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The stream water quality model of water quality assessment problems often involves numerical
methods to solve the equations. The governing equation of the uniform flow model is one-
dimensional advection-dispersion-reaction equations (ADREs). In this paper, a better finite
difference scheme for solving ADRE is focused, and the effect of nonuniform water flows in a
stream is considered. Two mathematical models are used to simulate pollution due to sewage
effluent. The first is a hydrodynamic model that provides the velocity field and elevation of
the water flow. The second is a advection-dispersion-reaction model that gives the pollutant
concentration fields after input of the velocity data from the hydrodynamic model. For numerical
techniques, we used the Crank-Nicolson method for system of a hydrodynamic model and the
explicit schemes to the dispersion model. The revised explicit schemes are modified from two
computation techniques of uniform flow stream problems: forward time central space (FTCS) and
Saulyev schemes for dispersion model. A comparison of both schemes regarding stability aspect is
provided so as to illustrate their applicability to the real-world problem.

1. Introduction

Field measurement and mathematical simulation are methods to detect the amount of
pollutant in water area. For the shallow water mass transport problems that presented in
[1], the method of characteristics has been reported as being applied with success, but it
presents in real cases some difficulties. In [2], the finite element method for solving a steady
water pollution control to achieve a minimum cost is presented. The numerical techniques
for solving the uniform flow of stream water quality model, especially the one-dimensional
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advection-diffusion-reaction equation, are presented in [3-7]. A two-dimensional model for
natural convection in shallow water that reduces to a degenerated elliptic equation for
the pressure, an explicit formula for horizontal components of the velocity and a vertical
diffusion for the vertical component, is derived [8]. In [9], a rigorous nonlinear mathematical
model is used to explain the seasonal variability of plankton in previous shallow coastal
lagoons. The particle trajectories in a constant vorticity shallow water term flow over a flat
bed as periodic waves propagate on the water’s free surface are investigated in [10].

The most of nonuniform flow model requires data concerned with velocity of the
current at any point and any time in the domain. The hydrodynamics model provides the
velocity field and tidal elevation of the water. In [11-13], they used the hydrodynamics model
and convection-diffusion equation to approximate the velocity of the water current in a bay;,
a uniform reservoir, and a channel, respectively.

The numerical techniques to solve the nonuniform flow of stream water quality model,
one-dimensional advection-diffusion-reaction equation, is presented in [14] by using the fully
implicit schemes: Crank-Nicolson method system of hydrodynamic model and backward
time central space (BTCS) for dispersion model.

The finite difference methods, including both explicit and implicit schemes, are mostly
used for one-dimensional problems such as in longitudinal river systems [15]. Researches
on finite difference schemes have considered on numerical accuracy and stability. There are
several high quality numerical schemes, such as QUICK/QUICKest schemes, Lax-Wendroff
scheme, Crandall scheme, and Dufort-Frankel scheme have been developed to enhance
model performances. These schemes have outstanding stability and high-order accuracy.
They are requirements for advection-dominated systems. Although these schemes need
boundary and initial conditions that make them difficult to use. They need more computing
effort since iterations for more grids are involved in each computation step. For example,
the QUICKest scheme uses a three-point upstream-weighted quadratic interpolation and
needs the stop criteria controlled iterations for each grid in order to enhance accuracy. The
scheme carries out a heavy computing load. Since it involves two upstream points, the upper
boundary conditions need to be defined carefully before starting computation [4].

The simple finite difference schemes become more inviting for general model use.
The simple explicit schemes include Forward-Time/Centered-Space (FTCS) scheme and the
Saulyev scheme. These schemes are either first-order or second-order accurate [4] and have
the advantages of simplicity in coding and time effectiveness in computing without losing
too much accuracy and thus are preceding for several model applications.

In this paper, we will use more economical computation techniques than the method
in [14]. For numerical techniques, we used the Crank-Nicolson method to the system of
hydrodynamic model and the explicit schemes to the dispersion model. The revised explicit
schemes are modified from two computation techniques of uniform flow stream problems:
forward in time/central in space (FTCS) and Saulyev schemes.

The results from hydrodynamic model are data of the water flow velocity for
advection-diffusion-reaction equation which provides the pollutant concentration field. The
term of friction forces due to the drag of sides of the stream is considered. The theoretical
solution of the model at the end point of the domain that guaranteed the accurate of the
approximate solution is presented in [13, 14].

The stream has a simple one-space dimension as shown in Figure 1. Averaging the
equation over the depth, discarding the term due to Coriolis force, it follows that the one-
dimensional shallow water and advection-diffusion-reaction equations are applicable. We use
the Crank-Nicolson method and the forward in time/central in space (FTCS) and Saulyev
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Figure 1: The shallow water system.

schemes to approximate the velocity and the tidal elevation and the concentration from the
foresaid models, respectively.

2. Mathematical Model
2.1. The Hydrodynamic Model

The continuity and momentum equations are governed by the hydrodynamic behavior of
the stream. If we average the equations over the depth, discarding the term due to Coriolis
parameter, shearing stresses, and surface wind [11, 13, 14, 16], we obtain the one-dimensional
shallow water equations:

o, 0 ~

5 T gl oul =0, o
ou, 0 _, '
ot "8ox

where x is longitudinal distance along the stream (m), t is time (s), h(x) is the depth measured
from the mean water level to the stream bed (m), {(x, t) is the elevation from the mean water
level to the temporary water surface or the tidal elevation (m/s), and u(x, t) is the velocity
components (m/s), for all x € [0, 1].

Assume that h is a constant and { < h. Then (2.1) leads to

%+ha—ué0,
ot ox (2.2)
a_u+ %—0 .
ot "8ox T

We will consider the equation in dimensionless problem by letting U = u/+/gh, X = x/I,
Z =¢/h,and T = t\/gh/l. Substituting them into (2.2) leads to

a_Z + a_u =0
oT o0X (2.3)
ou oz _,

or " oxX
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We now introduce a damping term into (2.3) to represent frictional forces due to the drag of
sides of the stream, thus

a_Z+a_u—0
T oX
0 0 (2.4)
a_u+a_z—_u
oT  oX 7

with the initial conditions at t = 0 and 0 < X < 1 being specified: Z = 0 and U = 0. The
boundary conditions for t > 0 are specified: Z = e'* at X = 0 and 0Z/0X = 0 at X = 1. The
system of (2.4) is called the damped equation. We solve the damped equation by using the
finite difference method. In order to solve (2.4) in [0,1] x [0, T], for convenient using u, d for
U and Z, respectively,

ou od_
at  ox
x 2.5)
od ou_,
ot ox

with the initial conditions u = 0, d = 0 at t = 0 and the boundary conditions d(0, t) = f(t) and
od/ox=0atx=1.

2.2, Dispersion Model

In a stream water quality model, the governing equations are the dynamic one-dimensional
advection-dispersion-reaction equations (ADREs). A simplified representation by averaging
the equation over the depth is shown in [3-5, 7, 14] as

oC oC 0*C
e D= _ 2.6
: +u D > KC, (2.6)

where C(x,t) is the concentration averaged in depth at the point x and at time ¢, D is the
diffusion coefficient, K is the mass decay rate, and u(x, t) is the velocity component, for all x €
[0, 1]. We will consider the model with following conditions. The initial condition C(x,0) =0
att = 0 for all x > 0. The boundary conditions C(0,t) = Cpatx = 0and 0C/0x =0 atx =1,
where Cy is a constant.

3. Numerical Experiment

The hydrodynamic model provides the velocity field and elevation of the water. Then the
calculated results of the model will be input into the dispersion model which provides the
pollutant concentration field.
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3.1. Crank-Nicolson Method for the Hydrodynamic Model

We will follow the numerical techniques of [13]. To find the water velocity and water
elevation from (2.5), we make the following change of variable, v = e‘u, and substituting
them into (2.5), we have

9, 194 _ 0,
ot ox
(3.1)
9 1% g
ot ox

Equation (3.1) can be written in the matrix form
v 0 €7 /v 0
+ = . (3.2)
a/, et 0f\d . 0

U; + AU, =0, (3.3)

That is,

where

ov (3.4)

v v v
- _| ot
() G)(3)

ot

with the initial condition d = v = 0 at t = 0. The left boundary conditions for x = 0, t > 0 are
specified: d(0,t) = sint and dv/dx = —e' cost, and the right boundary conditions for x = 1,
t > 0 are specified: 0d/0x = 0 and v(0,t) = 0.

We now discretize (3.3) by dividing the interval [0,1] into M subintervals such that
MAx = 1 and the interval [0,T] into N subintervals such that NAt = T. We can then
approximate d(x;, t,) by d', value of the difference approximation of d(x, t) at point x = iAx
and t = nAt, where 0 <i < M and 0 < n < N, and similarly defined for v!' and U}. The
grid points (x,,t,) are defined by x; = iAx foralli = 0,1,2,...,M and t, = nAt for all
n=0,1,2,...,N in which M and N are positive integers. Using the Crank-Nicolson method
[17] to (3.3), the following finite difference equation can be obtained:

|- pra@ee vo|up = [ pras s v, (35)

where

i+1

u=(T) sar-ug-un vap-uug, 36
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I is the unit matrix of order 2 and A = At/Ax. Applying the initial and boundary conditions
given for (3.1), the general form can be obtained

C;;'H—lan+1 — Enan + Fn, (37)
where
1 0 0 —%a;‘“ 0 0 ]
A A
Zag“ : 1 —Za;‘” 0 0 A0
0 Zarl 1 0 0 —Za';“
A
Gl = %a;’“ 0 0 1 —Za;”l 0 ,
A
0 0 0 %a;”l 1 —ga
A
i 0 0 Zagﬂ 0 0 I
- )L -
1 0 0 —zag‘ 0 0
A
—%a? 1 Zag’ 0 0 0
n+1
0 —&a 1 0 0 éa" t
4 1 4 1 un+1
. 1 ., 1 ., e 2 (3.8)
E" = —Zaz 0 0 1 Zaz 0 s u = . s
| \ ) it
0 0 0 —ZEIT 1 ZEIT
A
| 0 0 —Za’; 0 0 1]
A A
/ ——aﬁ”l sin(t,.1) — —aj sin(t,) \
4 4
_& n+1 —tni1 _ & n —t,
% Axe ' cos(tyi1) 1 ayAxe " cos(ty)
0
F" = 0 ,
0
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where af = e, ay = e, andt, =nAtforalln=0,1,2,..., N. The Crank-Nicolson scheme is
unconditionally stable [15, 17].

3.2. The Explicit Schemes for the Advection-Diffusion-Reaction Equation

We can then approximate C(x;, t,) by C, the value of the difference approximation of C(x, t)
at point x = iAx and t = nAt, where 0 <i < M and 0 < n < N. The grid points (xy,t,) are
defined by x; = iAx foralli=0,1,2,...,Mand t, = nAtforalln =0,1,2,..., N in which M
and N are positive integers.

3.2.1. Forward Time Central Space Explicit Finite Difference Scheme

Taking the forward time central space technique [17] into (2.6), we get the following
discretization:

c=cy,
aC B C;1+1 _ C1n
ot~ At
oC ~ C?+1 - C?—l
ox ~ 2Ax (39)
o?C _ CL, -2CH+CYy
ox? (Ax)?
u= ljl:Z
Substituting (3.9) into (2.6), we get
cml_cr cl,-Ch cr, =2Cr+Cr
i i n i i =D i+l i i-1 —KC" 1
A U < 2Ax ) (Ax)? c (3.10)

for1 <i< Mand0<n< N -1. Leting A = DAt/(Ax)* and Yt = (At/Ax)le?”, (3.10)
becomes

(3.11)

i+1°

ol - (%Yf + A)C{‘_l +(1-21-KAHC! + (A - %YF)C"

For i = 1, plugging the known value of the left boundary Cj = Cy to (3.11) in the right-hand
side, we obtain

crl = Gyf + A) Co+ (1-21-KAHCY + <A - %yf)cg. (3.12)

For i = M, substituting the approximate unknown value of the right boundary by [4], we can
let C},,, = 2C}, — C},_; and by rearranging, we obtain

Chit = @NCYy, + (1 -4 - KAt —y1)Ch,. (3.13)
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The forward time central space scheme is conditionally stable subject to constraints in (3.10).
The stability requirements for the scheme are [4, 18]

DAt 1
A= 5 <5
(Ax)* 2
AL (3.14)
n_ i 1
Yl Ax <1

where 1 is the diffusion number (dimensionless) and y/" is the advection number or Courant
number (dimensionless). It can be obtained that the strictly stability requirements are the
main disadvantage of this scheme.

The finite difference formula (3.11) has been derived in [19] that the truncation error
for this method is O{(Ax?), At}.

3.2.2. Saulyev Explicit Finite Difference Scheme

The Saulyev scheme is unconditionally stable [6]. It is clear that the nonstrictly stability
requirement of Saulyev scheme is the main of advantage and economical to use. Taking
Saulyev technique [6] into (2.6), it can be obtained the following discretization:

c=cy,
aC B C;Hl _ C:l
ot At
oC _ Czﬁl B Cﬂl
w- 2Ax (3.15)
o*’Cc _C,-CI'- Cf’*l + Cl?’jll
x> (Ax)’ ’
us=s le:“
Substituting (3.15) into (2.6), we get
C?*l B Cln an C?+1 B C?—Hl =D Cin+l B Cln B C;H—l + Cln—+11 kcn 3 16
—At + i —ZAx = (Ax)2 - i’ ( . )

for1<i< Mand0<n< N -1 Leting A = DAt/(Ax)” and y™! = (At/Ax)Ur*?, (3.16)
becomes

cml = <ﬁ> <<%y " A) Clt (1- A~ KAHC! + <)L - %y;)c;g). (3.17)
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Fori = 1, plugging the known value of the left boundary Ci*! = Cy to (3.17) in the right-hand
side, we obtain

n 1 1 n n 1 n n
() () o-akane 1))

For i = M, substituting the approximate unknown value of the right boundary by [20], we

canlet Ch, , = Ci +Cii! = C%l and by rearranging, we obtain

n+l _ 1 (n n+1 <_ _1n>n>
Cy _<—1+(1/2)Y;\1/1 YmChig + (1 - KAt 5Ym Cy ) (3.19)

Using Taylor series expansions on the approximation, [21] has shown that the truncation
error is O{(Ax)* + (At)? + (At/Ax)*} or 02,2, (1/1)*}.

From (3.16) to (3.19), it can be obtained that the technique does not generate the system
of linear equations. It follows that the application of the technique is economical computer
implementation.

4. The Accuracy of the Hydrodynamic Approximation

It is not hard to find the analytical solution d(x,t) in (2.5) with f(t) = sint. By changing of
variables, d(x,t) = e"D(x) and u(x,t) = e U(x) for some D(x), U(x) € C%[O, 1] and substitute
into (2.5). Using a separable variables technique, we can obtain d(1,t) a solution [14]

sint cos 3 cosh a — cos tsin fsinh a
da@,t) = p p

41
cos?f cosh’a + sin’fsinh’a D

where a = 2Y4cos(37/8) and p = 2!/%sin(3x/8). Anyhow, it is not easy to find the
analytical solution u(x, t) of (2.5). We use the solution d(1, ) obtained in (4.1) to verify to our
approximate solution obtained by the Crank-Nicolson method (3.7). Actually when using the
Crank-Nicolson method, we get the approximate solution both d(x, t) and u(x, t). We assume
that when we get a good approximation for d(x, t) this implied that the method gives a good
approximation for u(x,t). The verification of the approximate solution d(1,t) is shown in
Table 1 and Figure 2.

Figure 2 shows the comparison between the analytical solutions d(1,t) and the
approximate solutions d(1,) only at the end of the domain. Table 1 shows that an estimate
of the maximum error is less than 7.0%.

Unfortunately, the analytical solutions of hydrodynamic model could not found over
entire domain. This implies that the analytical solutions of dispersion model could not carry
out at any points on the domain as well.

5. Application to the Stream Water Quality Assessment Problem

Suppose that the measurement of pollutant concentration C (Kg/m?) in a uniform stream
at time ft (sec) is considered. A stream is aligned with longitudinal distance, 1.0km total
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Height of water elevation d(1, t)

0 100 200 300 400 500 600 700 800 900 1000
Number of time step with At = 0.05

—— Analytical solution
x  Numerical solution

Figure 2: Comparison of analytical solution for height of water elevation with results obtained by
numerical technique at the end point of the domain.

Table 1: The error defined by error(T) = max |d(1,t)—3(1, Blforall T-xr <t <T + oatfixed At/Ax =0.25.

T Ax At da,t) d(1,t) error(T)
0.200 0.05000 1.50158 1.45659 0.04499
20 0.100 0.02500 0.09392 0.38856 0.29465
0.050 0.01250 —-0.25831 —0.40244 0.14413
0.025 0.00625 —-0.33323 -0.40433 0.07110
0.200 0.05000 1.49666 1.45165 0.04501
30 0.100 0.02500 —-0.09358 -0.38821 0.29463
0.050 0.01250 0.25798 0.40198 0.14401
0.025 0.00625 0.33290 0.40389 0.07099
0.200 0.05000 1.50146 1.45644 0.04502
40 0.100 0.02500 0.09324 0.38787 0.29463
0.050 0.01250 —-0.25765 —0.40165 0.14401
0.025 0.00625 —-0.33257 -0.40356 0.07099

length, and 1.0m depth. There is a plant which discharges waste water into the stream,
and the pollutant concentration at discharge point is C(0,t) = Cy = 1Kg/m?® at x = 0
for all t > 0 and C(x,0) = 0Kg/m? at t = 0. The elevation of water at the discharge
point can be described as a function d(0,t) = f(t) = sintm for all ¢ > 0, and the
elevation is not changed at x = 1.0km. The physical parameters of the stream system are
diffusion coefficient D = 0.05m?/s, and a first-order reaction rate 10°s™!. In the analysis
conducted in this study, meshes the stream into 20, 40, 80, and 160 elements with Ax =
0.05,0.025,0.0125,0.00625, respectively, and time increment are 3.2, 1.6, 0.8, 0.4, 0.2, 0.1s
with At = 0.01,0.005,0.0025,0.00125, 0.000625, 0.0003125, respectively. Using (3.7), it can be
obtained the water velocity u(x,t) on Table 2 and Figure 3. Next, the approximate water
velocity can be plugged into the finite difference equations of FTCS and Saulyev schemes
on (3.11)-(3.13) and (3.17)—(3.19), respectively. The comparison of concentration of the FTCS
method and Saulyev method is presented in Figure 5 for two different instants. We then
have the stabilities of both schemes for each Ax and At in Table 5 that are consistence
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Table 2: The velocity of water flow u(x, t).

t x=0 x=01 x=02 x=03 x=04 x=05 x=06 x=07 x=08 x=09 x=1.0
10 -0.5478 -0.5695 -0.5666 -0.5199 -0.4711 -0.4061 -0.3352 -0.2571 -0.1747 -0.0878 0.0000
20 1.3101 1.2213 1.1232 1.0160 0.8931 0.7504 0.6097 0.4595 0.3099 0.1554 0.0000
30 -0.4468 -0.3731 -0.3085 -0.2527 -0.2057 -0.1651 -0.1252 -0.0875 -0.0573 -0.0276 0.0000
40 -1.0361 -0.9898 -0.9258 -0.8459 -0.7513 -0.6439 -0.5258 -0.4004 -0.2711 -0.1367 0.0000
50 1.0939 0.9918 0.8867 0.7791 0.6700 0.5594 0.4479 0.3356 0.2233 0.1114 0.0000

velocity of water (m/s)

O<x<l1 O<t<1

Figure 3: The water velocity u(x,t).

Pollutant
concentration (mg/L)

O<x<l1 Time (s)

Figure 4: The pollutant concentration C(x, t).
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Concentration at 7.5 sec

S e o
o Nk ®~

Concentration
(Kg/m?)

0 10 20 30 40 50 60 70 80
Distance 0 < x <1 (Km)

(a)

Concentration at 15 sec

cooo
O N = O 0 =
.

Concentration
(Kg/m?)

10 20 30 40 50 60 70 80
Distance 0 < x <1 (Km)

(==}

—— Saulyev
— FTICs

(b)

Figure 5: The comparison of concentration at two different time instants of the FTCS and Saulyev methods.

Table 3: The pollutant concentration C(x,t) of FTCS scheme, Ax = 0.0125 (40m), At = 0.0003125 (0.15s).

t x=0 x=01 x=02 x=03 x=04 x=05 x=06 x=07 x=08 x=09 x=1.0
10 1.0000 0.3231 0.1154 0.0517 0.0292 0.0194 0.0141 0.0109 0.0090 0.0079 0.0075
20 1.0000 0.9996 0.9971 0.9873 09575 0.8873 0.7588 0.5774 0.3828 0.2324 0.1720
30 1.0000 0.9981 0.9956 0.9910 0.9830 0.9706 0.9533 0.9327 09122 0.8966 0.8903
40 1.0000 0.9260 09166 09150 09145 0.9141 09138 09136 09135 09134 09133
50 1.0000 0.9993 0.9966 0.9902 0.9788 0.9633 0.9468 0.9327 09231 09179 0.9162

Table 4: The pollutant concentration C(x,t) of Saulyev scheme, Ax = 0.0125 (40m), At = 0.005 (1.6s).

t x=0 x=01 x=02 x=03 x=04 x=05 x=06 x=07 x=08 x=09 x=1.0
10 1.0000 0.3297 0.1225 0.0570 0.0327 0.0212 0.0144 0.0096 0.0059 0.0028 0.0000
20 1.0000 0.9995 0.9970 0.9878 0.9619 0.9020 0.7908 0.6251 0.4238 0.2136  0.0000
30 1.0000 0.9972 0.9919 09798 09536 09026 0.8136 0.6760 0.4859 0.2530  0.0000
40 1.0000 0.3128 0.2031 0.1624 0.1321 0.1052 0.0807 0.0581 0.0372 0.0179  0.0000
50 1.0000 0.9913 0.9631 0.8991 0.7879 0.6342 0.4610 0.2988 0.1694 0.0753  0.0000

with (3.14). The approximation of pollutant concentration C of both schemes are shown
in Tables 3 and 4 and Figure 4. The concentration along a stream at only 24 min with
varied diffusion coefficients is shown in Figure 6. These imply that the Peclet number was
Pe = (U]'Ax/D) < 10, which indicated the stream system was advection not dominated [15].



Mathematical Problems in Engineering 13

a\ 1 Diffusion coefficient (D) is 0.2 N 1 Diffusion coefficient (D) is 0.4
5D 5D

E 438 £ os
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06 g 06
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g 04 g 04

: :

= 0.2 = 0.2

g g

= 0 = 0

;O 0 10 20 30 40 350 60 70 80 2 0 10 20 30 40 50 60 70 80
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(a) (b)

Diffusion coefficient (D) is 0.8

Diffusion coefficient (D) is 1.6

0.6

0.4

0.2

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
0<X<1 0<X<1

(c) (d)

Pollutant concentration (mg/L)
Pollutant concentration (mg/1)

Figure 6: The pollutant concentration C(x, t) for each diffusion coefficients at t = 24 min.

6. Discussion and Conclusions

The approximation of the pollutant concentrations from the FTCS technique is shown in
Tables 3 and 5; it can be concluded that stability requirements is one of the disadvantages
of the technique. The real-world problems require a small amount of time interval in
obtaining accurate solutions. We can see that the FTCS scheme is not good agreement for
real application. In Table 4, it can be obtained that the Saulyev technique has an advantage
over compared to FTCS. It is unconditionally stable, easy, and economical to implement.

By Figure 6, we can see that the diffusion coefficients of pollutant matter can reduce
the concentration in a nonuniform stream. If sewage effluent with a low diffusion coefficient
has discharged into a nonuniform flow stream, then the water quality will be lower than a
discharging of high diffusion coefficients of other pollutant matters.

In this paper, it can be combined the hydrodynamic model and the convection-
diffusion-reaction equation to approximate the pollutant concentration in a stream when the
current which reflects water in the stream is not uniform. The technique developed in this
paper the response of the stream to the two different external inputs: the elevation of water
and the pollutant concentration at the discharged point. The Saulyev technique can be used
in the dispersion model since the scheme is very simple to implement. By the Saulyev finite
difference formulation, we obtain that the proposed technique is applicable and economical
to be used in the real-world problem as aresult of the simplicity of programming and the
straight forwardness of the implementation. It is also possible to find tentative better locations
and the periods of time of the different discharged points to a stream.
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Table 5: The stability of FTCS and Saulyev schemes, y = max{yi" :1<i<M,0<n<N-1}.

Ax At A y FTCS scheme Saulyev scheme
0.010000 3.2 1.0665 Unstable Stable
0.005000 1.6 0.5332 Unstable Stable
0.0125 0.002500 0.8 0.2667 Unstable Stable
0.001250 0.4 0.1333 Stable Stable
0.000625 0.2 0.0080 Stable Stable
0.010000 3.2 1.0665 Unstable Stable
0.005000 1.6 0.5332 Unstable Stable
0.0125 0.002500 0.8 0.2667 Unstable Stable
0.001250 0.4 0.1333 Stable Stable
0.000625 0.2 0.0080 Stable Stable
0.010000 3.2 1.0665 Unstable Stable
0.005000 1.6 0.5332 Unstable Stable
0.0125 0.002500 0.8 0.2667 Unstable Stable
0.001250 0.4 0.1333 Stable Stable
0.000625 0.2 0.0080 Stable Stable
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