand, from Markov renewal theory it is known that
Pj

gj = p
and the statement (i) then follows.
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(ii) By C.inlar [6] we have

resulting

where g(t): = I0

PZ{((u) = k} E >_ 0 I 0 nx(J’ ds) KJ(k, t)

Io PX{(u) = k}du = -,j>o Rz(j’ .),g(t)

KJ(k, v)dv is a non-decreasing continuous function and symbol "," denotes the

convolution operator. Then, it follows that

R(j, ),g(t) Pj oo
lirn KJ(k, u) du

Now applying (i) and formula (5.2) we finally obtain

1 E j > o Rx(J," ).g(t) RZ(k, t)

(iii) The statement follows directly from C.inlar [6]. E!

Now we will consider the input process whose both interarrival rate and group size depend

on the Markov renewal process {(n, tn}" An approach is based on the treatment of an auxiliary

process that is stochastically equivalent to the input process {N(t)}. Note that the direct treatment

of the input process (in the form defined in section 2) is not effective. Since the parameters of the

input process {N((t)} are constant only within each random interval (tn n + 1), for every j E Q we

need to know the total length of all those random intervals (the whole or in parts) within [0,t] on

which the queueing process (t) takes on value j. Denote this stochastic process by T[j}. Observe

that interval [0,t] can be restored by summing TJ}(w) over j E Q for any fixed w.

If {Rj(t)} is a compound Poisson process with rate ,j and batch size average a[j], as

introduced in section 2, then the process {j(T/})} gives the total number of units arrived in [0,t]
and it is stochastically equivalent to the partial input process {Nj(t)}. Thus, the processes {N(t)}
and { j >_ o j(TJ})} are stochastically equivalent.

We will treat the process {N((t)} and then evaluate the expected number of units arriving

in time interval (0,t]. Let (j,t,v)’= pz{ T(tJ)<_ v}. Then, the functional

(6.1) TX(j, t) = I o vZ(J’t’dv)

gives the total expected time of the semi-Markov process {(t)} spent in state {j} during time inter-

val (0,t] (or in other words, this is the time that the server spends in mode {j} processing units in

time interval (0,t]).

(6.2)

6.2 Lernma. The following relation holds true:

sa[JlTx(j,t)EX[N(t)]= E j>_0
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and, as mentioned,

We have from (6.1):

Ex[[Vj(T[i})ITj} vlq?X(j,t, dr)EX[fJ(Tj})] = 0 =

= AJaDl o vq?(J’t’ dv) = Aa[ilT(j, t)

N(t) = E .i >_ o [Vj(T{tJ}) PX-a’s"

that gives the total number of units arrived in (0,t]. Now the statement follows by the Monotone

Convergence Theorem. El

One of the problems we set at the beginning of this section was to find lira EXit(t)] By a
t--,oo

direct computation, it can be shown that for p < m the value of lim EX[(t)] is a function of the
t---oo

second moment of service time that need not be finite, in the latter case, it is not obvious with what

speed lira EX[(t)] gets to infinity. We will show that, even if it diverges, it gets slower to infinity
t---oo

that with the unit speed. To solve this problem we will need to analyze a functional of the output

process which is also of interest.

6.3 Theorem. Eel 5(t) denote the total number of served units in time inlerval [0,/]. Then

for p < m the units are processed with the expected rate equals the ratio of the capacity of the sys-

tem and the capacity of the inter-service time:

E[S(t)](6.3) tim =
t--, t

Proof. The functional S(t) of the output process giving the total number of completely

processed units in time interval [0,t] obviously satisfies the following relation

s()- En oM(n I(o}[o, tl (-’tn)+ j>IM(J) n o I(j} x [0,t] o (,, tn) M((t))

((0))

( the total number of all units taken for service less the lt batch of units that is being in service),
where by (2.2) we have the equivalent expression for M(ff(t)):

((t)) = mi.{o(r$t), m(0)}Z0
The conditional expectation of S(t), given the initial meure % can be obtained in form of

the following expression

(6.4) E[S(t)] = 0 M(j) (j,t)

due to routine probability arguments and by the Monotone Convergence Theorem. Applying Lemma

6.1 (i) to (6.4) and observing that the second sum in (6.4) is finite for each we find that the units

are processed with the rate

ti = E (j) v eM
t- t 0

Finally, equation (6.3) is due to Theorem 5.3.
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6.4 Theorem. The expected rate of the input flow is

(6 5) lira E[N(t)]- P’fi
t

Proof. From the definition of Tj) it also follows that

_-- I o + o = I o z o du

Applying Fubini’s theorem in (6.6) we get another representation for Tx

(6.7) Tz(j, t) = Io PX{(u) = j} du.

The statement follows from Lemm 6.2 and 6.1 (iii) applied to (6.7).

6.5 Corollary. For p < ra the expected number of units in the system in equilibrium is either
EXit(t)]

finite or diverges slower than with the unit speed. In other words, lira = O.

Proof. Observing that the number of units in the system at time t is (t)= (0)

-S(t) the statement follows from Theorems 6.3 and 6.4.

6.6 Examples.

(i) A trivial special case follows from Theorem 6.4 when the input stream is independent of

the queue. The counting process {N(t)} is now the compound Poisson process {N(t)} with parame-

ters (A,a) and the expected rate then should be ,a. On the other hand, from (5.12) we have

P’fi = AaP which yield the same result Aa in the right-hand side of (6.5). Note that by Theorem

6.3, Aa is also the expected rate of the number of processed units.

(it) As an application of the above ergodic theorems, we consider the following optimization

problem. Let Cl, c2, c3, r be real-valued Borel-measurable functions that represent the following

cost rates:

Cl(k) denotes the total expenses due to the presence of k units in the system per unit time;

c2(j) denotes the expenses of the service act of type j per unit time [observe that the

decision to "apply a certain distribution function Bj" when the system accumulated j units, will be

affected by the cost function c2 that is usually inverse proportionally to the service rates];

c3 is the penalty for every idle period per unit time;

r denotes the reward for each completely processed unit per unit time.

In connection with the above cost functions, we introduce the following functionals

(whenever the explicit integral is given, the integration with respect to Lebesgue measure is

understood):

cl((u))du denotes the expected expenses due to the presence of allF1 [c1,](x,t) EX[ 1 o
customers in the system in time interval [O,t] given that initially x units were present;
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c2((u))du denotes the expected expenses of all service acts in timet) = .f o
interval [0,t] given that initially z units were present in the system (in particular, the system is pena-

lized by function c2 for the total time being idle in interval [0,t] forcing the system to reduce the

interarrival rate 0);
eaR(O, ) denotes the expected expenses for all idle periods in time interval [0,] (in addi-

tion, ea penalizes the system for too many idle periods thereby forcing the system to reduce their

number by taking "preventive measures").

Now by Fubini’s Theorem and Lemma 6.1 (ii) we have

lim Fl[C1 ](z,t)= />0 c(j)rj = 7rct---*oo

as the expected cost rate due to the presence of all units in the system. Similarly, by Fubini’s

Theorem and Theorem 6.2 (iii) we have

1 c2(j)pjbjlimt...oo F2[c2 :](z, t) = E j >_ o = Pc2

(where flc-" denotes (boc2(O),blC2(1),...)T) as the expected rate for all service acts over infinite

horizon. By Lemma 6.1 (i) the penalty rate for idle periods is

c3 t
1- R(0,t) = c3P._.._qolira

Finally, the expected gain of the system per unit time is derived from Theorem 6.4:

lim r S(I) P’

The objective function is then

1p- ( rP P-2 c3Po ) "Cl
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