
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 545470, 12 pages
doi:10.1155/2011/545470

Research Article
A Polynomial Preconditioner for
the CMRH Algorithm

Jiangzhou Lai,1 Linzhang Lu,1, 2 and Shiji Xu1

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
2 School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China

Correspondence should be addressed to Linzhang Lu, lzlu@xmu.edu.cn

Received 4 June 2010; Revised 21 December 2010; Accepted 24 January 2011

Academic Editor: P. Liatsis

Copyright q 2011 Jiangzhou Lai et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Many large and sparse linear systems can be solved efficiently by restarted GMRES and CMRH
methods Sadok 1999. The CMRH(m) method is less expensive and requires slightly less storage
than GMRES(m). But like GMRES, the restarted CMRH method may not converge. In order to
remedy this defect, this paper presents a polynomial preconditioner for CMRH-based algorithm.
Numerical experiments are given to show that the polynomial preconditioner is quite simple and
easily constructed and the preconditioned CMRH(m) with the polynomial preconditioner has
better performance than CMRH(m).

1. Introduction

In many practical applications, we have to solve a large and sparse, nonsymmetric linear
system of equations

Ax = b, (1.1)

whereA ∈ Rn×n is nonsingular, and x, b ∈ Rn. The linear system (1.1) can be solved efficiently
by iterative methods, especially those based on the Krylov subspace

Kk(r0, A) = span
{
r0, Ar0, . . . , A

k−1r0
}
. (1.2)

Although the GMRES method [1] and CMRH method [2] are Krylov-type algorithms,
they construct different Krylov subspace bases in different ways; the GMRES method uses

2 Mathematical Problems in Engineering

the Arnoldi process, while CMRH uses the Hessenberg process. As the number of iterations
increases, the methods become impractical because of growth of memory and computational
requirement as k increases, so they must be remedied by restarting; thus, the GMRES(m) and
CMRH(m) algorithms were developed. It is concluded in [2] that the CMRH(m) algorithm
only requires half the arithmetical operations per iteration and slightly less storage than
GMRES(m). However, like GMRES(m), the CMRH(m) method may not converge in some
cases. In order to remedy this defect, van Gijzen [3] presented a polynomial preconditioner
to improve the GMRES(m) method. The main idea is finding the low-degree polynomials
pm(x) satisfying pm(A) ≈ A−1 and transferring the original linear system of (1.1) into

pm(A)Ax = pm(A)b, (1.3)

then applying the iterative method based on the following Krylov subspace:

Kk(pm(A)A; r0
)
= span

{
r0, pm(A)Ar0, . . . ,

(
pm(A)A

)k−1
r0
}

(1.4)

to the new linear system (1.3), obviously, Kk(pm(A)A; r0) ∈ K(k+1)(m−1)+1(A; r0). This method
becomes very effective when large computation of inner product is needed. In this paper,
we apply the same technique to the CMRH(m) algorithm. Our method is efficient since
the CMRH process itself is utilized to construct the polynomial preconditioner. Numerical
experiments are given to show that the CMRH(m)method with a polynomial preconditioner
has better performance, in the sense of fewer iterations, than the original CMRH(m) method.

The rest of the paper is arranged as follows. The first part of Section 2 reviews the
CMRH(m) method. The construction of the polynomial preconditioner is described in the
second part of Section 2, and in the third part, the PCMRH(m) method is developed. We
present some numerical experiments to show that the polynomial preconditioner is effective
for the CMRH(m) method in Section 3. Section 4 is a simple conclusion.

Throughout the paper, all vectors and matrices are assumed to be real. For a vector
v, ‖v‖ denotes the Euclidean norm ‖v‖ =

√
vTv, and ‖v‖∞ denotes the maximum norm

‖v‖∞ = maxi=1,...n|vi|, where vi is the ith component of a vector v, and |vi| denotes the absolute
value(modulus) of a real(complex) number vi. For a matrix A, ‖A‖ denotes the 2-norm.
Furthermore, we denote by e

(n)
k

the kth canonical vector of Rn,

e
(n)
k = (0, . . . , 1, 0, . . . , 0)T , (1.5)

and I
(n)
k

the first kth columns of an n-dimensional identity matrix, and we denote by H† the
pseudoinverse of a matrix H .

2. PCMRH(m) Algorithm

2.1. CMRH(m) Algorithm

The principle of CMRH [2] method is to use the Hessenberg process with pivoting to
construct a basis of the Krylov subspace Kk(A, r0): l1, l2, . . . , lk. Precisely, the Hessenberg

Mathematical Problems in Engineering 3

process produces an n × k unit lower trapezoidal matrix Lk = (l1, . . . , lk) and a (k + 1) × k

upper Hessenberg matrixHk ∈ R(k+1)×k , such that

ALk = Lk+1Hk. (2.1)

Then, we find a correction vector z ∈ Kk(A, r0), such that

min
z∈Kk(A,r0)

‖b −A(x0 + z)‖ = min
z∈Kk(A,r0)

‖r0 −Az‖. (2.2)

Since Kk(A, r0) = span{l1, l2, . . . , lk}, we let z = Lkyk and have

min
z∈Kk(A,r0)

‖b −A(x0 + zk)‖ = min
yk∈Rk

∥∥r0 −ALkyk

∥∥

= min
yk∈Rk

∥∥∥r0 − Lk+1Hkyk

∥∥∥

= min
yk∈Rk

∥∥∥
∥∥∥r0
∥∥∥e(k+1)1 −Hkyk

∥∥∥.

(2.3)

Therefore, a least-squares solution could be obtained from the Krylov subspace by
minimizing ‖‖r0‖e(k+1)1 − Hkyk‖ over y, just as in the GMRES method, except that the
Hessenberg process is replaced by the Arnoldi process; this is the basic idea of the CMRH
method. Since the Hessenberg process will be breakdown if (lj)j is zero, Sadok [2] uses a
pivoting strategy such as in the Gaussian elimination method to avoid such a breakdown,
and then the approximating solution can be computing by

xk = x0 + LkH
†(r0)i0e

k+1
1 , (2.4)

where i0 satisfies |(r0)i0 | = ‖r0‖∞, Lk = (l1, . . . , lk) is an n×k unit lower trapezoidal matrix, and
H† denotes the pseudoinverse of a matrixH for more details, see (Algorithm 1) [2].

The notation “↔” means as “swap contents”: α ↔ β ⇔ γ = α;α = β; β = γ .
As k increases, the CMRH method(Hessenberg process with pivot) becomes impractical
because of the growth of memory and computational requirement, so it must be remedied by
restarting, thus the CMRH(m) algorithm is developed, which is described in (Algorithm 2)
[2].

The main body of Algorithm 2 is the Hessenberg process with pivoting [2], in the last,
we get xm = x0+Lmym, where ym ∈ Rm minimizes ‖Hmy−(r0)i0e

(m+1)
1 ‖; this is a little different

from the GMRES method because of the pivot strategy used in the Hessenberg process.

2.2. Construction of the Polynomial Preconditioner

The main idea of the polynomial preconditioned method is to construct a polynomial s(t)
satisfying s(A) ≈ A−1 and then solve the linear system of equations s(A)Ax = s(A)b instead
of solving the linear system (1.1). Generally, we do not need to compute s(A)A really, since
what we need is only that the matrix s(A)A approaches the unit matrix. In practice, if

4 Mathematical Problems in Engineering

set p = (1, . . . , n)T .
Determine i0 so |(v)i0 | = ‖v‖∞; l1 =

v0

(v)i0
; p(1) ↔ p(i0) (interchange p(1) and p(i0));

iterate:
for k = 1, 2, . . . , n

u = Alk
for j = 1, 2, . . . , k
c = up(j); hj,k = c; up(j) = 0
for l = j + 1, . . . , n

up(l) = up(l) − c ∗ (lj)p(l)
end

end
if k < n
determine i0 so |(u)i0 | = ‖u‖∞; p(k + 1) ↔ p(i0)
hk+1,k = ui0 ; lk+1 = u/(u)i0

end
end

Algorithm 1: Hessenberg process with pivoting [2].

a polynomial qn is constructed, such that xk+1 = x0 + qk(A)r0 is an approximation of the
solution of the linear system (1.1), then when x0 = 0, the following relationship holds:

A−1b ≈ xk+1 = qk(A)b. (2.5)

That is, qk(A) is a polynomial preconditioner.
In the following, we utilize the residual polynomial produced from the CMRH process

to construct a polynomial preconditioner.
LetKk be an n × k matrix formed by Krylov vectors, that is,

Kk =
(
r0, Ar0, . . . , A

k−1r0
)
. (2.6)

From (2.1), we get

lk+1 = h−1
k+1,k(Alk − Lkhk), (2.7)

where hk = (h1k, . . . , hkk)T is the kth column of Hk. Since the columns of Lk span the same
space as the columns of Kk, the following relationship holds:

Lk = KkCk, (2.8)

Mathematical Problems in Engineering 5

Input: m: the dimension of a Krylov subspace and the approximation precision ε
start: x0 = 0, r0 = b −Ax0, and set p(i) = i, i = 1, . . . , n
Determine i0 so |(r0)i0 | = ‖r0‖∞; l1 =

r0
(r0)i0

; p(1) ↔ p(i0) (interchange p(1) and p(i0));

iterate:
for k = 1, 2, . . . ,m

u = Alk
for j = 1, 2, . . . , k
c = up(j); hj,k = c; up(j) = 0
for l = j + 1, . . . , n
up(l) = up(l) − c ∗ (lj)p(l)

end
end
if k < n
determine i0so |(u0)i0 | = ‖u0‖∞; p(k + 1) ↔ p(i0)
hk+1,k = ui0 ; lk+1 = u/(u)i0

end
if (an estimate of)‖b −Axk‖ is small enough or k = n then
xk = x0 + Lkyk ,where yk minimize ‖Hky − (r0)i0e

(k+1)
1 ‖

stop iteration
end

end
xm = x0 + Lmym, where ym ∈ Rm minimizes ‖Hmy − (r0)i0e

(m+1)
1 ‖.

x0 := xm, go to start

Algorithm 2: CMRH(m) [2].

where Ck is an upper triangular matrix. Thus,

Lkhk = KkCkhk =
(
Kk Akr0

)
(
Ckhk

0

)
,

Alk = AKk

⎛
⎜⎜⎜⎝

c1k

...

ckk

⎞
⎟⎟⎟⎠ =

(
Ar0 A2r0 · · · Akr0

)
⎛
⎜⎜⎜⎝

c1k

...

ckk

⎞
⎟⎟⎟⎠ = Kk+1

⎛
⎜⎜⎜⎜⎜⎜⎝

0

c1k

...

ckk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(2.9)

Hence, from (2.7), we have

lk+1 = h−1
k+1,kKk+1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0

c1k

...

ckk

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(
Ckhk

0

)
⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.10)

6 Mathematical Problems in Engineering

On the other hand, from Lk+1 = Kk+1Ck+1, we have lk+1 = Kk+1

(c1,k+1

...
ck+1,k+1

)
. Since the columns

of Kk+1 are linear independent, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

c1,k+1

c2,k+1

...

ck+1,k+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= h−1
k+1,k

⎛
⎜⎜⎜⎜⎜⎜⎝

0

c1k

...

ckk

⎞
⎟⎟⎟⎟⎟⎟⎠

− h−1
k+1,k

(
Ckhk

0

)
. (2.11)

Thus, from the CMRH algorithm, we can obtain the approximate solution

xk+1 = x0 + Lk+1y = x0 +Kk+1Ck+1y. (2.12)

Since Lk+1y = x0 +Kk+1Ck+1y, we know that the entries of Ck+1y are the coefficients of qk(z),
that is, if Ck+1y = (α0, α1, . . . , αk)

T , then qk(z) = α0 + α1z + · · · + αkz
k . Note that pk+1(z) =

1−zqk(z) is the residual polynomial, so we have qk(z) = (1−pk+1(z))/z and qk(A) ≈ A−1 [4];
therefore, qk(A) becomes a preconditioner.

In the next subsection, we present the preconditioned CMRH(m)with the polynomial
preconditioner described above.

2.3. PCMRH(m) Algorithm

The polynomial preconditioned CMRH(m) (PCMRH(m)) method is given in the following,
which is composed of two parts, in the first part, the polynomial preconditioner is
constructed, and in the second part, the CMRH(m) method is applied to the new linear
systems (Algorithm 3).

3. Numerical Experiments

In this section, we give some numerical examples to compare the performance of PCMRH(m)
with CMRH(m). All codes were written in Matlab 6.5 and run on AMD Athlon(tm) 64 X2
Dual Core Processor 2.20GHz equipped with 1.5G of RAM. In these numerical experiments,
all the matrices are from Sadok’s paper [2]we always take the initial vector x0 = (0, 0, . . . , 0)T ,
b = (1, 1, . . . , 1)T , and m = 20. We use the inequality norm(r)/norm(b) ≤ 10−10 as stopping
criteria. In the figures, solid lines(-) denote the CMRH(m) method, and dots(-.) denote the
PCMRH(m) method. The x-axis denotes the number of iterations, and y-axis denotes the
norm of the residual r: norm(r).

Mathematical Problems in Engineering 7

Input: the dimension of Krylov subspacem; the prescribed stopping criterion ε;
the degree of the polynomial preconditioner kk; the initial approximate solution x0;
the residual vector r0 = b −Ax0.

1. The procedure of constructing polynomial preconditioner qkk
(1) Let p(i) = i, i = 1, 2, . . . , n;

determine i0 so |(r0)|i0 = ‖r0‖∞; l1 =
r0

(r0)i0
; p(1) ↔ p(i0),

C(1, 1) =
1

(r0)i0
(2) for k = 1, 2, . . . , kk do

u = Alk
for j = 1, 2, . . . , k do

c = up(j), hj,k = c, up(j) = 0
for l = j + 1, . . . , n do
up(l) = up(l) − c × (lj)p(l)

end
if k < n
compute i0 so |(u0)|i0 = ‖u0‖∞; p(k + 1) ↔ p(i0)
hk+1,k = ui0 ; lk+1 =

u

(u)i0

let hj =

⎛
⎝

h1,j

...
hj,j

⎞
⎠, Cj =

⎛
⎝

c11 ··· c1j

0
.. .

...
0 0 cjj

⎞
⎠

compute⎛
⎜⎝

c1,j+1
c2,j+1

...
cj+1,j+1

⎞
⎟⎠ = h−1

j+1,j

⎛
⎜⎝

0
c1j

...
cjj

⎞
⎟⎠ − h−1

j+1,j

(
Cjhj

0

)

end
end

(3) Form the approximate solution xk = x0 + Lkyk, where yk ∈ Ck minimizes
F(y) = ‖Hky − (r0)i0e1‖.

(4) Form the polynomial preconditioner qkk(z)
Ckyk = (α0 ··· αk−1)T ;
qkk(x) = α0 + α1x + · · · + αk−1xk−1.

2. Using the CMRH(m) algorithm for qkk(A)Ax = qkk(A)b.

Algorithm 3: PCMRH(m).

Example 3.1. The first example is taken from Brown [5]. The n × nmatrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε 1

−1 ε 1

.

−1 ε 1

−1 ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

8 Mathematical Problems in Engineering

Table 1

kk No. of restarts Time (sec) Residual norm Convergence
1 1000 2.7500 0.0011 No
2 171 0.4690 9.4299e − 11 Yes
3 289 0.7810 9.4596e − 11 Yes
4 177 0.4840 9.9338e − 11 Yes
5 236 0.6560 9.6960e − 11 Yes
6 50 0.1250 9.6988e − 11 Yes
7 72 0.2030 6.8890e − 11 Yes
8 60 0.1720 8.5579e − 11 Yes
9 75 0.2190 7.7776e − 11 Yes
10 34 0.1090 5.8616e − 11 Yes
11 40 0.1250 5.5309e − 11 Yes
12 32 0.1090 6.1764e − 11 Yes
13 28 0.0780 8.4069e − 11 Yes
14 23 0.0780 3.6570e − 11 Yes
15 23 0.0940 7.6101e − 11 Yes
16 17 0.0780 4.8057e − 11 Yes
17 18 0.0780 8.7496e − 12 Yes
18 11 0.0620 7.8930e − 12 Yes
19 7 0.0470 3.5654e − 12 Yes
20 14 0.0620 1.3220e − 11 Yes

0 20 40 60 80 100 120
10−12

10−10

10−8

10−6

10−4

10−2

100

Figure 1: ε = 0.1, n = 40.

is used in three experiments, whose results are listed in Figures 1 and 2 and Table 1,
respectively. In Figure 1, ε = 0.1, n = 40, and the degree of the preconditioned polynomial:
kk = 20. In Figure 2, ε = 0.01, n = 40, and kk = 20. In Table 1, ε = 0.01, n = 100 and kk ranges
from 1 to 20.

Mathematical Problems in Engineering 9

0 100 200 300 400 500 600 700 800 900
10−12

10−10

10−8

10−6

10−4

10−2

100

102

Figure 2: ε = 0.01, n = 40.

From Figures 1 and 2, we can see that the PCMRH(m) method converges much faster
than CMRH(m), when ε = 0.1, n = 40, the CMRH(20) method needs 107 restarts to make
sure that the residual norm is 9.2925e − 011, while PCMRH(20) can get 1.1143e − 011 only in
3 restarts. When ε = 0.01, n = 40, the CMRH(20)method needs 840 restarts to make sure that
the residual norm is 9.0075e− 011, while PCMRH(20) can get 4.4771e− 011 only by 6 restarts.
The polynomial preconditioner is well done.

Let kk range from 1 to 20 and list PCMRH(20) in Table 1. We see that only when
kk = 1, the PCMRH(20) method does not converge, and when kk = 19, PCMRH(20) has the
best performance.

Example 3.2. The matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1 1

a1 1 1 . . . 1 1

a1 a2 1 . . . 1 1

...
...

.
...

a1 a2 a3 . . . an−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ai = 1 + iε (3.2)

is taken from [6]. In this experiment, we let ε = 10−2, n = 100, and kk = 2.
From Figure 3, we can also see that the PCMRH(20) method converges much faster

than CMRH(20). The CMRH(20)method needs 317 restarts to make sure the residual norm is
9.9221e−011, while PCMRH(20) reaches 9.0007e−011 only in 37 restarts. So, we can conclude
that the polynomial preconditioner makes CMRH(m) algorithm more efficient.

10 Mathematical Problems in Engineering

0 50 100 150 200 250 300 350
10−12

10−10

10−8

10−6

10−4

10−2

100

Figure 3: ε = 10−2, n = 100.

0 100 200 300 400 500 600 700 800 900
10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106

Figure 4: A = SDS−1.

Example 3.3. LetA = SDS−1 ∈ R1000×1000, where S is a bidiagonal matrix of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.9

1 0.9

.

0
. . . 0.9

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R1000×1000, (3.3)

and D = diag(−10,−9, . . . ,−1, 1, 2, . . . , 990) ∈ R1000×1000.
In this experiment, we compare the PCMRH(m) method with CMRH(m) and

GMRES(m). In Figure 4, we use the dot line to denote the GMRES(m) method.

Mathematical Problems in Engineering 11

Table 2

Algorithm No. of restarts Time (sec) Residual norm Convergence
GMRES(20) 1000 368.0310 1.8110e − 6 No
CMRH(20) 883 100.2500 8.4761e − 11 Yes
PCMRH(20) (kk = 3) 481 57.2650 8.2944e − 11 Yes

Table 3

kk No. of restarts Time (sec) Residual norm Convergence
1 518 60.4840 9.4131e − 11 Yes
2 499 59.3440 9.6438e − 11 Yes
3 481 57.2650 8.2944e − 11 Yes
4 625 75.1720 9.7851e − 11 Yes
5 639 77.7970 9.6175e−11 Yes
6 934 113.6710 9.7319e − 11 Yes
7 680 84.7190 9.9634e − 11 Yes
8 649 82.4840 9.8637e − 11 Yes
9 747 94.9220 9.3972e − 11 Yes
10 824 104.3750 6.7137e − 11 Yes
11 940 118.8590 8.5893e − 11 Yes
12 585 79.5790 9.8813e − 11 Yes
13 690 93.1400 8.4271e − 11 Yes
14 640 89.2820 9.6628e − 11 Yes
15 599 84.9530 9.8641e − 11 Yes
16 755 104.5470 9.8972e − 11 Yes
17 553 81.8440 9.0119e − 11 Yes
18 730 104.3910 9.3932e − 11 Yes
19 611 90.2970 8.6073e − 11 Yes
20 660 97.0460 9.8196e − 11 Yes

It can be seen from Figure 4 that the GMRES(20) method is stagnate since some
eigenvalues of A are negative; it uses 1000 restarts or about 368 seconds to make the residual
norm reach 1.8110e − 006. Meanwhile, the CMRH(20) method uses 883 restarts or about 100
seconds to get the residual norm be 8.4761e − 011; however, the PCMRH(20) method with
kk = 3 can reach 8.2944e− 011 only by 481 restarts or about 57 seconds. These results are also
listed in Table 2 and show that the polynomial preconditioner is effective.

Table 3 lists the performance of PCMRH(20). It is seen that the PCMRH(20)method is
convergent when the value of kk ranges from 1 to 20, but it can not conclude that the number
of restarts and the time needed by PCMRH(20) decrease(increase) as kk increases(decreases).
In fact, when kk = 3, the PCMRH(20) method performs the best.

4. Conclusion

To accelerate the convergence, we take advantage of the CMRH process to construct a
polynomial preconditioner for CMRH(m) algorithm. Numerical experiments show that
the preconditioned CMRH(m) algorithm is more efficient than the CMRH(m) algorithm

12 Mathematical Problems in Engineering

without the polynomial preconditioner. However, the degree of the polynomial used as pre-
conditioner should be small, otherwise it possibly reduces the preconditioner’s effectiveness.

Acknowledgment

This work is supported by the National Natural Science Foundation of China no. 10961010.

References

[1] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 3, pp.
856–869, 1986.

[2] H. Sadok, “CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg
reduction algorithm,” Numerical Algorithms, vol. 20, no. 4, pp. 303–321, 1999.

[3] M. B. van Gijzen, “A polynomial preconditioner for the GMRES algorithm,” Journal of Computational
and Applied Mathematics, vol. 59, no. 1, pp. 91–107, 1995.

[4] P. E. Saylor and D. C. Smolarski, “Implementation of an adaptive algorithm for Richardson’s method,”
Linear Algebra and its Applications, vol. 154–156, pp. 615–646, 1991.

[5] P. N. Brown, “A theoretical comparison of the Arnoldi and GMRES algorithms,” SIAM Journal on
Scientific and Statistical Computing, vol. 12, no. 1, pp. 58–78, 1991.

[6] R. T. Gregory and D. L. Karney, A Collection of Matrices for Testing Computational Algorithms, John Wiley
& Sons, New York, NY, USA, 1969.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

