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Several stabilized finite element methods for the Stokes eigenvalue problem based on the
lowest equal-order finite element pair are numerically investigated. They are penalty, regular,
multiscale enrichment, and local Gauss integration method. Comparisons between them are
carried out, which show that the local Gauss integration method has good stability, efficiency, and
accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue
problem.

1. Introduction

It is well known that numerical approximation of eigenvalue problems plays an important
role in the analysis of the stability of nonlinear PDEs. Meanwhile, they are wildly used
in many application areas: structural mechanics and fluid mechanics (see [1]). Thus,
development of an efficient and effective computational method for investigating these
problems has practical significance and has drawn the attention of many peoples. At the time
of writing, numerous works are devoted to these problems (see [2–9], and the references cited
therein). Yin et al. [10] derived a general procedure to produce an asymptotic expansion for
eigenvalues of the Stokes problem on rectangular mesh. Chen and Lin [11] proposed the
stream function-vorticity-pressure method for the eigenvalue problem. Rate of convergence
estimates were derived for the approximation of eigenvalues and eigenvectors by Mercier et
al. [12]. Xu and Zhou [13] proposed a two-grid discretization scheme for solving eigenvalue
problems.
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Mixed finite element methods are a natural choice for solving fluid mechanics
equations because these equations naturally appear in mixed form in terms of velocity and
pressure [14, 15]. In the analysis and practice of employing mixed finite element methods in
solving the Stokes equations, the inf-sup condition has played an important role because it
ensures a stability and accuracy of the underlying numerical schemes. A pair of finite element
spaces that are used to approximate the velocity and the pressure unknowns are said to
be stable if they satisfy the inf-sup condition. Intuitively speaking, the inf-sup condition is
something that enforces a certain correlation between two finite element spaces so that they
both have the required properties when employed for the Stokes equations. However, due to
computational convenience and efficiency in practice, some mixed finite element pairs which
do not satisfy the inf-sup condition are also popular. Thus, much attention has been paid to
the study of the stabilized method for the Stokes problem.

Recent studies have focused on stabilization techniques, which include penalty [16–
18], regular [19], multiscale enrichment [20], and local Gauss integration method [21, 22].
There exist a lot of theoretical results for the stabilized mixed finite element methods for the
Stokes equations, and the comparisons between them are also given (see [17, 19, 20, 22–24],
and the references cited therein). In this paper, we mainly focus on the Stokes eigenvalue
problem solved by these stabilized finite element methods based on the lowest equal-order
finite element space pair. Moreover, we present the comparisons between these methods for
the considered problem.

The remainder of this paper is organized as follows. In the Section 2, we introduce
the studied Stokes eigenvalue problem, the notations, and some well-known results used
throughout this paper. Then several stabilized mixed finite element methods are reviewed,
and their key stabilization techniques are recalled in Section 3. Comparisons between these
stabilized methods are performed numerically in Section 4. Finally, we end with some short
conclusions in Section 5.

2. Preliminaries

Let Ω be a bounded, convex, and open subset of R
2 with a Lipschitz continuous boundary

∂Ω. We consider the Stokes eigenvalue problem as follows. Find (u, p;λ), such that

−νΔu +∇p = λu in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where u = (u1(x), u2(x)) represents the velocity vector, p = p(x) the pressure, ν > 0 the
viscosity, and λ ∈ R the eigenvalue.

We will introduce the following Hilbert spaces:

X = H1
0(Ω)2, Y = L2(Ω)2, M = L2

0(Ω) =
{
q ∈ L2(Ω) :

∫
Ω
qdx = 0

}
. (2.2)

The spaces L2(Ω)m,m = 1, 2, are equipped with the L2-scalar product (·, ·) and L2-norm ‖ · ‖L2

or ‖ · ‖0. The spaceX is endowed with the usual scalar product (∇u,∇v) and the norm ‖∇u‖0.
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Standard definitions are used for the Sobolev spacesWm,p(Ω), with the norm ‖ · ‖m,p,m, p ≥ 0.
We will write Hm(Ω) for Wm,2(Ω) and ‖ · ‖m for ‖ · ‖m,2.

We define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X and X × M,
respectively, by

a(u, v) = ν(∇u,∇v), ∀u, v ∈ X,

d
(
v, q

)
=
(
q,divv

)
, ∀v ∈ X, ∀q ∈ M,

(2.3)

and a generalized bilinear form B((·, ·); (·, ·)) on (X ×M) × (X ×M) by

B
((
u, p

)
;
(
v, q

))
= a(u, v) − d

(
v, p

) − d
(
u, q

)
, ∀(u, p), (v, q) ∈ X ×M. (2.4)

With the above notations, the variational formulation of problem (2.1) reads as follows.
Find (u, p;λ) ∈ (X ×M) × R with ‖u‖0 = 1, such that for all (v, q) ∈ X ×M,

B
((
u, p

)
;
(
v, q

))
= λ(u, v). (2.5)

Moreover, the bilinear form d(·, ·) satisfies the inf-sup condition [25] for all q ∈ M:

sup
v∈X

∣∣d(v, q)∣∣
‖∇v‖0

≥ β1
∥∥q∥∥0, (2.6)

where β1 is a positive constant depending only onΩ. Therefore, the generalized bilinear form
B((·, ·); (·, ·)) satisfies the continuity property and inf-sup condition:

∣∣B((u, p); (v, q))∣∣ ≤ c
(
ν‖∇u‖0 +

∥∥p∥∥0

)(‖∇v‖0 +
∥∥q∥∥0

)
, ∀(u, p), (v, q) ∈ X ×M,

sup
(v,q)∈X×M

∣∣B((u, p); (v, q))∣∣
‖∇v‖0 +

∥∥q∥∥0

≥ β2
(
ν‖∇u‖0 +

∥∥p∥∥0

)
, ∀(u, p) ∈ X ×M,

(2.7)

where c and β2 are the positive constants depending only on Ω.

3. Stabilized Mixed Finite Element Methods

For h > 0, we introduce the finite-dimensional subspaces Xh × Mh ⊂ X × M, which are
characterized byKh, a partitioning of Ω into trianglesK with the mesh size h, assumed to be
uniformly regular in the usual sense.

Then we define

Xh =
{
u ∈ C0

(
Ω
)2 ∩X : u|K ∈ P1(K)2, ∀K ∈ Kh

}
,

Mh =
{
q ∈ C0

(
Ω
)
∩M : q|K ∈ P1(K), ∀K ∈ Kh

}
,

(3.1)

where P1(K) represents the space of linear functions on K.
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Remark 3.1 (Nonconforming finite element space). Denote the boundary edge by Γj = ∂Ω ∩
∂Kj and the interior boundary by Γjk = Γkj = ∂Kj ∩∂Kk. Set the centers of Γj and Γjk by ζj and
ζjk, respectively. The nonconforming finite element space NCh for the velocity will be taken
to be

NCh =
{
v : vj = v|Kj

∈ P1
(
Kj

)2
, vj

(
ζjk

)
= vk

(
ζkj

)
, v

(
ζj
)
= 0, Kj ∈ Kh, ∀j, k

}
, (3.2)

where P1(Kj) is the set of all polynomials on Kj of degree less than 1. Note that the
nonconforming finite element space NCh is not a subspace of X. In this nonconforming case,
the pair of finite element spaces is NCh ×Mh [26]; that is, the conforming space is still used
for pressure.

Moreover, the discrete mixed finite element formulation for the Stokes eigenvalue
problem reads: find (uh, ph;λh) ∈ (Xh × Mh) × R with ‖uh‖0 = 1, such that for all (v, q) ∈
Xh ×Mh,

B
((
uh, ph

)
;
(
v, q

))
= λh(uh, v). (3.3)

Next, we denote byU the array of the velocity and by P the array of the pressure. It is
easy to see that (3.3) can be written in matrix form:

[
A B

BT 0

][
U

P

]
= λh

[
E 0

0 0

][
U

P

]
, (3.4)

where the matrices A, B, and E are deduced in the usual manner, using the bases for Xh and
Mh, from the bilinear forms a(·, ·), d(·, ·), and (·, ·), respectively, and BT is the transpose of
matrix B.

Remark 3.2. In the nonconforming case, we define the bilinear forms

a′(u, v) = ν
∑
K∈Kh

(∇u,∇v)K, d′(v, p) =
∑
K∈Kh

(
divv, q

)
K, (3.5)

and a generalized bilinear form B′((·, ·); (·, ·)) on (X ×M) × (X ×M) by

B′((u, p); (v, q)) = a′(u, v) − d′(v, p) − d′(u, q), ∀(u, p), (v, q) ∈ X ×M. (3.6)

Accordingly, the discrete nonconforming formulation for the Stokes eigenvalue problem is:
find (uh, ph;λh) ∈ (NCh ×Mh) × R with ‖uh‖0 = 1, such that for all (v, q) ∈ NCh ×Mh,

B′((uh, ph
)
;
(
v, q

))
= λh(uh, v). (3.7)
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Note that the lowest equal-order pair does not satisfy the discrete inf-sup condition:

sup
vh∈Xh

d
(
vh, qh

)
‖∇vh‖0

≥ β3
∥∥qh∥∥0, or sup

vh∈NCh

d′(vh, qh
)

‖∇vh‖0,h
≥ β3

∥∥qh∥∥0, ∀qh ∈ Mh, (3.8)

where the constant β3 > 0 is independent of h, and ‖∇vh‖0,h is the discrete energy seminorm
in the nonconforming case. In order to fulfill this condition, several ways have been used to
stabilize the lowest equal-order finite element space pair.

Method 1 (Penalty method). Find (uh, ph;λh) ∈ (Xh ×Mh)×R with ‖uh‖0 = 1, such that for all
(v, q) ∈ Xh ×Mh,

B
((
uh, ph

)
;
(
v, q

))
+
ε

ν

(
ph, q

)
= λh(uh, v), (3.9)

where ε > 0 is a penalty parameter. The performance of this method obviously depends on
the choice of the penalty parameter ε. Then the matrix form of (3.9) can be expressed as

⎡
⎣A B

BT ε

ν
D

⎤
⎦
[
U

P

]
= λh

[
E 0

0 0

][
U

P

]
, (3.10)

where the matrix D is deduced in the usual manner, using the base for Mh, from (ph, q).
Because the coefficient matrix of (3.10) is usually large and sparse, it is not easy to compute
the numerical solution using a direct method. In general, one can use the Uzawa algorithm.
By some simple calculation, we get

EP
i+1 =

(
I − τ

(
BT (A − λhE)

−1B − ε

ν
D

))
EP
i , (3.11)

where EP
i = P − Pi and τ is a positive constant.

Method 2 (Regular method). Find (uh, ph;λh) ∈ (Xh × Mh) × R with ‖uh‖0 = 1, such that for
all (v, q) ∈ Xh ×Mh,

B
((
uh, ph

)
;
(
v, q

)) − δ
∑
K∈Kh

(∇ph − λhuh,∇q
)
K = λh(uh, v), (3.12)

where δ = h2/(αν) is a stabilization parameter and α > 0. The regular method uses a simple
way to stabilize the mixed finite element approximation without a loss of accuracy. In fact, it
can be treated the regular method as a special Douglas-Wang’s scheme [19]. Then the matrix
form of this stabilized version can be expressed as

[
A B

BT −δD1

][
U

P

]
= λh

[
E 0

F 0

][
U

P

]
, (3.13)
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where additional blocks D1 and F correspond to the following respective terms:

∑
K∈Kh

(∇ph,∇q
)
K, −δ

∑
K∈Kh

(
uh,∇q

)
K. (3.14)

As (3.11),we also have

EP
i+1 =

(
I − τ

((
BT − λhF

)
(A − λhE)

−1B + δD1

))
EP
i . (3.15)

Method 3 (Multiscale enrichment method). Find (uh, ph;λh) ∈ (Xh ×Mh) × R with ‖uh‖0 = 1,
such that for all (v, q) ∈ Xh ×Mh,

B
((
uh, ph

)
;
(
v, q

)) − δ1
∑
K∈Kh

(∇ph − λhuh,∇q
)
K + δ2

∑
e=∂Kj∩∂Kk

([ν∂nuh], [ν∂nv])e = λh(uh, v),

(3.16)

where δ1 = h2/(α1ν), δ2 = h/(α2ν) are the stabilization parameters, α1, α2 > 0, n is the normal
outward vector, ∂n is normal derivative operator, and [v] denotes the jump of v across e. This
stabilized method includes the usual Galerkin least squares stabilized terms on each finite
element and positive jump terms at interelement boundaries. Moreover, a direct algebraic
manipulation leads to the matrix form

[
A B

BT + δ2D2 −δ1D1

][
U

P

]
= λh

[
E 0

F 0

][
U

P

]
, (3.17)

where the matrix D2 is deduced in the usual manner, using the bases for Xh, from the term∑
e=∂Kj∩∂Kk

([ν∂nuh], [ν∂nv])e. As (3.11), we have

EP
i+1 =

(
I − τ

((
BT + δ2D2 − λhF

)
(A − λhE)

−1B + δD1

))
EP
i . (3.18)

Method 4 (Local Gauss integration method). Find (uh, ph;λh) ∈ (Xh ×Mh)×R with ‖uh‖0 = 1,
such that for all (v, q) ∈ Xh ×Mh,

B
((
uh, ph

)
;
(
v, q

)) −G
(
ph, q

)
= λh(uh, v), (3.19)

where G(ph, q) is defined by

G
(
ph, q

)
=

∑
K∈Kh

{∫
K,2

phq dx −
∫
K,1

phq dx

}
, ∀ph, q ∈ Mh, (3.20)

where
∫
K,i g(x)dx indicates a local Gauss integral over K that is exact for polynomials of

degree i, i = 1, 2. In particular, the trial function ph ∈ Mh must be projected to piecewise
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constant space when i = 1. This stabilization technique is free of stabilization parameters
and does not require any calculation of high-order derivatives, a specification of any mesh-
dependent parameter or edge-based data structures. Then the corresponding matrix form of
this stabilized method is

[
A B

BT −G

][
U

P

]
= λh

[
E 0

0 0

][
U

P

]
, (3.21)

where the matrix G is deduced in the usual manner, using the bases for Mh, from the term
G(ph, q). As (3.11), we get

EP
i+1 =

(
I − τ

(
BT (A − λhE)

−1B +G
))

EP
i . (3.22)

Remark 3.3. It is well known that if τ is well chosen, then Ui and Pi converge, respectively,
to U and P with a rate of convergence based on (3.11), (3.15), (3.18), and (3.22). From these
equations, we can find that Method 1 converges faster than Method 4. Methods 2 and 3,
whose coefficient matrices are not symmetric, may cost more time to converge.

Remark 3.4. By using the regularity assumptions and well-established techniques for eigen-
value approximation [1, 8, 10, 12], the theoretical convergence rates should be of orderO(h2)
andO(h) for the velocity in the L2- andH1-norms, respectively, of orderO(h) for the pressure
in the L2-norm, and of order O(h2) for the eigenvalue by using all these stabilized methods.

4. Numerical Experiments

In this section we numerically compare the performance of the various stabilized mixed finite
element methods discussed in the previous section. In all experiments, the algorithms are
implemented using public domain finite element software [27] with some of our additional
codes.

Let the computation be carried out in the regionΩ = {(x, y) | 0 < x, y < 1}. We consider
the Stokes eigenvalue problem in the case of the viscidity ν = 1, and it will be numerically
solved by the stabilized mixed methods on uniform mesh (see Figure 1). Here, we just
consider the first eigenvalue of the Stokes eigenvalue problem for the sake of simplicity.
The exact solution of this problem is unknown. Thus, we take the numerical solution by the
standard Galerkin method (P2-P1 element) computed on a very fine mesh (6742 grid points)
as the “exact” solution for the purpose of comparison. Here, we take λ = 52.3447 as the first
exact eigenvalue.

As we know, the stabilized term of the regular and multiscale enrichment methods
must be controlled by carefully designed stabilization parameters (i.e., δ, δ1, δ2), whose
optimal values are often unknown. Hence, in Figures 2 and 3 we show the effect on the error
of varying δ, δ1, and δ2 on a fixed mesh h = 1/64 for the regular and multiscale enrichment
approximations, respectively. An interesting thing can be observed that these two methods
have an analogous convergence pattern with respect to the parameter δ and δ1. Because they
involve a similar stabilization term with respect to these two parameters, we note that the
errors can become large with some values of the stabilization parameters.
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Figure 1: Uniform finite element partitioning of the unit square.
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Figure 2: Effect of varying δ for the regular method.

Results gotten from the penalty, regular, multiscale enrichment, local Gauss inte-
gration, and nonconforming local Gauss integration methods are presented in Tables 1–5,
respectively. Here, we choose ε = 1.0e − 5, α = 8, α1 = 8, and α2 = 12. Because they can
deal with the considered problem well. From Tables 1, 2, 3, 4, and 5, we can see that these
methods workwell and keep the convergence rates just like the theoretical analysis except the
multiscale enrichment method. Meanwhile, it can be seen that the penalty method requires
the least CPU-time, which validates the analysis in Remark 3.3. As expected, we have an
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Figure 3: Effect of varying δ1 (a) and δ2 (b) for the multiscale enrichment method.

Table 1: Results get from the penalty method with ε = 1.0e − 5.

1/h CPU-time λh |λh − λ|/λ Rate
8 0.016 60.2628 0.151269 —
16 0.094 54.1688 0.0348472 2.1180
24 0.234 53.1426 0.015243 2.0393
32 0.437 52.7909 0.00852367 2.0205
40 0.751 52.6295 0.00544061 2.0120
48 1.156 52.5433 0.00377371 2.0065
56 1.734 52.4898 0.00277154 2.0023
64 2.437 52.4558 0.00212237 1.9986

Table 2: Results get from the regular method with α = 8.

1/h CPU-time λh |λh − λ|/λ Rate
8 0.031 56.7283 0.0837442 —
16 0.109 53.4803 0.0216951 1.9486
24 0.266 52.8531 0.00971199 1.9822
32 0.515 52.6314 0.00547673 1.9913
40 0.861 52.5284 0.00350903 1.9950
48 1.313 52.4723 0.00243822 1.9969
56 1.953 52.4385 0.00179192 1.9979
64 2.719 52.4165 0.00137219 1.9986

interesting observation that the error of the nonconforming local Gauss integration method
is better than the conforming version, which is not surprising since the degrees of freedom
of the nonconforming method are nearly three times than that of conforming one on uniform
mesh (see Figure 1). Hence, it is natural that the nonconforming local Gauss integration
method is more accurate and costs more CPU-time.

Besides, to show the stability and efficiency of these methods for the considered
problem, we present the velocity streamlines and the pressure contours with h = 1/64
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Table 3: Results get from the multiscale enrichment method with α1 = 8 and α2 = 12.

1/h CPU-time λh |λh − λ|/λ Rate
8 0.063 67.8237 0.295713 —
16 0.281 57.1062 0.0909634 1.7008
24 0.656 54.7378 0.0457175 1.6968
32 1.265 53.8304 0.0283839 1.6569
40 2.156 53.3813 0.0198027 1.6133
48 3.359 53.1229 0.0148665 1.5725
56 5.125 52.9588 0.0117327 1.5357
64 7.187 52.8472 0.00959935 1.5029

Table 4: Results get from the local Gauss integration method.

1/h CPU-time λh |λh − λ|/λ Rate
8 0.031 57.3951 0.096482 —
16 0.109 53.6201 0.024366 1.9854
24 0.251 52.9119 0.0108368 1.9983
32 0.469 52.6638 0.00609553 2.0001
40 0.797 52.5489 0.00390065 2.0006
48 1.234 52.4865 0.00270843 2.0007
56 1.844 52.4488 0.00198963 2.0008
64 2.547 52.4244 0.00152315 2.0008

Table 5: Results get from the local Gauss integration method with the nonconforming element.

1/h CPU-time λh |λh − λ|/λ Rate
8 0.031 50.2121 0.0407434 —
16 0.125 51.7355 0.0116391 1.8076
24 0.344 52.0619 0.00540181 1.8932
32 0.672 52.1825 0.00309932 1.9311
40 1.156 52.2397 0.00200547 1.9508
48 1.859 52.2713 0.00140228 1.9624
56 2.797 52.2905 0.00103505 1.9698
64 4.001 52.3031 0.000795121 1.9749

in Figures 5, 6, 7, 8, and 9. Meanwhile, we present the results by the standard Galerkin
method (P2-P1 element) computed on a very fine mesh (6742 grid points) for the purpose
of comparison in Figure 4. From Figures 5(a)–9(a), five resolved vortices are captured, which
is consistent with that in Figure 4(a). For the pressure, the penalty method is divergent from
Figure 5(b), although it costs the least time. From Figures 6(b)-9(b), the nonconforming local
Gauss integration method shows the best numerical stability.

5. Conclusions

In this paper we have presented several stabilized mixed finite element methods in solving
the Stokes eigenvalue problem based on the lowest equal-order finite element space pair. By
being compared numerically, we get some conclusions as follows.
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Figure 4: Velocity streamlines (a) and pressure level lines (b) for the standard Galerkin method (P2-P1
element).
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Figure 5: Velocity streamlines (a) and pressure level lines (b) for the penalty method with ε = 1.0e − 5.

(i) The stability and efficiency of the penaltymethod depend on the penalty parameter.
The smaller this parameter, the more stable the method. However, if this parameter
is too small, the condition number of the system matrix arising from this method
will become too large to solve.

(ii) The performance of the regular andmultiscale enrichmentmethod heavily depends
on the choice of the stabilization parameters, which is a difficult task in reality.
Meanwhile, a poor choice of these stabilization parameters can also lead to serious
deterioration in the convergence rates.

(iii) The local integration method is free of stabilization parameters and shows
numerically the best performance among the methods considered for the given
problem.
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Figure 6: Velocity streamlines (a) and pressure level lines (b) for the regular method with α = 8.
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Figure 7: Velocity streamlines (a) and pressure level lines (b) for the multiscale enrichment method with
α1 = 8 and α2 = 12.

(iv) From Tables 4 and 5, we have an interesting observation that the value of λh by
conforming method becomes small to converge to the exact solution and the one
by nonconforming method becomes large to converge to the exact solution. We
hold that it can obtain more accurate numerical solution by Lagrange interpolation
between conforming and nonconforming results based on the same degrees
of freedom of these two methods. It may get superconvergence result on this
triangular mesh.

Acknowledgments

The authors would like to thank the editor and reviewers for their valuable comments
and suggestions which helped us improve the results of this paper. This work is in parts
supported by the NSF of China (no. 10901131, no. 10971166), the National High Technology



Mathematical Problems in Engineering 13

X

Y

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

Y

0

0.2

0.4

0.6

0.8

1

X

0 0.2 0.4 0.6 0.8 1

5
4
3
2
1

0

−1
−2
−3
−4
−5

0.113643

−0.1104

(b)

Figure 8: Velocity streamlines (a) and pressure level lines (b) for the local Gauss integration method.
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