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A simple lexisearch algorithm that uses path representation method for the asymmetric traveling
salesman problem (ATSP) is proposed, along with an illustrative example, to obtain exact optimal
solution to the problem. Then a data-guided lexisearch algorithm is presented. First, the cost
matrix of the problem is transposed depending on the variance of rows and columns, and then
the simple lexisearch algorithm is applied. It is shown that this minor preprocessing of the data
before the simple lexisearch algorithm is applied improves the computational time substantially.
The efficiency of our algorithms to the problem against two existing algorithms has been examined
for some TSPLIB and random instances of various sizes. The results show remarkably better
performance of our algorithms, especially our data-guided algorithm.

1. Introduction

The traveling salesman problem (TSP) is one of the benchmark and old problems in computer
science and operations research. It can be stated as follows:

A network with n nodes (cities), “node 1” being the starting node, and a cost (or
distance, or time etc.,) matrix C = [cij] of order n associated with an ordered pair of nodes
(i, j) is given. The problem is to find a least cost Hamiltonian cycle. That is, the problem is
to obtain a tour (1 = α0, α1, α2, . . . , αn−1, αn = 1) ≈ {1 → α1 → α2 → · · · → αn−1 → 1}
representing a cyclic permutation for which the total cost

C(1 = α0, α1, α2, . . . , αn−1, αn = 1) ≈
n−1∑

i=0

c(αi, αi+1) (1.1)

is minimum.
The TSP finds application in a variety of situations such as automatic drilling of

printed circuit boards and threading of scan cells in a testable VLSI circuit [1], X-ray
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crystallography [2], and so forth. On the basis of structure of the cost matrix, the TSPs are
classified into two groups—symmetric (STSP) and asymmetric (ATSP). The TSP is symmetric
if cij = cji, for all i, j and asymmetric otherwise. The TSP is a NP-complete combinatorial
optimization problem [3]; and roughly speaking it means, solving instances with a large
number of nodes is very difficult, if not impossible. Since ATSP instances are more complex,
in many cases, ATSP instances are transformed into STSP instances and subsequently solved
using STSP algorithms [4]. However, in the present study we solve the ATSP instances
without transforming into STSP instances.

Since large size instances cannot easily be solved optimally by an exact algorithm,
a natural question may arise that what maximum size instances can be solved by an
exact algorithm. Branch and cut [5], branch and bound [6], lexisearch [7, 8] are well-
known exact algorithms. In our investigation, we apply lexisearch algorithm to obtain exact
optimal solution to the problem. The lexisearch algorithm has been successfully applied to
many combinatorial optimization problems. Pandit and Srinivas [9] showed that lexisearch
algorithm is better than the branch and bound algorithm. In lexisearch algorithm, lower
bound plays a vital role in reducing search space, hence, reduces computational time. Also,
preprocessing of data, before the lexisearch algorithm is applied, can reduce computational
effort substantially [9, 10].

In this paper, we first present a simple lexisearch algorithm using path representation
for a tour for obtaining exact optimal solution to the ATSP. Then a data-guided lexisearch
algorithm is proposed by incorporating a data processing method to improve further the
efficiency of the algorithm. Finally, a comparative study is carried out of our algorithms
against lexisearch algorithm of Pandit and Srinivas [9], and results using integer program-
ming formulation of Sherali et al. [11] for some TSPLIB and random instances of various sizes.

This paper is organized as follows: Section 2 presents literature review on the problem.
A simple lexisearch algorithm is developed in Section 3. Section 4 presents a data-guided
lexisearch algorithm for the problem. Computational experience for the algorithms has been
reported in Section 5. Finally, Section 6 presents comments and concluding remarks.

2. Literature Review

The methods that provide the exact optimal solution to a problem are called exact methods.
The brute-force method of exhaustive search is impractical even for moderate sized TSP
instances. There are few exact methods which find exact optimal solution to the problem
much more efficiently than this method.

Dantzig et al. [12] solved instances of the TSP by formulating as integer programming
approach and found an optimal solution to a 42-node problem using linear programming
(LP). Sarin et al. [13] proposed a tighter formulation for the ATSP that replaces subtour
elimination constraints of Dantzig et al. [12] and solved five benchmark instances using
branch and bound approach, however, as reported [13], it failed to provide competitive
performance for the ATSP instances due to the size and structure of the LP relaxations. A
class of formulations for the ATSP has been proposed by Sherali et al. [11], which is proved
to be tighter than the formulation based on subtour elimination constraints of Sarin et al. [13].
Also, Öncan et al. [14] made a survey of 24 different ATSP formulations and discussed the
strength of their LP relaxations and reported that the formulation by Sherali et al. [11] gave
the tightest lower bounds.

Balas and Toth [15] solved the ATSP instances using a branch and bound approach
with a bounding procedure based on the assignment relaxation of the problem. Currently,
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many good approximation algorithms based on branch and bound approach have been
developed for solving ATSP instances [16–18].

Pandit [19] developed a lexisearch algorithm for obtaining exact optimal solution to
the ATSP by using adjacency representation for a tour. As reported, the algorithm shows
large variations in the context of computational times for different instances of same size.
Murthy [20] proposed another scheme for the “search” sequence of Pandit’s [19] algorithm,
which was expected to increase the computational efficiency of the algorithm to considerable
extent. But as reported by Srinivas [21], the proposed algorithm is likely to be efficient in case
of highly skewed cost distributions and does not seem to be any better than the conventional
branch and bound algorithm.

Pandit and Srinivas [9] again modified lexisearch algorithm of Pandit [19], which is
found to be better than previous lexisearch algorithms and branch and bound algorithm. But,
as reported by Ahmed [22], the algorithm shows large variations in computational times. It is
interesting to see that randomly generated instances of same size seem to fall into two distinct
groups in the context of computational time. One group requires significantly less time than
the average while another takes significantly more time than the average, with a big “gap”
between the two groups.

There are mainly two ways of representing salesman’s path in the context of
lexisearch approach, namely, path representation and adjacency representation. In adjacency
representation, permutation is generated in a systematic lexical order, but all permutations
do not lead to feasible solution. Hence, a permutation is to be tested for acceptability. In path
representation, explicit testing for cycle formation is avoided, and hence there is a possibility
to take less computational time than the other method. In fact, Ahmed and Pandit [23] used
path representation for solving the TSP with precedence constraints and found very good
results. In this paper also we are using path representation method for a tour.

3. A simple Lexisearch Algorithm for the ATSP

In lexisearch approach, the set of all possible solutions to a problem is arranged in hierarchy-
like words in a dictionary, such that each incomplete word represents the block of words
with this incomplete word as the leader of the block. Bounds are computed for values of
the objective function over these blocks of words. These are compared with “best solution
value” found so far. If no word in the block can be better than the “best solution value” found
so far, jump over the block to the next one. However, if the bound indicates a possibility of
better solutions in the block, enter into the subblock by concatenating the present leader with
appropriate letter and set a bound for the new (sub) block so obtained [7, 8, 10].

3.1. Bias Removal

The basic difference between Assignment Problem (AP) solution space and TSP solution
space is that former can be viewed as the set of all permutations of n elements while the latter
is restricted to “indecomposable” permutations only. So, solution space of TSP is a subset of
solution space of AP and hence, steps like bias removal are useful in case of TSP [24].

For calculating bias, we first calculate row minima of the cost matrix C as

ui = min
1≤j≤n

{
cij

}
, for i = 1, 2, 3, . . . , n. (3.1)
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Table 1: The cost matrix with row minima and column minima.

Node 1 2 3 4 5 6 7 Row minima
1 999 75 99 9 35 63 8 8
2 51 999 86 46 88 29 20 20
3 100 5 999 16 28 35 28 5
4 20 45 11 999 59 53 49 11
5 86 63 33 65 999 76 72 33
6 36 53 89 31 21 999 52 21
7 58 31 43 67 52 60 999 31
Column minima 9 0 0 1 0 9 0

Then we subtract each row minima ui from its corresponding row elements in the
matrix C to obtain a new matrix as

∀j = 1, 2, 3, . . . , n, cij = cij − ui, for each i = 1, 2, 3, . . . , n. (3.2)

Then we calculate column minima of the resultant cost matrix C as

vj = min
1≤i≤n

{
cij

}
, for j = 1, 2, 3, . . . , n. (3.3)

Next, we subtract each column minima vj from its corresponding column elements in

the resultant matrix to obtain a modified matrix C as

∀i = 1, 2, 3, . . . , n, Cij = cij − vj , for each j = 1, 2, 3, . . . , n, (3.4)

Bias of the matrix =
n∑

i=1

ui +
n∑

j=1

vj . (3.5)

The bias calculation is shown in Table 1. Bias of the given matrix = row minima +

column minima = 129 + 19 = 148. The modified (resultant) cost matrix C will become a
nonnegative matrix with at least one zero in each row and in each column (see Table 2). In
an AP, if we add or subtract a constant to every element of a row (or column) in the cost
matrix, then an assignment which minimizes the total cost on one matrix also minimizes the
total cost on the other matrix. Since, TSP is a particular case of AP, so, it is enough to solve
the problem with respect to the modified cost matrix.

3.2. Alphabet Table

Alphabet matrix,A = [a(i, j)], is a squarematrix of order n formed by positions of elements of
the modified cost matrix of order n, C = [cij]. The ith row of matrix A consists of the positions
of the elements in the ith row of the matrix C when they are arranged in the nondecreasing
order of their values. If a(i, p) stands for the pth element in the ith row of A, then a(i,1)
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Table 2: The modified cost matrix (∗diagonal elements need not have to be computed, which could as well
be left as 999).

Node 1 2 3 4 5 6 7

1 982∗ 67 91 0 27 46 0

2 22 979∗ 66 25 68 0 0

3 86 0 994∗ 10 23 21 23

4 0 34 0 987∗ 48 33 38

5 44 30 0 31 966∗ 34 39

6 6 32 68 9 0 969∗ 31

7 18 0 12 35 21 29 968∗

Table 3: The alphabet table (N is a node and V is its value).

Node N (V) N (V) N (V) N (V) N (V) N (V) N (V)

1 4(0) 7 (0) 5 (27) 6 (46) 2 (67) 3 (91) 1 (982)

2 6 (0) 7 (0) 1 (22) 4 (25) 3 (66) 5 (68) 2 (979)

3 2 (0) 4 (10) 6 (21) 5 (23) 7 (23) 1 (86) 3 (994)

4 1 (0) 3 (0) 6 (33) 2 (34) 7 (38) 5 (48) 4 (987)

5 3 (0) 2 (30) 4 (31) 6 (34) 7 (39) 1 (44) 5 (966)

6 5 (0) 1 (6) 4 (9) 7 (31) 2 (32) 3 (68) 6 (969)

7 2 (0) 3 (12) 1 (18) 5 (21) 6 (29) 4 (35) 7 (968)

corresponds to the position of smallest element in ith row of the matrix C [7, 10]. Alphabet
table “[a(i, j)− ci,a(i,j)]” is the combination of elements of matrix A and their values as shown
in Table 3.

3.3. Lower Bound

The objective of lower bound is to skip as many subproblems in the search procedure as
possible. A subproblem is skipped if its lower bound exceeds the “best solution” found
so far (i.e., upper bound) in the process. The higher the lower bound the larger the set of
subproblems that are skipped. Most of methods in the literature consider AP solution as the
overall lower bound for the ATSP instance and develop algorithms based on AP relaxation
and subtour elimination scheme. In this study we are not setting overall lower bound for an
instance, rather setting lower bound for each leader on the value of the objective function for
the instance. The following method is used for setting lower bound for each leader.

Suppose the partial tour is (1 = α0, α1, α2) and “node α3” is selected for concatenation.
Before concatenation, we check bound for the leader (α0, α1, α2, α3). For that, we start our
computation from 2nd row of the “alphabet table” and traverse up to the nth row, and sum up
the values of the first “legitimate” node (the node which is not present in the tour), including
“node 1”, in each row, excluding α1-th and α2-th rows. This sum is the lower bound for the
leader (α0, α1, α2, α3).
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3.4. Simple Lexisearch Algorithm (LSA)

Let C = [cij] be the given n × n cost matrix. Then for all nodes in the network, generate a
zero-one vector V=[vi] of order n as follows:

vi =

⎧
⎨

⎩
1 if “node i′′ is in the tour (partial word),

0, otherwise.
(3.6)

Though it is not a part of the algorithm, but for checking the feasibility of the tour, we
follow this convention. A preliminary version of the algorithm is presented in Ahmed [22].
The algorithm is as follows.

Step 1. Remove “bias” of the cost matrix and construct the “alphabet table” based on the
modified cost matrix. Set “best solution value” as large as possible. Since “node 1” is the
starting node, we start our computation from 1st row of the “alphabet table”. Initialize
“partial tour value” = 0, r = 1 and go to Step 2.

Step 2. Go to rth element of the row (say, node p). If (partial tour value + present node value)
is greater than or equal to the “best solution value”, go to Step 10, else, go to Step 3.

Step 3. If “node p” forms a subtour, drop it, increment r by 1 and go to Step 8; else, go to
Step 4.

Step 4. If all nodes of the network are visited, add an edge connecting the “node p” to “node
1”, compute the complete tour value and go to Step 5; else go to Step 6.

Step 5. If the complete tour value is greater than or equal to the “best solution value”, go to
Step 10; else, replace the tour value as the “best solution value” and go to Step 10.

Step 6. Calculate the lower bound of the present leader on the objective function value and
go to Step 7.

Step 7. If (lower bound + partial tour value + present node value) is greater than or equal to
the “best solution value”, drop the “node p”, increment r by 1, and go to Step 8; else, accept
the “node p”, compute the partial tour value, and go to Step 9.

Step 8. If r is less than n (total number of nodes), go to Step 2; else, go to Step 10.

Step 9. Go to subblock, that is, go to pth row, put r = 1 and go to Step 2.

Step 10. Jump this block, that is, drop the present node, go back to the previous node in the
tour (say, node q), that is, go to the qth row of the “alphabet table” and increment r by 1,
where r was the index of the last “checked” node in that row. If node q = 1 and r = n, go to
Step 11, else, go to Step 8.

Step 11. The “best solution value” is the optimal solution value with respect to the modified
cost matrix. Add the “bias” to the optimal solution value to obtain the optimal solution value
with respect to the original cost matrix, and go to Step 12.
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Step 12. Current word gives the optimal tour sequence with respect to the original cost
matrix, and then stop.

3.5. Illustration of the Algorithm

Working of the above algorithm is explained through a seven-node example with cost matrix
given in Table 1. The logic flow of the algorithm at various stages is indicated in Table 4,
which sequentially records the intermediate results, with decision taken (i.e., remarks) at
these steps. The symbols used therein are listed below:

GS: go to sub-block,

JB: jump the current block,

JO: jump out to the next, higher order block,

BS: best solution value.

As illustration of the example, we initialize BS = 999 and “partial tour value (Sol)” =
0. We start from 1st row of the “alphabet table”. Here, a(1, 1) = 4 with “present node value
(Val)” = c14 = 0 and (Sol + Val) < BS. Now we go for bound calculation for the present leader
(1, 4). The bound will guide us whether the node 4 will be accepted or not

Bound = c2,a(2,1) + c3,a(3,1) + c4,a(4,1) + c5,a(5,1) + c6,a(6,1) + c7,a(7,1)

= c2,6 + c3,2 + c4,1 + c5,3 + c6,5 + c7,2

= 0 + 0 + 0 + 0 + 0 + 0 = 0.

(3.7)

Since (Bound + Sol + Val) = 0 + 0 + 0 = 0 < BS, we accept the node 4 that leads to the
partial tour {1 → 4} with Sol = Sol + Val = 0 + 0 = 0.

Next, we go to 4th row of the “alphabet table”. Since a(4, 1) = 1 forms to a sub-tour,
we consider the next element of the row, a(4, 2) = 3 with Val = c43 = 0, and (Sol + Val) < BS.
Now, we go for bound calculation for the present leader (1, 4, 3)

Bound = c2,a(2,1) + c3,a(3,1) + c5,a(5,2) + c6,a(6,1) + c7,a(7,1)

= c2,6 + c3,2 + c5,2 + c6,5 + c7,2

= 0 + 0 + 30 + 0 + 0 = 30.

(3.8)

Since, (Bound + Sol + Val) = 30 + 0 + 0 = 30 < BS, we accept the node 3 that leads to the
partial tour {1 → 4 → 3}with Sol = Sol +Val = 0 + 0 = 0. Proceeding in this waywe obtain the
1st complete tour as {1 → 4 → 3 → 2 → 6 → 5 → 7 → 1}with Sol = 57 < BS, sowe replace
BS = 57. Now, we jump out to the next higher-order block, that is, {1 → 4 → 3 → 2 → 6}
with Sol = 0 and try to compute another complete tour with lesser tour value. Proceeding in
this way, we obtain the optimal tour as {1 → 7 → 2 → 6 → 5 → 3 → 4 → 1} with value
10. Hence, the optimal tour value with respect to the given original cost matrix = bias + tour
value = 148 + 10 = 158.

Our preliminary study on randomly generated instances shows that the above
algorithm also produces two groups of instances of same size in terms of computational
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Table 4: The search table.

1→ α1 α1 → α2 α2 → α3 α3 → α4 α4 → α5 α5 → α6 α6 → 1

1→ 4(0)
(0) + 0, GS

4→ 3(0)
(0) + 30, GS

3→ 2(0)
(0) + 52, GS

2→ 6(0)
(0) + 57, GS

6→ 5(0)
(0) + 57, GS

5→ 7(39)
(0) + 18, GS

7→ 1(18)
BS = 57, JO

6→ 7(31)
(0) + 62, JO

2→ 7(0)
(0) + 52, GS

7→ 5(21)
(0) + 40, JB

7→ 6(29)
(0) + 44, JO

2→ 5(68), JO

3→ 6(21)
(0) + 30, GS

6→ 5(0)
(21) + 39, JB

6→ 7(31)
(21) + 61, JO

3→ 5(23)
(0) + 40, JB

3→ 7(23)
(0) + 34, JO

4→ 6(33)
(0) + 0, GS

6→ 5(0)
(33) + 0, GS

5→ 3(0)
(33) + 0, GS

3→ 2(0)
(33) + 18, GS

2→ 7(0)
(33) + 18, GS

7→ 1(18)
BS= 51, JO

3→ 7(23), JO

5→ 2(30), J O

6→ 7(31), JO

4→ 2(34)
(0)+33, JB

4→ 7(38)
(0) + 0, GS

7→ 2(0)
(38) + 21, JB

7→ 3(12)
(38) + 30, JB

7→ 5(21), JO

4→ 5(48)
(0) + 6, JO

1→ 7(0)
(0) + 0,GS

7→ 2(0)
(0) + 10, GS

2→ 6(0)
(0) + 10, GS

6→ 5(0)
(0) + 10, GS

5→ 3(0)
(0) + 10, GS

3→ 4(10) (0)
+ 0, GS

4→ 1(0) BS =
10, JO

5→ 4(31), JO

6→ 4(9)
(0) + 23, JB

6→ 3(38), JO

2→ 4(25), JO

7→ 3(12), JO

1→ 5(27), STOP
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times with a gap between the groups. In the above algorithm, the nature of the data does
not play any role. However, introducing a preprocessing of the cost matrix may reduce
the computational time as well as gap between two groups, and hence, we introduce
preprocessing technique in next section.

4. A Data-Guided Lexisearch Algorithm for the ATSP

Introducing a preprocessing technique as done in lexisearch algorithms of Pandit and
Srinivas [9] and Ahmed [10] are not worthwhile for our algorithm. Of course, exchanging
row with corresponding column in the cost matrix depending on their variances would have
been worthwhile, but keeping record of track of the nodes would be more expensive. It is
then observed that for some instances, solving transposed cost matrix takes lesser time with
a same tour value than the original matrix. Now, the question is that under what condition
the transposed matrix is to be considered instead of the given matrix. After studying many
statistics of the cost matrix we come to the conclusion that when the variances (standard
deviations) of rows are more than those of columns, our lexisearch algorithm takes less
computational time. Hence, we introduce two preprocessing of the modified cost matrix
before applying our simple lexisearch algorithm, as follows.

Let αi and βi be the standard deviations of ith row and ith column of the modified cost
matrix C, for all i=1, 2,. . ., n.

Process 1: we count how many times (αi < βi), ∀1 ≤ i ≤ n. If this count is greater
than n, then the transposed modified cost matrix is considered.

Process 2: let α =
∑n

i=1 αi and β =
∑n

i=1 βi. Next, we check whether (α < β). If yes,
then the transposed modified cost matrix is considered.

The above preprocessing is incorporated in data-guided lexisearch algorithm. The
data-guided lexisearch algorithm replaces the Steps 1 and 12 of the algorithm described in
Section 3.4 as follows.

Step 0. Remove “bias” of the given cost matrix. Preprocess the modified cost matrix as
described above and construct the “alphabet table” based on the modified cost matrix. Set
“best solution value” as large as possible. Since “node 1” is the starting node, we start our
computation from 1st row of the “alphabet table”. Initialize “partial tour value” = 0, r = 1
and go to Step 2.

Step 11. Current word gives the optimal tour sequence with respect to the cost matrix used for
solution. If the transposed matrix is used for solution, then take reverse of the tour sequence
as the optimal tour sequence with respect to the original cost matrix and then stop.

5. Computational Experience

The simple lexisearch algorithm (LSA) and data-guided lexisearch algorithm (DGLSA) have
been encoded in Visual C++ on a Pentium IV personal computer with speed 3GHz and
448MBRAMunderMSWindows XP operating system.We have selected asymmetric TSPLIB
[25] instances of size from 17 to 71. We report the solutions that are obtained within four
hours on the machine as well as total computational times (TotTime) in seconds. We also
report percentage of error of the solutions obtained by the algorithms. The percentage of
error is given by the formula Error(%) = (BestSol − OptSol)/OptSol × 100%, where BestSol



10 Mathematical Problems in Engineering

Table 5: Results by data-guided lexisearch algorithm using Process 1 and Process 2.

Instance OptSol Process 1 Process 2
BestSol Error(%) TotTime BestSol Error(%) TotTime

br17 39 39 0.00 80.56 39 0.00 80.56
ftv33 1286 1286 0.00 742.48 1286 0.00 161.84
ftv35 1473 1473 0.00 379.42 1473 0.00 379.42
ftv38 1530 1530 0.00 1868.85 1530 0.00 1868.85
p43 5620 5634 0.25 14400.00 5634 0.25 14400.00
ftv44 1613 1613 0.00 11334.98 1613 0.00 11334.98
ftv47 1776 1853 4.34 14400.00 1853 4.34 14400.00
ry48p 14420 16381 13.60 14400.00 16381 13.6 14400.00
ft53 6905 8116 17.54 14400.00 8116 17.54 14400.00
ftv55 1608 1711 6.41 14400.00 1711 6.41 14400.00
ftv64 1839 2052 11.58 14400.00 2052 11.58 14400.00
ft70 38673 40529 4.80 14400.00 40529 4.80 14400.00
ftv70 1950 2108 8.10 14400.00 2108 8.10 14400.00
Average 5.12 9969.71 5.12 9925.05

denotes the best/optimal solution obtained by the algorithms andOptSol denotes the optimal
solution reported in TSPLIB.

Table 5 presents the comparative study of DGLSA using two different preprocessing
methods, Process 1 and Process 2. It is seen from the table that the solutions obtained by
both methods are same. Also, except for the instance ftv33, computational times are same.
For ftv33, Process 2 is found to be better than Process 1. Hence, we consider DGLSA using
Process 2 for comparison with other algorithms.

For the purpose of performance comparison of our algorithms, the implementation
of lexisearch algorithm of Pandit and Srinivas [9], we named as PSA, reported in Srinivas
[21], is encoded in Visual C++ and run on same machine and tested on same data set. The
results are shown is Table 6. Out of thirteen instances only four, five, and five instances were
solved optimally within four hours by PSA, LSA, andDGLSA, respectively. For the remaining
instance, except for three instances—ry48p, ftv64, and ftv70, LSA finds better solution than
PSA. On the other hand, except for two instances, ftv47 and ft53, DGLSA finds better solution
than LSA. On average, PSA, LSA, and DGLSA find solutions which are 7.70%, 5.84%, and
5.12% away from the exact optimal solutions. This tells us that among the three algorithms
our data-guided algorithm is the best.

Table 6 shows that, on the basis of total computational time, except for br17 and
ftv35, LSA takes less time than PSA to solve the instances. On the other hand, DGLSA
takes time that is less than or equal to the time taken by LSA for all instances. Table 6 also
reports the computational time when the final solution is seen for the first time (FirstTime).
In fact, a lexisearch algorithm first finds a solution and then proves the optimality of that
solution, that is, all the remaining subproblems are discarded. The table shows that, on
average computational time, PSA, LSA, and DGLSA find a solution within at most 50%,
39%, and 30% of the total computational time, respectively. That is, PSA, LSA, and DGLSA
spend at least 50%, 61%, and 70% of total computational time on proving the solutions.
Therefore, for these TSPLIB instances, PSA spends a relatively large amount of time on
finding solution compared to LSA, and LSA spends a relatively large amount of time on
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Table 7: Results by different algorithms on six asymmetric TSPLIB instances.

Ins. DGLSA ATSP6 SST2
BestSol Error(%) TotTime BestSol Error(%) TotTime BestSol Error(%) TotTime

br17 39 0.00 80.56 39 0.00 10.88 — — —
ftv33 1286 0.00 161.84 1286 0.00 5540.85 1286 0.00 668.00
ftv35 1473 0.00 379.42 1463.41 0.66 19271.70 1463.41 0.66 1357.00
ftv38 1530 0.00 1868.85 1488.22 2.81 8953.23 1520.19 0.65 1741.00
p43 5634 0.25 14400.00 5611.00 0.34 35193.60 — — —
ftv44 1613 0.00 11334.98 1594.94 1.13 159105.00 — — —

Average 0.04 4704.28 0.82 38012.54 0.44 1255.33

Table 8: Computational times on random asymmetric instances.

n
PSA LSA DGLSA

Average Std dev Average Std dev Average Std dev
30 1.49 2.53 0.86 1.70 1.06 1.78
35 14.76 30.24 12.54 21.83 12.12 23.14
40 365.33 920.45 168.81 248.34 104.66 211.70
45 780.03 1518.12 945.32 1357.14 667.34 1069.07
50 1819.72 4354.40 2275.09 3201.82 1123.40 1904.31
Average 491.94 1830.94 543.26 1499.83 316.72 924.83

finding solution compared to DGLSA. So, a small number of subproblems are thrown by
PSA in comparion to our algorithms. On the other hand, DGLSA requires largest amount of
time on proving the solutions, and hence, a large number of subproblems are thrown. On the
basis of computational time also, LSA is found to be better than PSA, and DGLSA is found to
be the best one. There is good improvement of DGLSA over LSA for the instances in terms of
solution quality and computational time. So, our goal is achieved very well.

Many recent good approximation methods based on branch and bound have been
reported in the literature, but the nature of those algorithms are not same as our algorithms.
Hence we cannot compare our algorithms with those algorithms. However, the performance
of DGLSA is compared to the performance of integer programming formulation by Sherali
et al. [11] (called ATSP6 therein) that was run on Dell Workstation PWS 650 with double
2.5GHz CPU Xeon processors, 1.5GB RAM under Windows XP operating system and
implemented using AMPL (version 8.1) along with CPLEX MIP Solver (version 9.0). The
same formulation was also implemented by Öncan et al. [14] (called SST2 therein) on a
Pentium IV PC with 3GHz CPU using barrier solver of CPLEX 9.0. Unfortunately, a direct
comparison on the same computer cannot be made, since, to the best of our knowledge, no
online source code is available. However, our machine is around 1.5 times faster than the
machine used for ATSP6 and is approximately same as machine used for SST2 (see machine
speed comparison from Johnson [26]). Table 7 reports results for six asymmetric TSPLIB
instances by DGLSA, and computational times (in seconds), solutions (lower bounds), and
percentage of error of ATSP6 and SST2. The percentage of error is given by the formula
Error(%) = (OptSol−BestSol)/BestSol×100%, where BestSol denotes the best solution (lower
bound) obtained by ATSP6 and SST2.
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Figure 1: Trend of average computational (solution) times for different algorithms.

From Table 7, it is seen that for br17, DGLSA takes more computational time than
ATSP6. For the remaining instances DGLSA takes least computational time. Out of six
instances, two and five instances were solved optimally by DGLSA and ATSP6 respectively.
On average, DGLSA is the best which finds solution that is 0.04% away from the exact optimal
solution. As a whole, DGLSA is found to be best. Also, solutions by lexisearch algorithms do
not rely on commercial math software.

We also run the lexisearch algorithms for asymmetric randomly generated instances
of different sizes. We generate 20 different instances for each size. We include two statistics to
summarize the results: average computational time (in seconds) and standard deviation of
times. Table 8 presents results for asymmetric instances drawn from uniform distribution of
integers in the interval [1, n].

On the basis of average computational times, Table 8 shows that for n = 30, LSA is
the best and PSA is the worst, and there is no improvement in average computational time
and time variations by DGLSA over LSA, of course, DGLSA is better than PSA. For n = (35
and 40), LSA is better than PSA, and there is some improvement in average times by DGLSA
over LSA, and hence, DGLSA is the best. For n = (45 and 50), PSA is better than LSA, and
there is very good improvement in average times by DGLSA over LSA, and DGLSA is found
to be the best. Overall there is an improvement of more than 41% on average computational
time by DGLSA over LSA. Of course, for few problems DGLSA takes more times than LSA.
We investigated in this direction, but we could not come to any conclusion in this regard.
To visualize more clearly the trends of different algorithms as size of the problem increases,
we present, in Figure 1, curves of average computational (solution) times by the algorithms
against increasing sizes. It clear from Figure 1 that as the size increases PSA is performing
better than LSA, and DGLSA is performing best.

On the basis of time deviations, Table 8 shows that PSA is the worst and DGLSA is the
best. PSA shows large variations in the context of computational time for different instances
of same size, and the problems seem to fall into two distinct groups with a big “gap” between
the two groups, which is similar to the observationmade byAhmed [22]. As the size increases
the variations amongst the computational times increase rapidly. LSA shows lesser variances
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Figure 2: Trend of time variances for different algorithms.

than PSA, and DGLSA shows lowest variances. In fact, one of objectives of LSAwas to reduce
the gap amongst the computational times over PSA, which is achieved to some extent, and
there is an improvement of more than 18% on the overall time variance by LSA over PSA. To
reduce more in time variances, DGLSA is developed, and there is an improvement of around
38% and 50% on the overall time variance over LSA and PSA, respectively. We also present,
in Figure 2, curves of standard deviations amongst computational times by the algorithms
against increasing sizes. It clear from Figure 2 that as size increases, time variances by PSA
are increasing rapidly than by LSA and DGLSA, and the trend of increment is lowest for
DGLSA. Of course, for small sized problems variation by DGLSA is high.

To prove further that performance of DGLSA is the best for any asymmetric instance,
we consider the instances drawn from uniform distribution of integers in different intervals.
Table 9 presents the average computational times and standard deviations of the times for
the values of n from 30 to 45 for the instances drawn from uniform distribution of integers in
the intervals [1, 10], [1, n], [1, 102], [1, 103], and [1, 104]. The performance of the DGLSA
does not change very much when the cost ranges increase from [1, 10] to [1, 104]. On the
basis of the average computational times, Table 9 shows that LSA is better than PSA, and
DGLSA is the best for the instances drawn in the intervals [1, 10] and [1, n]; but for the
instances drawn in the intervals [1, 102] and [1, 103], DGLSA is better than LSA, and PSA is
the best. For the instances drawn in the interval [1, 104], there is less difference among the
performance of different algorithms, and DGLSA is the best. However, on the basis of overall
average computational times and variations in times, PSA is better than LSA, and DGLSA is
the best. Asymmetric TSPLIB instances can be considered “hard”, that is, even small instances
take large computational times and take more times than for asymmetric random instances.

Further, to show that LSA and DGLSA are better than PSA, we run twenty symmetric
TSPLIB instances of size from 14 to 76 and report computational times and solutions within
four hours of computational times in Table 10. Since the condition for taking transpose matrix
is not satisfied for symmetric instances, the results obtained by LSA and DGLSA are same,
and hence, we report results by LSA only. In fact applying DGLSA makes no sense for
symmetric instances because there is no any computational benefit in solving transposed
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Table 9: Computational times for random asymmetric instances drawn from different intervals of data.

Interval n No. of
Instances

PSA LSA DGLSA

Average Std
dev Average Std

dev Average Std dev

[1, 10] 30–45 80 577.91 1860.81 338.93 1319.01 281.34 899.65
[1, n] 30–45 80 287.66 921.44 276.83 772.14 192.62 594.60
[1, 102] 30–45 80 214.05 1153.17 461.72 2278.94 220.18 627.33
[1, 103] 30–45 80 68.04 151.58 147.83 312.02 112.30 333.00
[1, 104] 30–45 80 434.08 2382.00 459.14 123.89 420.41 1911.07

Average 314.59 1497.05 339.29 1515.41 244.66 1021.90

Table 10: Results by the lexisearch algorithms for some symmetric TSPLIB instances.

Instance OptSol
PSA LSA

BestSol Error(%) FirstTime TotTime BestSol Error(%) FirstTime TotTime

burma14 3323 3323 0.00 0.00 0.03 3323 0.00 0.00 0.01
ulysses16 6859 6859 0.00 0.16 1.59 6859 0.00 0.23 0.84
gr17 2085 2085 0.00 1.36 3.50 2085 0.00 0.36 0.81
gr21 2707 2707 0.00 1.41 2.16 2707 0.00 0.01 0.05
ulysses22 7013 7013 0.00 155.00 952.61 7013 0.00 96.86 271.04
gr24 1272 1272 0.00 4.47 34.55 1272 0.00 33.59 54.31
fri26 937 937 0.00 301.41 552.73 937 0.00 33.14 96.97
bayg29 1610 1610 0.00 101.20 168.97 1610 0.00 107.33 158.93
bays29 2020 2020 0.00 584.89 773.35 2020 0.00 0.23 245.23
dantzig42 699 734 5.01 4472.33 14400.00 699 0.00 11973.78 14400.00
swiss42 1273 1377 8.17 1523.67 14400.00 1360 6.83 10762.53 14400.00
att48 10628 12224 15.02 1063.81 14400.00 10850 2.09 10.42 14400.00
gr48 5046 5067 0.42 4127.78 14400.00 5525 9.49 11863.67 14400.00
hk48 11461 13222 15.37 9659.94 14400.00 12506 9.12 8969.51 14400.00
eil51 426 486 14.08 5500.09 14400.00 430 0.94 4812.47 14400.00
berlin52 7542 9177 21.68 9249.66 14400.00 8240 9.25 2256.58 14400.00
brazil58 25395 29433 15.90 1090.66 14400.00 29935 17.88 136.36 14400.00
st70 675 827 22.52 496.98 14400.00 748 10.81 5906.02 14400.00
eil76 538 698 29.74 7067.08 14400.00 633 17.66 1893.67 14400.00
pr76 108159 131056 21.17 2915.11 14400.00 118909 9.94 30.97 14400.00

Average 8.45 2415.85 8044.47 4.70 2944.39 7961.41

cost matrix. It is to be noted that lexisearch algorithms for the problem do not require any
modification for solving different type of instances. Out of twenty instances, nine and ten
instances were solved optimally by PSA and LSA, respectively. For the remaining instances,
except for two instances—gr48 and brazil58, LSA finds better solution than PSA. On average,
PSA and LSA find optimal solution 8.45% and 4.70% away from the exact optimal solutions,
respectively. Regarding computational time, except for two instances gr24 and gr48, LSA
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finds better final solutions quicker than PSA. On average, PSA and LSA find final solution
within 31% and 37% of the total computational times, respectively. That is, PSA and LSA
spend 69% and 63% of total time on establishing final solutions. From this computational
experience, we can conclude that for the TSPLIB as well as random instances, DGLSA is the
best among all algorithms considered in this study, and it finds optimal solution quickly for
asymmetric instances.

6. Conclusion

We presented simple and data-guided lexisearch algorithms that use path representation
method for representing a tour for the benchmark asymmetric traveling salesman problem to
obtain exact optimal solution to the problem. The performance of our algorithms is compared
against lexisearch algorithm of Pandit and Srinivas [9] and solutions obtained by integer
programming formulation of Sherali et al. [11] for some TSPLIB instances. It is found that our
data-guided algorithm is very effective for these instances. For random asymmetric instances
also, the data-guided lexisearch algorithm is found to be effective, and the algorithm is not
much sensitive to the changes in the range of the uniform distribution.

For symmetric TSPLIB instances our simple algorithm is found to be better than the
algorithm of Pandit and Srinivas [9]. However, the proposed data-guided algorithm is not
applicable to symmetric instances, and hence, we do not report any computational experience
for random symmetric instances. In general, a lexisearch algorithm first finds an optimal
solution and then proves the optimality of that solution. The lexisearch algorithm of Pandit
and Srinivas [9] spends a relatively large amount of time on finding optimal/best solution
compared to our algorithms.

We have investigated that using our proposed algorithms asymmetric TSPLIB
instances could be solved of maximum size 45, whereas asymmetric random instances could
be solved of maximum size 50 within four hours of computational time. This shows that
asymmetric TSPLIB instances are harder than asymmetric random instances. For symmetric
instances, our data-guided algorithm is not applicable, hence we could not draw any
conclusion on these instances. However, we could only find optimal solution and could not
prove optimality of the solution, using our simple algorithm of maximum size 42. Of course,
we did no modification in the algorithm for applying on different types of instances.

Though we have proposed a data-guided module of the lexisearch algorithm, still for
some instances it takes more times than the simple lexisearch algorithm, and it is applicable
only for the asymmetric instances. So a closer look at the structure of the instances and then
developing a more sophisticated data-guided module may apply on symmetric instances,
and may further reduce the computational time and provide better solutions for large
instances. Another direction of the research is to propose a better lower bound technique
which may reduce the solution space to be searched, and hence reduce the computational
time.
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