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We consider the problem of reconstruction of an unknown characteristic interval and block
transient thermal source inside a domain. By exploring the definition of an Extended Dirichlet
to Neumann map in the time space cylinder that has been introduced in Roberty and Rainha
(2010a), we can treat the problemwithmethods similar to that used in the analysis of the stationary
source reconstruction problem. Further, the finite difference θ-scheme applied to the transient
heat conduction equation leads to a model based on a sequence of modified Helmholtz equation
solutions. For each modified Helmholtz equation the characteristic interval and parallelepiped
source function may be reconstructed uniquely from the Cauchy boundary data. Using
representation formula we establish reciprocity functional mapping functions that are solutions
of the modified Helmholtz equation to their integral in the unknown characteristic support.
Numerical experiment for capture of an interval and an rectangular parallelepiped characteristic
source inside a cubic box domain from boundary data are presented in threedimensional and one-
dimensional implementations. The problem of centroid determination is addressed and questions
are discussed from an computational points of view.

1. Introduction

Inverse source transient heat problem has been studied by a huge number of authors. In
the companion paper [1], we have presented a brief review on the subject. By adoption of the
reciprocity gap functional method to solve an sequence of stationary source problem, we have
developed the methodology for transient heat characteristic source reconstruction presented
in this work. Themodel is based on themodifiedHelmholtz Poisson equation that is obtained
from the transient equation through the θ-scheme associated with a time finite difference
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discretization. Analysis of the related mathematical and computational work involved has
been presented by the authors in national conferences, Roberty et al. [2–6]. Theoretical aspects
of the problem can be found in the companion paper [1].

This paper will be structured as follows. Some definitions and mathematical results
extracted from [1] that are important to the understanding of the inverse problems are
presented in Section 2. There we introduce the concept of consistent Cauchy data, extended
Dirichlet-to-Neumann map. The inverse transient heat source problem is introduced in
Section 3. A basic lemma about the relative extended Dirichlet-to-Neumann map and
reciprocity gap functional in the transient model extracted from [1] are discussed. These
concepts present original aspects which have been introduced in the cited companion paper
and are numerically investigated in the present work. We show that the transient problem
can be studied with aid of results demonstrated for the modified Helmholtz Dirichlet source
problem in Section 4. There the iterative source reconstruction scheme is presented. In
Section 5, some problems relatedwith the application of the Reciprocity Gapmethodology for
shape and centroid determination are resolved.Wemust point out that the nonlinear problem
of shape parameter determination is central in the present work since they will change in
time with the source support evolution. Finally, the numerical results for one- and three-
dimensional reconstruction of sources are presented and discussed in Section 6. We conclude
by pointing out the advances introduced by the present work.

2. Direct Transient Heat Equation Problem in Cartesian Coordinates

By Ω ⊂ Rd, d = 1, 2, 3 we denote a bounded space domain with Cartesian coordinates
boundary Γ = ∂Ω. In this case the boundary is composed of two points if d = 1, four intervals
if d = 2, or six rectangular faces if d = 3. In the spatial surface Γ the normal ν is defined
almost everywhere and the induced measure on the surface is denoted by dσ. In the time-
space Rd+1, we consider the time interval I := (0, T), T > 0 to form the bounded cylinder
whose basis is an interval, a rectangle, or a parallelepiped, Q := I × Ω, whose lateral time-
space surface is Σ := I × Γ, where Γ depends on the space where Ω is embedded. A section in
this space-time cylinder is Ωt := {t} ×Ω, and the complete cylinder boundary is

∂Q = Σ ∪Ω0 ∪ΩT , (2.1)

where Ω0 and ΩT are, respectively, the cylinder bottom and top sections. At cylinder top and
bottom there exist the corners Γ0 = Ω0 ∩ Σ ⊂ Rd−1 and ΓT = ΩT ∩ Σ ⊂ Rd−1, respectively.

The direct transient heat source initial boundary value problem consists in finding
u(t, x) with (t, x) ∈ Q given a boundary input g(t, x) with (t, x) ∈ Σ, an initial input u0(x)
with (t, x) ∈ Ω0, and a source distribution f(t, x) with (t, x) ∈ Q that verifies the problem

(
Pu0,g,f

)
⎧
⎨

⎩

∂tu −Δu = f in Q,
u = u0 in Ω0,
u = g on Σ

(2.2)

and Dirichlet data compatibility condition, u0 = g, at the time-space cylinder corner Γ0.
For more information about the theoretical and abstract setting and the Hilbert space

formulation of the problem please see the companion paper of this work [1]. There the
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important theorems, lemmas, and proposition to understand the problem may be found.
Major trace problems presented in the space-time cylinder formulation for the problem
disappear when the problem is treated in Cartesian coordinates and spatial and temporal
variables separation is straightforward. For the Hilbert space framework we need to
introduce, following Lions and Magenes [7], anisotropic Sobolev spaces. A comprehensive
presentation of these spaces in the contest of boundary integral operators related with the
heat equation and the heat potential can be found in Costabel [8]. But since we are restricting
the experiments presented in this work to problems in Cartesian coordinates, the main trace
problems do not appear and Cauchy data at the boundary will always be consistent.

Remark 2.1 (solution of the direct problem by Fourier sine series). When the external domain
Ω is a box (0, 1)d ∈ Rd, where d = 1, 2, 3 is the physical domain, and the Dirichlet boundary
condition is homogeneous, g = 0, the transient heat problem Pg,f (2.2) has an explicit Fourier
sine solution:

u(t, x1, . . . , xd) =
d∑

i=1

Ni∑

ni=1

cn1···nd(t)
d∏

i=1

sin(niπxi), (2.3)

where

cn1···nd(t) = exp

(

−tπ2
d∑

i=1

n2
i

)∫1

0
· · ·

∫1

0
u0(x1, . . . , xd)

d∏

i=1

sin(niπxi)dx1 · · ·dxd

+
∫ t

0
exp

(

−(t − τ)π2
d∑

i=1

n2
i

)∫1

0
· · ·

∫1

0
χω(τ)(x1, . . . , xd)

d∏

i=1

sin(niπxi)dx1 · · ·dxddτ.

(2.4)

2.1. The Adjoint Transient Heat Problem

The adjoint transient heat problem has a straightforward definition

(
P ∗
vT ,g,f

)
⎧
⎨

⎩

−∂tv −Δv = f in Q,
v = vT in ΩT ,
v = g on Σ

(2.5)

and Dirichlet data compatibility condition, vT = g, at the time-space cylinder corner ΓT . The
time reversal operator

κT : Hr,s(Q) −→ Hr,s(Q); v(t, x) �−→ κ[v](t, x) = v(T − t, x) (2.6)

can be used to change the changes of variables u∗(t, x) = v(T − t, x) and convert the adjoint
problem into an equivalent direct problem.
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Remark 2.2. Note that reciprocally solutions to the direct problem (2.3) can be converted into
solutions to the adjoint problem:

v(t, x1, . . . , xd) =
d∑

i=1

Ni∑

ni=1

cn1...nd(T − t)
d∏

i=1

sin(niπxi). (2.7)

Definition 2.3 (consistent Cauchy datum). By Consistent Cauchy datum associated with
problem (2.2) one means the functions

(
u0, g, uT , gν

) ∈ (
γ0, γ, γT , γ1

)
[Hr,s]. (2.8)

Now, since for Cartesian exact problems Cauchy data are consistent, they are in the range of
the trace operators, and the nonhomogeneous problem will be always well posed.

Definition 2.4 (extended Dirichlet-to-Neumann map). One calls the extended Dirichlet-to-
Neumann map for the problem (2.2) the function defined by

Λf

Ω,Σ

[(
u0, g

)]
=

(
u|ΩT , ∂νu|∂Ω

)
, (2.9)

when u ∈ H2r+2,r+1(Q) is the solution of problem (2.2) with initial data (u0, g) = (u|Ω0 , u|Σ).

Note that this operator can be viewed as a combination of the standard Dirichlet-to-
Neumann map in the spatial boundary with the input-to-output map in the time boundary,
that is, in initial and final interval times, found in control theory. For more information, please
see [1].

Remark 2.5 (extended Dirichlet-to-Neumann map is composition of trace and solution). The
extended Dirichlet-to-Neumann map is a composition of the final time trace and the lateral
boundary normal trace with the solution operator

Λf

Ω,Σ

[
u0, g

]
=

(
γT , γ1

)
S
[
u0, g, f

]
=

(
γT ◦ S, γ1 ◦ S

)[
u0, g, f

]
=

(
uT , g

ν). (2.10)

3. Inverse Transient Heat Equation Source Problem

The inverse source problem that we address consists in the recovery of the source f , knowing
the extended Dirichlet-to-Neumann map Λf

Ω,Σ. When r = 0, the data are regular, Green’s
function exists, and f ∈ L2(Q). Let us investigate this situation. And then, we will show that
the unique information available in this inverse problem is given only by one measurement,
say, the bottom and topDirichlet data and lateral cylinder Cauchy boundary data. The inverse
problem IPf

(u0,g),(uT ,gν) is to find f ∈ L2(Q) such that

(
IPf

(u0,g),(uT ,gν)

){(
uT , g

ν) = Λf

Ω,Σ

(
u0, g

)}
(3.1)
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for all given data pair (u0, g) × (uT , g
ν) corresponding to different solutions for the direct

problem.
For a specific source and an appropriate dimension, the synthetic final time and

Neumann data (3.1) to be used in the reconstruction inverse problem can be calculated as
the normal derivative and final time value of solution (2.3).

Definition 3.1 (relative extended Dirichlet-to-Neumann map). Consider two problems Pu0,g,f

and Pu0,g,0, one with source f and the other with zero source, but both with the same
consistent initial time and Dirichlet data. By the relative extended Dirichlet-to-Neumannmap
for f ∈ L2(Q) one means the application

Λf

Ω,Σ −Λ0
Ω,Σ : H1(Ω0) ×H3/2,3/4(Σ) −→ H1(ΩT ) ×H1/2,1/4(Σ). (3.2)

Note that the consistence of data (u0, g) is necessary to the existence of solution for the
problems Pu0,g,f and Pu0,g,0.

Lemma 3.2. Let uj , j = 1, 2, 3, . . . be different solutions of problem (2.2) with the same source f ∈
L2(Q) and different initial time and Dirichlet data (u0j , gj), j = 1, 2, 3, . . ., respectively. Then,

(i) the relative extended Dirichlet-to-Newman operatorΛf

Ω,Σ−Λ0
Ω,Σ is an operator whose func-

tional value depends only on the source function f ∈ L2(Q) but is independent of the initial
time and Dirichlet data (u0, g);

(ii) for all solutions of consistent data problems Pf,u0j ,gj
, j = 1, 2, 3, . . ., with the same source,

the source satisfies the systems of integral equations

∫

Q

f(τ, ζ)
(
G(T, x, τ, ζ),

∂G(t, x, τ, ζ)
∂ν(t,x)

)
dζdτ =

(
Λf

Ω,Σ −Λ0
Ω,Σ

)[
u0j , gj

]

= Λf

Ω,Σ[0, 0],

(3.3)

which depend only on the relative extended Dirichlet-to-Neumann map. Here G(t, x, τζ) is
the causal Dirichlet Green function for the transient heat problem;

(iii) for all test functions v in

H2,1
−∂t−Δ(Q) =

{
v ∈ H2,1(Q) | −∂tv −Δv = 0

}
(3.4)

the source f(t, x) satisfies the transient heat reciprocity gap equation

∫

Q

fvdxdt = −
∫

ΩT

Λf

Ω,•[0, 0]γT [v]dx −
∫

Σ
Λf

•,Σ[0, 0]γ[v]dσ(t,x). (3.5)

Proof. See [1].
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Remark 3.3. Note that in this case the unique information available for source reconstruction
is given by only one measurement, that is, the final Neumann boundary measurement

(
uT , ∂ν(t,x)u

)
= Λf

Ω,Σ

[
u0, g

]
= Λf

Ω,Σ[0, 0] (3.6)

corresponding to some specific initial Dirichlet data (u0, g), which may be assumed as zero
without loss of generality.

Remark 3.4. Note that functions in the test space (3.4) are solutions to problem (2.7) with
domainQ∗ containingQ and arbitrary boundary conditions. So there are plenty of functions,
regular and singular. An important subclass of these test functions are those for which the
trace on ΩT is null, that is, γT [v] = 0. For these functions we have

(iii∗) for all test functions v in

H2,1
−∂t−Δ(Q) =

{
v ∈ H2,1(Q) | −∂tv −Δv = 0

}
∧ {

γT [v] = 0
}

(3.7)

the source f(t, x) satisfies the transient heat lateral reciprocity gap equation

∫

Q

fvdxdt = −
∫

Σ
Λf

•,Σ[0, 0]γ[v]dσ(t,x). (3.8)

With (3.8) we can pose the problem of reconstructing the source using only lateral Cauchy
data.

4. The θ-Scheme and the Modified Helmholtz Model for
the Transient Heat Problem

We present now an algorithm for moving transient source reconstruction in the heat equation
based on this result. Let the source be given by

f(t, x) = χω(t)(x) in Q, (4.1)

where ω(t), t ∈ [0, T], is a representation of the star-shaped source boundary. For one-
dimensional problems it is a set with two points. For two- or three-dimensional problems it is
a moving Lipschitz parametric curve or surface in which the parameter has been omitted,
but, in order to make the implementation simpler, we are considering that the source is
a characteristic rectangular parallelepiped or a rectangle. Consider a partition of the time
interval [0, T] intoN subintervals of length τ > 0. Let {t0, t1, t2, . . . , tn, tn+1, . . . tN} be the knots
of this partition, with t0 = 0 and tN = T . For tn < t < tn+1, n = 0, 1,N − 1 we use the θ-scheme
approach, [1] for the discretization of (2.2).
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By denoting un+1(x) with x ∈ Ω, the approximate solution at the time step tn+1, the
transient system (2.2) is approximated by the following sequence of stationary problems:

(
Hn+1

χω

)
⎧
⎨

⎩

−Δun+1 + λun+1 = fn + χω(tn+1) in Ω,
un+1 = 0 on Γ,
with gν(tn+1) := ∂νu

n+1 on Γ,
(4.2)

for n = 0, 1, 2, . . . ,N. Here λ = 1/τθ and

fn =
un + τ(1 − θ)Δun + τθχω(tn)(x)

τθ
. (4.3)

Note that Δun + χω(tn) = ∂un/∂t and that the initial Poisson problem determining the u0 and
χω(0) is

(
H0

g,χω

)
⎧
⎨

⎩

−Δu0 = χω(0)(x) in Ω,
u0 = 0 on Γ,
with gν(0) := ∂νu

0 on Γ.
(4.4)

The sequence of modified Helmholtz source inverse problem equations (4.2)
starting with stationary problem equations (4.4) may be used to model a scheme for
the reconstruction of star-shaped sources χω(tn)(x), for a time knot sequence, showing its
movement and deformation in the external domain Ω. For this, we only need to know the
transient Neumann data with zero Dirichlet datum on the external boundary Γ = ∂Ω. Since
we do not have experimental data, we will solve the direct problem with a different method,
adding noise, and do an experimental data synthesis.

4.1. Iterative Source Reconstruction Scheme

The source at time tn may be further calculated as

fn =
λ

θ
un − 1 − θ

θ
fn−1, for n = 1, 2, . . . (4.5)

with f−1 = 0 and f0 = λu0. Since the discretized direct problem equations (4.2) and (4.4) are
linear, the problem may be decomposed into two subproblems separating the known part of
the source from the part to be reconstructed, that is, fn and χω(tn+1). Let y

n+1, n = −1, 0, 1, . . .,
be a solution of

(
Hn+1

fn

)
⎧
⎨

⎩

−Δyn+1 + λyn+1 = fn in Ω,
yn+1 = 0 on Γ,
with gν

y(tn+1) := ∂νy
n+1 on Γ,

(4.6)
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and let wn+1, n = −1, 0, 1, . . ., be solution of

(
Hn+1

χω

)
⎧
⎨

⎩

−Δwn+1 + λwn+1 = χω(tn+1)(x) in Ω,
wn+1 = 0 on Γ,
with gν

w(tn+1) := ∂νw
n+1 on Γ.

(4.7)

Then, by the superposition principle, the solution of (4.2) is un+1 = wn+1 + yn+1 and
the Neumann data will be the sum of the decomposed parts gν(tn+1) = gν

w(tn+1) + gν
y(tn+1).

The Y-problems Equations (4.6) form a discrete sequence of problems with continuous source
fn that may be solved before the time increment at tn begins. Its normal derivatives may be
calculated

gν
y(tn+1) := ∂νy

n+1 on Γ, (4.8)

and subtracted from the synthetic transient Neumann data at knot tn+1

gν
w(tn+1) = gν(tn+1) − gν

y(tn+1), (4.9)

to produce the data for the modified Helmholtz equations (4.7) that will be used in the
reconstruction of the source χω(tn+1) at time tn+1. Note that by using the reciprocity gap
functional the characteristic star-shaped source may be reconstructed without solving the
direct problem equations (4.7). By using the second Green’s formula, this inverse problem is
modeled with a nonlinear Fredholm integral equation of first kind.

4.2. Reciprocity Gap Functional for the Helmholtz Problem

The reciprocity gap functional for the Helmholtz problem depends only on boundary values
of the solution, and its properties are derived from elementary properties of Green’s theorem.
Let v be the space of Helmholtz functions in

H2
λ(Ω) =

{
v ∈ H2(Ω) : −Δv + λv = 0

}
. (4.10)

The reciprocity gap functional, [9] for the Cauchy data in the sequence of Helmholtz problem
equations (4.2) is

Rλ
fn+χω(tn+1)

(v) =
∫

Ω
fnvdx +

∫

Ω
χω(tn+1)vdx for v ∈ H2

λ(Ω). (4.11)

It is a direct consequence of Green’s theorem that

Rλ
fn+χω(tn+1)

(v) = −
∫

Γ
vgν(tn+1)dσ for v ∈ H2

λ(Ω). (4.12)

The combination of these equations for test functions in Hλ(Ω) will form the nonlinear
system of equations for the source reconstruction inverse problem, [9]. We may improve the
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implementation of the reciprocity gap functional (4.11) by subtracting the Cauchy data of the
auxiliary modified Helmholtz problem equations (4.8). This eliminates the source term fn
giving

Rλ
χω(tn+1)

(v) =
∫

Ω
χω(tn+1)vdx = −

∫

Γ
vgw,ν(tn+1)dσ for v ∈ H2

λ(Ω). (4.13)

We can compare this reciprocity gap equation (4.13)with the transient heat reciprocity
gap equation (3.5). For this, let us consider the following time space cylinder:

Q = (tn+1, tn+1 + τ) ×Ω (4.14)

for a small time increment τ and consider that a field v ∈ H2,1
−∂t−Δ(Q) ∧ γtn+1+τ[v] = 0. The

equation in the definition of H2,1
−∂t−Δ(Q) is then integrated in this time interval:

−∂tv −Δv = 0 =⇒ v(tn+1, ·) −Δ
∫ tn+1+τ

tn+1

v(t, ·)dt = 0. (4.15)

Since the interval is sufficiently small and the field is zero in its upper extremity, by the mean
value theorem, we find 0 ≤ θ ≤ 1 such that

∫ tn+1+τ

tn+1

v(t, ·)dt = θτv(tn+1, ·). (4.16)

Let us define λ = κ2 = 1/θτ . By noting the definition of the space of Helmholtz functions
H2

λ(Ω) given by (4.10), we can see that it is a θ weight average of functions of the space
H2,1

−∂t−Δ(Q) ∧ γtn+1+τ[v] = 0. The same averaging process can be done with the transient
reciprocity gap equation (3.5):

∫

Ω

∫ tn+1+τ

tn+1

fvdtdx = −
∫

Γ

∫ tn+1+τ

tn+1

Λf

•,Σ[0, 0]γ[v]dtdσx. (4.17)

With

∫ tn+1+τ

tn+1

f(t, ·)v(t, ·)dt ≈ θ1τf(tn+1, ·)v(tn+1, ·),

∫ tn+1+τ

tn+1

Λf

•,Σ[0, 0]γ[v]dt ≈ θ2τΛ
f

•,Σ[0, 0](tn+1, ·)v(tn+1, ·)
(4.18)

we reproduce an equation that approximates (4.13):

∫

Ω
f(tn+1, x)v(tn+1, x)dx ≈ −θ2

θ1

∫

Γ
Λf

•,Σ[0, 0](tn+1, x)v(tn+1, x)dσx. (4.19)
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Note that the data preprocessing for the determination of Λf

•,Σ[0, 0](tn+1, .) involves the
time homogenization of initial values and is similar to that used for the determination of
gw,ν(tn+1, ·).

5. Determining Centroid and Shape

The necessary functions for definition of source centroid, constant function and position
function {1, xi, i = 1, . . . , d} ∈ H2,1

−∂t−Δ(Q) and we can use (3.5) to define:

Definition 5.1 (average centroid). By the average source centroid in the time-space cylinder
one means

xi =

∫
Q fxidxdt
∫
Q f1dxdt

, i = 1, . . . , d. (5.1)

Based on this definition, we can enunciate the following trivial lemma consequence of the
definition.

Lemma 5.2 (relation between the extended Dirichlet-to-Neumann map and the average
centroid).

xi =

∫
ΩT

Λf

Ω,•[0, 0]xidx +
∫
Σ Λ

f

•,Σ[0, 0]xidσ(t,x)
∫
ΩT

Λf

Ω,•[0, 0]dx +
∫
Σ Λ

f

•,Σ[0, 0]dσ(t,x)

. (5.2)

Aproblem appears whenweworkwith themodifiedHelmholtz approximation (4.10),
since functions {1, xi, i = 1, . . . , d} /∈ H2

λ
(Ω) = {v ∈ H2(Ω) : −Δv + λv = 0}. In this case, if

we first define κ =
√
(λ) =

√
(1/θτ), rooted parameter in the auxiliary modified Helmholtz

parameter, we have a special set of Hλ(Ω) functions, that is,

{

exp

(

κ

(
d∑

i=1

lixi

))}

for (l1, . . . ld) ∈ Sd−1. (5.3)

These functions are in the domain of themodifiedHelmholtz equation and form a base for the
space H2

λ
(Ω). We may construct a dense set by choosing some discrete set of directions lj ∈

Sd−1 appropriately. An appropriate modification of this set will be obtained by substituting
these exponentials with hyperbolic functions sinh and cosh. These functions are, respectively,
skew symmetric and symmetric with respect to origin of the coordinates system. If we know
the star-shaped source centroid, it is best to choose the origin in the centroid and set the
following basis:

⎧
⎨

⎩

sinh
(
κ
(∑d

i=1 li(xi − xi)
))

κ
; cosh

(

κ

(
d∑

i=1

li(xi − xi)

))⎫
⎬

⎭
for (l1, . . . ld) ∈ Sd−1 (5.4)
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to have a more balanced system of test functions to use in the reciprocity gap functional
equation (4.13). As alreadymentioned, contrary to the classical Novikov’s star-shaped source
reconstruction with boundary data problem for the Laplace operator (κ = 0), in which
the centroid and the source volume may be obtained as zero and first-order moments
of the Neumann data at the boundary, the necessary functions for centroid calculations
{1, (x1, . . . , xd)} are in the space H2

λ
(Ω). Fortunately, in this generic case of κ/= 0 we may

introduce a concept that we are naming metacentroid, κ-centroid, or λ-space centroid. It
may also be estimated from Neumann data in the boundary, and in the case in which the
star-shaped source is a Cartesian domain interval, rectangle, or parallelepiped rectangular
voxel, that this κ-centroid is equivalent to the κ = 0 centroid, that is, the harmonic centroid in
Novikov’s problem, in the sense that if the source domain is star-shaped with respect to one
centroid, it also is star-shaped with respect to the other metacentroid.

Definition 5.3 (meta centroid). Let ω ⊂ Ω ∈ Rd. By meta centroid x = (x1, . . . , xd) of this
subdomain one means

xi =

∫
ω xi(sinh(κ(xi − xi)))/(κ(xi − xi))dx
∫
ω(sinh(κ(xi − xi)))/(κ(xi − xi))dx

, for i = 1, . . . , d. (5.5)

Lemma 5.4. Suppose that the star-shaped source characteristic support border curve is symmetric
with respect to the ordinates and the abscissa axis passing through the centroid. Then the metacentroid
coincides with the harmonic centroid.

Proof. In fact, since the function sinh is skew symmetric, expression (5.5) will calculate zero
in the coordinates system for with the harmonic source centroid is the origin.

Since in the transient problem the source is moving inside the box, which means that
its centroid position may vary with time, the capacity of centroid position determination is
fundamental for the solution of the source reconstruction problem.

5.1. Determining the Metacentroid

Since the Neumann data are frequently noisy, the least square nonlinear method may be used
to formulate an unconstrained minimizing problem for the determination of coordinates
xi of the centroid. If necessary, classical regularization methods, such as the method of
Tikhonov, may be adapted for the stabilization and improvement of the algorithm. Without
any regularization other than truncation, the problem of centroid determination in the
modified Helmholtz equation with boundary Dirichlet data zero and gν Neumann data on
the boundary is

xκ
i = argmin

⎧
⎨

⎩

∣∣∣∣∣

∫

Γ

sinh
(
κ
(
xi − xc

i

))

κ
gνdσ(x)

∣∣∣∣∣

2

| xc ∈ Ω

⎫
⎬

⎭
for i = 1, . . . , d. (5.6)



12 Mathematical Problems in Engineering

5.2. Determining Shape Parameters

Once we have reconstructed the meta centroid, we may proceed with the shape parameter
determination with the same modified Helmholtz data:

ω = arg min

⎧
⎨

⎩

∣
∣
∣
∣∣

∫

ω

cosh

(

κ

(
d∑

i=1

li
(
xi − xκ

i

)
))

dx − IΓ
(
cosh, κ, l, xκ

i , g
ν)

∣
∣
∣
∣∣

2

: ω ⊂ Ω; l ∈ Sd−1

⎫
⎬

⎭
,

(5.7)

where the set of directions l := (l1, . . . ld) ∈ Sd−1 is used to generate linearly independent
functionals of the trial shape and

IΓ
(
cosh, κ, l, xκ

i , g
ν) :=

∫

Γ
cosh

(

κ

(
d∑

i=1

li
(
xi − xκ

i

)
))

gν(x)dσ(x) (5.8)

may be computed by using only the just calculated metacentroid coordinates and the already
known Cauchy data on the boundary.

Remark 5.5. Note also that we have shown the cosh dependency of the integral equation
(5.8) to stress the fact that we may prefer or it may be more convenient to use other kind
of functions such as exponentials and modified Bessel and develop other numerical schemes
in the shape determination. For the Cartesian source (interval, rectangle, or parallelepiped)
inside the unitary box, these integrals may be evaluated with a symbolic solver such as
the Mathematica or the Maple. The formal solution is given by a huge combination of
exponentials forming the hyperbolic functions. This function is then implemented as a least
square nonlinear minimization problem to be numerically solved. The main question with
this minimizing problem is the behavior of the hyperbolic function for high values of κ. If
the time step is decreased in order to improve the direct problem solution, the parameter κ in
the modified Helmholtz equation model for the inverse problem will increase and the least
square nonlinear method will be inadequate for the centroid search. Our experiments show
that problems start for κ = 6. So we restrict the time increment to τ = .05, in the present work,
in order to avoid these problematic higher values κ.

The same treatment was adopted for (6.2), used for the determination of thickness.
The associated least square nonlinear functional to be minimized is

∣∣∣∣

∫

ω

cosh(κ(xi − xi(tn+1)))dx −
∫

Γ
cosh(κ(xi − xi(tn+1)))gw,ν(tn+1)dσ(x)

∣∣∣∣

2

(5.9)

for i = 1, . . . , d. Note that, at these calculation stages, the centroid has been reconstructed for
the present time increment with the minimizing problem given by the functional equatoin
(5.6). Now only parameters associated with thickness are to be reconstructed. Obviously, a
good reconstruction of centroid coordinates is fundamental in the thickness determination
with (5.9). We have observed that, for the same Helmholtz parameter κ, this second
reconstruction runs worse than the first one.
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Figure 1: Heat flux on the transient one-dimensional model.
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Figure 2: Transient source reconstruction for times 0, 2, and 4.

6. Numerical Simulations

We have investigated a series of numerical experiments in one, two, and three dimensions
and selected some results to show the proposed methodology for the transient star-shaped
source reconstruction problem.

6.1. One-Dimensional Numerical Simulations for
the Transient Heat Source Problem

In the one-dimensional box (0, 1), slab with unitary thickness, we consider an interval source
evolving with time, with centroid xc = .4 + .2 sin(2πt/T) and size h = .1 + .05| sin(2πt/T)|.
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Figure 3: Transient interval source centroid and size: exact blue captured as red.
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The total time T = 2π is incremented with τ = .05, and θ = .7 is chosen for the θ-scheme.
The synthetic net flux data gν,(n+1) = g

ν,(n+1)
w + g

ν,(n+1)
y at the two points is 10% noisy, and is

substituted in the reciprocity gap functional equatoin (4.13) with the test functions in Hλ(Ω)
chosen as in (5.6)

Rλ
χω

(
sinh(κ(xi − xi(tn+1)))

κ

)
=

∫

Γ

sinh(κ(xi − xi(tn+1)))
κ

gw,ν(tn+1)dσ(x) = 0, (6.1)
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Figure 5: 3D centroid coordinates and block sizes with time increment of .05.

for i = 1, . . . , d in the metacentroid calculations and as

Rκ
χω
(cosh(κ(xi − xi(tn+1))))(tn+1) =

∫

ω

cosh(κ(x − xi(tn+1)))dx

=
∫

Γ
cosh(κ(xi − xi(tn+1)))gw,ν(tn+1)dσ(x), for i = 1, . . . , d

(6.2)

for the interval size calculation. Here, as a one-dimensional model, d = 1, but we left the
generic expression with d arbitrary since in multidimensional case the parallelepiped voxel
case is calculated in a similar way with the interval case. The computational implementation
of the solution was done by the least square nonlinear method, and the root xc of the centroid
is obtained by minimizing the following functional

∣∣∣∣R
λ
χω

(
sinh(κ(xi − xi(tn+1)))

κ

)∣∣∣∣

2

=
∣∣∣∣

∫

Γ

sinh(κ(xi − xi(tn+1)))
κ

gw,ν(x, tn+1)dσ(x)
∣∣∣∣

2

, (6.3)

for i = 1, . . . , d.
Some results have been selected to show the methodology.
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Figure 6: 3D centroid coordinates and block sizes with time increment of .02.

Figure 1 presents the synthetic heat flux at the one-dimensional boundary used for
transient reconstruction of the moving interval source presented in three special times t =
0, 2, 4, in Figure 2. For the same model, Figure 3 shows the exact and the reconstructed
evolution of the centroid position and interval thickness.

6.2. Three-Dimensional Numerical Simulations

The model case studied here is a source inside the domain Ω = (0, 1)d ∈ R
d with a

parallelepiped block (voxel) shape. It is supported with a harmonic centroid evolution
following the parametric curve

(.5(1 + .6 sin(2πt)), .5(1 + .6 cos(2πt)), .25 + .25t) (6.4)

and deforming equally in all directions by the following time rule:

hx = hy = hz = h = .15
(
1 + .25

∣∣∣∣cos
(
πt

2

)∣∣∣∣

)
, (6.5)

where block edge is 2h. The number of harmonics in the Fourier sine series is 20, the Δx
for spacial collocation is .01, and θ is chosen as .8. The evolution is calculated for various
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time steps τ = [.1, .01] in the interval t ∈ [0, 2]. For these values of time increment, the
modified Helmholtz equation parameter varies as κ = 3, . . . , 12. As the κ value approaches
to 6, the reconstruction starts to become worse, so we may here observe that, for this special
set of heat equation coefficients, which means a thermal inertia equal to one, the minimum
time increment for the present methodology without any kind of regularization procedure is
approximately τ = 0.05.

Note that we face here the classical problem associated with ill-posedness. If we try to
improve the transient problem calculations by adopting a small time increment, the associate
inverse source reconstruction problem starts to present error propagation and stability
problems.
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Figure 9: Reciprocity gap functional at sinh and cosh with time increment of .05 sec.

In Figure 4, we show the moving centroid, exact blue captured as red in its spiral
trajectory inside the unitary box. For time increments smaller than τ = 0.05, the results
become worse.

In Figure 5, we show the centroid coordinates and block size evolution; again, the
exact blue is reconstructed as red. The same parameters are presented in Figure 6, with time
increment τ = 0.02, to put in evidence the bad behavior of this time increment. This obviously
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means that, if for some special reason we need to use higher values for the parameter κ in the
auxiliary Helmholtz equation, a special regularization methodology must be developed.

In Figures 7 and 8, we show the absolute error in the centroid and in the size
calculation, respectively.

Finally, the reciprocity gap functional at cosh(κ(xi − xci)) and sinh(κ(xi − xci)) for
i = 1, . . . , d is shown in Figure 9.

7. Conclusions

We have presented a methodology for star-shaped source reconstruction in the transient heat
problem by using one set of Cauchy data history. With the adoption of an anisotropic Sobolev
Hilbert mathematical framework, we can treat the problemwith a methodology analogous to
that used to study stationary elliptic problems. Therefore, by introducing a finite difference
time θ-scheme, we developed an algorithm based on amodifiedHelmholtz system, for which
we have already studied computationally the inverse source reconstruction problem. An
original methodology for centroid and shape capture is introduced. Numerical experiments
in Cartesian geometry involving an interval and a rectangular parallelepiped are investigated
to stress-associated difficulties.
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