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1. Introduction

A closed set S C R" is said to be epi-Lipschitz at a boundary point x provided that
N§(z), the Clarke normal cone to S at z, is pointed. This is a geometric attribute which
plays an important role in nonsmooth analysis. Rockafellar [24] showed that the epi-
Lipschitz property is equivalent to the existence of an isometry A (a unitary matrix) such
that for some neighborhood U of z, the set U NS = U N Alepi(f)], where epi(f) denotes
the epigraph of a Lipschitz function f. Let us denote the closure of the complement of S

by S. Then, upon exploiting the connection between N g and the C-subdifferential O¢ f,
as well as the C-calculus fact that d¢f = —0¢(—f), one can show that

N§ () = —N§ (2). (1)

In fact, in this epi-Lipschitz setting setting, formula (1) can be regarded as folklore within
the theory of generalized gradients.

In this article, we shall provide analogs of this “complementary normal formula” in terms
of N 5 (x), the proximal normal cone to S at x, for S not necessarily epi-Lipschitz. In the
most general of these results, Theorem 3.1 below, we require only the mild condition that
x be a limit of interior points of S. The result is that for such =z,

~NE@)cwd |J Ny Ye>0, V>0, (2)

lly—=ll<e

0

where “Co” denotes the closure of the convex hull and [N :f; (y)]° is a certain “directional”

approximator of Ng (y) (which agrees with Né) (y) when § = 0). A measure of the

generality of Theorem 3.1 is that its proof does not depend upon properties of the proximal
subdifferential; indeed, the assumptions on S do not imply that S is locally homeomorphic
to an epigraph, and so reliance on P-calculus should not be expected. It is an open
question as to whether formula (2) holds in general with 6 = 0, or as in (2) with § > 0
in infinite dimensions. On the other hand, we shall obtain, via an independent proof
utilizing a mean value inequality of Clarke and Ledyaev [11], the following specialization
of Theorem 3.1 with 6 = 0, valid in an infinite dimensional Hilbert space: When S is
the epigraph of a function f continuous at z, then one has the complementary P-normal
formula

~N{(@ f@) cws | NEw.f)p Ve>o. (3)
lly—=z||<e

In fact, formula (2) above is valid with 6 = 0 when S is merely locally isometric to the
epigraph of a continuous function. (In particular, this result holds when S is epi-Lipschitz;
it is explained how this can also be obtained via a C-calculus proof, not depending on the
mean value inequality.) Independently of the above complementary P-normal formulas,
but also in an intrinsically geometric vein, we shall utilize properties of proximal normals
to offer a new proof of the complementary C-normal formula (1).
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Beyond investigating complementary normality issues, a related goal of this article is to
illuminate the geometry of the r-outer approrimation

S"i={z:dg(z) <r}
and the r-inner approzrimation
Sy i={z:dg(z) >}

of S, where r > 0 and dg denotes the Euclidean distance to S. Observe that one always
has

bdry(S;) = {z : d(2) =},

but in general, only the containment
bdry(S") C {z:dg(z) =}

holds for a given 7.

An idea which features in our analysis is that when S is compact and epi-Lipschitz,

the inner approximations S, are proximally smooth for small . This means that double

approximations of the form (Sr)‘S are smooth for correspondingly small §; we shall make

use of characterizations of proximal smoothness derived recently in Clarke, Stern and
Wolenski [14]. The conclusions reached relate to results of Benoist [8], who first studied
the smoothing properties of double approximations of this type, and may be related to
forthcoming work of Cornet and Czarnecki [19]. We remark that epi-Lipschitz and other
properties of sets and their approximations play an important role in the existence of
equilibrium points in nonconvex sets [18].

We shall apply our geometric results to certain issues which arise in the context of differ-
ential inclusions of the form

#(t) € F(z(t)) ae., t>0. (4)

A question of considerable interest is the determination of the manner in which comple-
ments, approximations and smoothings of S inherit invariance and corresponding tangen-
tiality properties posited for S itself. The types of invariance that we have in mind are
strong invariance (every trajectory of (4) starting in S remains in S) and weak invariance
(for every initial point in S, some trajectory remains in S); this is also called “viability”
by Aubin et alli [4] [5] [3]. Under the topological assumption that S = cl[(int(S)], and
suitable hypotheses on the multifunction F', we will show that strong invariance of (S, F)

and (S, —F) are equivalent. While this conclusion seems quite natural (and of course, it
is), parallel considerations for “complementary” weak invariance are more delicate, and
further regularity assumptions on S will need to be imposed. As for the inheritance of
weak invariance by approximations, we shall see that when S is compact and (S, F) is

weakly invariant, then for given ¢ > 0, (S”, F + €B) is weakly invariant (where B de-
notes the closure of B, the open unit ball). However, in order to obtain a similar result
involving inner approximations Sy, it transpires that extra conditions on S need to be
imposed here too. A by-product of our analysis of these issues is the construction of a
Lipschitz feedback law which achieves penetration of the interior of sets satisfying certain
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hypotheses, including a kind of strict tangentiality (or “inwardness”) with respect to F.
This relates to work on set attainability and penetration in Clarke and Wolenski [16].

Given a continuous function f : R" — R, a property which generalizes “monotonicity
along solutions” from the classical Liapounov theory is the following: (f,F) is weakly
decreasing if for any initial point zy there exists a trajectory x(-) of (4) such that the
function t — f(z(t)) is nonincreasing. This property is rephrasable as weak invariance
of the epigraph of f with respect to a certain augmentation of F', and versions of some
of our geometric results can be brought to bear (with particular emphasis on the case of
Lipschitz f). In this context, approximations and smoothings of S = epi(f) are expressible
in terms of the epigraphs of certain single and double convolutions involving f. Here we
make contact with work of Lasry and Lions [22], Attouch and Azé [2], Seeger [26] and
Toffe [21]. The results obtained lead to interesting conclusions regarding solvability (in an
approximate sense) of Hamilton-Jacobi inequalities by smooth functions. In addition, we
obtain a result on the existence of a universal Lipschitz feedback law yielding monotonicity
along trajectories in an approximate sense.

After a section on preliminaries in nonsmooth analysis, the plan of the article follows the
order of the preceding discussion: In section 3 and section 4 we shall provide intrinsically
geometric proofs of complementary P-normal and complementary C-normal formulas,
respectively, and some other results in this general vein. Geometric results are given in
section 5, regarding approximations and smoothings. These facts are then applied in
section 6, in the context of differential inclusions, in order to study the inheritance of
invariance properties of a given set by complements, approximations and smoothings, as
well as the construction of penetrative Lipschitz feedback laws. In section 7, analytic
versions of some of the results are given.

2. Preliminaries in nonsmooth analysis

In this section we provide a whirlwind review of required material from nonsmooth analysis
and differential inclusions. General references and literature guides to these subjects are
provided by Clarke [10], [9], Loewen [23] and Clarke, Ledyaev, Stern and Wolenski [17],
[12], Aubin and Cellina [4], and Aubin [3]. Throughout this article, S will always denote
a nonempty closed subset of R™, with extra hypotheses added as required. The Euclidean
distance of a point u to S is given by

ds(u) := min{||lu — z|| : z € S};

this function is globally Lipschitz of rank 1 for any S. The (possibly empty) set of closest
points to w in S is denoted

projs(u) :=={z €5 : [Ju—z|| = ds(u)}.
If u¢g S and = € projg(u), then we say that the vector u — x is a perpendicular to S at
x. The set of all nonnegative multiples of such perpendiculars is denoted N 5 (x), and is
referred to as the prozimal normal cone (or P-normal cone) to S at z. One can show that

(eN 5 (x) if and only if there exists M > 0 (generally depending upon z) such that the
following prozimal normal inequality holds:

Mlly—z|* > ((,y—=z) VyeS.
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If # € int(S) or no perpendiculars to S exist at z, then by convention, we set NZ (z) = {0}.

The P—normal cone is convex (but may not be closed), and is nonzero on a dense subset
of bdry(S).

Let f : R — (—o0,00] be a lower semicontinuous extended real valued function, and
denote its epigraph by

epi(f) == {(z,y) : ¥ € dom(f), y > f(z)},

where dom(f) is the set of points where f is finite. The lower semicontinuity assumption
is equivalent to epi(f) being closed. A vector ( € R™ is said to be a prozimal subgradient
(or P-subgradient) of f at = provided that

(¢ 1) € Ny ) (@, f(2))-

The set of all such vectors is called the P-subdifferential of f at x, and is denoted Op f ().
This subdifferential is empty for points not in the domain of f, and is nonempty for a dense
subset of the domain. Furthermore, one can prove that ( € dpf(x) if and only if there
exist positive numbers ¢ and 7 such that the following proximal subgradient inequality is
satisfied:

fy) = f@) +olly—=|>>((,y—=) Vy€ax+qB.

We shall require the following fact due to Rockafellar [25] concerning the approximation
of horizontal P-normals to an epigraph by non-horizontal ones: Suppose that f is finite

at x, and let ((,0) € Né;if(x,a), where ( # 0. Then

(Cao) € N(f:nf(xaf(m)):
and for any given ¢ > 0, there exists Z € dom(f) such that
1@, £(Z)) — (=, f(z))]| < e

and such that there exists (¢, —) € Né;if (z, f(Z)), v > 0, for which

1(¢,0) = (& =N < e
The P-superdifferential of an upper semicontinuous function f at z is defined as

o f(z) :== —0p(—f)(), (5)

with the members of this set referred to as P—supergradients. We will later require the
fact that for an upper semicontinuous continuous function,

(1,=1) € Nopi_py (@, = f(2)) = (1,1) € Nygppy(x, (), (6)

where

hyp(f) :={(z,y) : « € dom(f), y < f(z)}
is the hypograph of f.
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We will make reference to the following specialization of the mean value inequality of [11];
see also [17]: For f as above, any points z,y, any number r < f(y) — f(z), and any given
e > 0, there exist z € [z,y] +eB and € dpf(z) such that

r<{(,y—x).

(Here [z,y]| denotes the line segment from z to y.)

An important fact regarding proximal subdifferentiability of the distance function is the
following: Let u ¢ S, and suppose that Opdg(u) # ¢. Then projg(u) is a singleton, say
{z}, and Opdg(u) is the singleton {(}, where

u—2

¢ € N§ (2); (7)

=]

see Clarke, Ledyaev and Wolenski [13]. If dg(u) = r > 0, then by a result in [14], one
always has

dpds(u) = N&(u) N Q, (8)
where emptiness is not precluded; here and later we denote the unit sphere by Q :=
bdry(B). Now let u € S. Then it can be shown that

NE (u) = cone[dpds(u)], 9)

where this denotes the cone generated by the P-subdifferential of the distance function.

The L-normal cone (or limiting normal cone) to S at x € S is defined to be the set
N§(2) ={C: G = ¢, G € N§(ai), @i = a}.

In particular, NF (z) C Nk (z). Also, it is not hard to show that N is zero on the interior

of S, nonzero on the boundary of S, and that the multifunction N g is closed on S. The
C-normal cone (or Clarke, or convexified normal cone) to S at x is defined as

N§ (x) := ol N ()]

We say that S is epi-Lipschitz at x € bdry(S) provided that the cone N&(z) (or equiv-

alently, N g (x)) is pointed; if the property holds at each boundary point, then we say S
is an epi-Lipschitz set. It is known that if S is epi-Lipschitz at x, then the multifunction
N g is closed at x.

The normal cones defined above lead to corresponding nonempty subdifferential sets for
f:
OLf(x) :={C: (¢, —1) € NEi 5 (=, f(2)}.

0o f(x) :=1{¢: (¢, —1) € NG p (=, f(2)}.
These are the L-subdifferential and C-subdifferential of f at x, respectively. One has

oLf(x) ={C:G =, G €0pflxi), vs =z, f(z;) = z}.
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Let us now assume that f is Lipschitz of rank K on an open set U. By a result in [15],
or by appealing to the mean value inequality, this is equivalent to ||(|| < K for every
¢ € Opf(x) for each € U (bearing in mind that the P-subdifferential is assured to be
nonempty only on a dense set). Then J¢ f(x) is compact, and one has the relations

dcf(z) = coldrf(x)] = —0c(—f)(z).

Should it exist, the directional derivative of f at x in the direction v is the quantity

o) = g Lt )= S0)

If there exists ¢ € R™ such that f'(z;v) = ((,v) for every v, then ( is unique, and we say
that ¢ := f'(z) is the derivative of f at z. (In the finite dimensional and Lipschitz case
presently under consideration, one can show that Gateaux and Fréchet differentiabililties
coincide, and so there is no ambiguity in this terminology.) For given v € R", one defines
the generalized directional derivative of f at x in the direction v as

f°(x;v) := limsup [y +tv) - f(y)

tlo 13
y—)ﬂ)‘

For any v, one has

fo(z;v) = max{(C,v) : ¢ € I f(z)}.
The C-tangent cone to S at x € S is defined via polarity as the closed convex cone
T§ (z) == [N§ (@) = {v € R" : ((,0) <0 V(€ N§(2)} = [N§(2)]".

Therefore TS (z) = R" for z € int(S), and S is epi-Lipschitz at € bdry(S) iff the interior
of T§ (x) is nonempty. It can be shown that

TS (z) = {v € R : d%(x;v) = 0},

which is the traditional way of defining the C-tangent cone.

The D-tangent cone to S at x € S, referred to also as the Bouligand or contingent tangent
cone in some references, is defined to be the closed (but possibly nonconvex) cone

8 — X
T2 (z) := cone {lim —
lsi — ]

18, €8, Si—>$}.
One always has TS (z) C T2 (z). Should equality occur, then we say that S is reqular at
x, and if the property holds at every z € S, then S is said to be a regular set. We require

the fact that if S is regular at x, then N&(z) = N§ (z).
A function f: R"™ — R which is Lipschitz near z is said to be regular at x if the ordinary

directional derivative f'(z;v) exists and f/(x;v) = fo(z;v) for every v € R". Regularity
at z is guaranteed when f is continuously differentiable at x, or if f is convex on a ball
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around x. The tie-in beween the geometric and analytic versions of regularity is made via
the following fact: Regularity of a Lipschitz function f at x is equivalent to regularity of
its epigraph at (z, f(x)). In this situation, it follows that d¢ f(x) = dr f (z).

Let 7 € S and 0 # ¢ € NI (z). Then for some r > 0 one has

Smnt{:c+r(”—g“+§>}=¢ Vyes,

and we say that ( is realized by an r-ball, or that ( is r-realizable. This simply means
that the open ball of radius r centered at x + rﬁ has empty intersection with S. This

property can be rephrased as

1 2 ¢
slu—al?> (i&-2) vyes (10)

If this should hold at every z € bdry(S), then we say that S is prozimally smooth of
radius r. (Our reference in on proximal smoothness is [14]; see also Vial [28] for earlier
work in this regard.) Proximal smoothness of radius > 0 is equivalent to each of the
following:

(a) Opdg(z) # ¢ for every x in the open tube U(r) := {int(S")}\S.

(b) For every 7 € (0,7) and every z such that dg(z) = 7, one has NSI,DF(:U) # {0}. (This
follows directly from (a) and (8)).

(c) dg € C'* on U(r); that is, d's exists and is locally Lipschitz on U(r). (One can show
that then dpdg(z) = dcds(z) = {ds(z)} on U(r).)

(d) S = (S™); for every 7 € (0,r).

Suppose that S is proximally smooth of radius r, and that 7 € (0,7). Then ST is Ot
smooth (that is, the mapping z — Ng} (x) N is single valued and Lipschitz on bdry(ST)),

and ST is proximally smooth of radius r — 7. Also,
NG (2) N Q = {Vds(z)} = {Vdgr (z)}

for every x of distance 7 from S. A necessary condition for S to be proximally smooth
is that NI be a closed multifunction on S. (This is not sufficient however; see [14] for a
counterexample.) The closedness condition implies

NE@)=NEk(z) = NS (z) Vzes, (11)
which can be used to show that S is regular at x. Of course, (11) implies
NE(z) # {0} Vz € bdry(S). (12)

The property (12) alone will be termed mild prozimal smoothness. For an example of
S C ®? which is mildly proximally smooth but not proximally smooth, consider the
epigraph of the (regular) function f given by f(z) = —z for £ < 0 and f(z) = —%/2 for
z > 0.
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Several of our results will be formulated with respect to the differential inclusion (4).
Trajectories of this system are absolutely continuous functions z(-) satisfying (4). Our
standing hypotheses regarding the multifunction F': R — R" will be

(SH): F(z) is compact and convex for every z, and F' is Hausdorff continuous on R".

Two other conditions that will be referred to are linear growth and a Lipschitz condition:

(LG): There exists ¢ > 0 such that for every x and every v € F(z), one has |jv]| <
c(1 + [l[)-

(L): F' is Lipschitz on R"; that is, there exists K > 0 such that

d(F(z), F(y)) < Kz —yl],

for all z,y in S, where d(-,-) denotes Hausdorff distance. (Note that (L) =
(LG).)

The set S is said to be weakly invariant with respect to F' (or the pair (S, F') is weakly
invariant) provided that for each zg € S, there exists a trajectory of (4) satisfying z(0) =
zo and z(t) € S for all t > 0. Likewise, we say that (S, F') is strongly invariant if for each
xo € S, this occurs for every trajectory z(-). When (SH) and (LG) hold, weak invariance
is equivalent to

hp(z,() <0 Vz el V(¢eNE(), (13)

where hg is the Hamiltonian

hF(.T, C) = vénFl'%glv)<<’ U>'

We also express (13) as
hp(z, N&(z)) <0 Vz€S. (14)

It is easy to see that an equivalent condition for weak invariance in terms of the L-normal
cone is given by

hr(z, NE(z)) <0 Vz€S. (15)

We also require the fact that when S is regular, this is the same as

he(z, N§(z)) <0 Yz eS. (16)
In terms of D-tangency, yet another equivalent condition is

TP(x)NF(z)#¢ Ya €S (17)

There is a long history behind invariance theory and its tangential characterizations (see
for example [12] [4] [3]). To our knowledge it is Veliov [27] who first clearly expressed
and systematically developed the normal characterization (13) (for the special case where
the differential inclusion models a control system). Let us pause to note that Haus-
dorff continuity of F' is more than what is needed in the above characterizations of weak
invariance—upper semicontinuity will suffice here, but our subsequent results involving
set approximations require the stronger hypothesis, so we have included it in (SH) at the
outset. Also, should S be compact, then (LG) can be omitted in these characterizations
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of weak invariance. Hamiltonian and tangent cone characterizations of strong invariance
are possible too, when the Lipschitz property (L) holds, but will not be required in this
article. In fact, our only need for (L) arises in connection with continuity in initial data
for (4); see Lemma 6.1 below.

Let f : R® — R be a continuous function, and let the multifunction F' satisfy (SH),
(LG). We say the pair (f, F') is weakly decreasing provided that for every zg € R", there
exists a trajectory of (4) satisfying 2(0) = x¢ and such that the function ¢ — f(z(t))
is nonincreasing. One can show that this property is equivalent to weak invariance of
the pair (epi(f),F x {0}), and with some effort, that this is in turn equivalent to the
condition

hp(z,0pf(z)) <0 Ya e R" (18)
as well as to

hp(z,0pf(z)) <0 VzeR" (19)
Should f be locally Lipschitz and regular, then this is in turn equivalent to

hp(z,0cf(z)) <0 VzeR™ (20)

3. Complementary P-normal formulas

3.1. General case

The following result provides a fundamental relationship between the P-normal cone to a
closed set S and the P-normal cone to the closure of its complement. The proof is purely
geometric and variational in nature, and is apparently independent of any known results
in nonsmooth analysis. It requires only the mild topological condition that x belong to
the closure of the interior of S.

Prior to stating the result, we need some further notation. Let K C R" be a cone. Then
given § > 0, we denote

[K]° := cone{w + 6B : w € K, |w|| = 1}.

One can think of [K1® as a “directional” approximation of K, as opposed to a metric one.
Of course, this approximation agrees with K when ¢ = 0.

Theorem 3.1. Suppose that x € cl[int(S)]. Then for any e > 0 and any 6 > 0 one has

Nwew U [Mw)'t. (21)
ly—zll<e

The proof of the theorem is based upon the following proposition, which is of some

independent interest:

Proposition 3.2. Given r > 0 such that Sy # ¢ and w € S, let z € projg, (w). Then
for any 6 > 0 one has

w — z € CO § cone U (y—z)+orB| p. (22)
YEproj¢(2)
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Proof. Clearly ||z —w| > r. If ||z — w|| = r, then w € projg(z) and we are done. We

shall assume therefore that
|z — w|| > r. (23)

Suppose, by way of contradiction, that (22) did not hold. Then there exist v > 0 and
¢ e R, ||¢|| =1, such that
<C: w— Z) >0

and
((, 0y <0 VL€ coq{ cone U (y—z) +yrB
YyEprojg(z)

By taking £ =y — z + yru, where y € projg(z) and u € B, we obtain from the previous
inequality that
(Cy—z+7ru) <0.

Since u € B is arbitrary, it follows that
(C,y—2) < —yr Yy € projg(z).

The remainder of the proof requires three lemmas:

Lemma 3.3. There exists rog > r such that

|lv]| =1

0
Kw>_—§ =t > 7.
z-l—tvES‘

Proof. If not, then z + t;v; € S where ti 4 rand (C,v;) > % Taking convergent
subsequences yields z + rv € projg(z). But then

r
—ry 2 (G, (2 4+ 1v) = 2) = (G, v) = — T,

which is a contradiction. O
Lemma 3.4. For allt > 0 suficiently small, one has

lw = (z + )| < [lw — |-

Proof. Upon squaring and expanding, the inequality becomes
—26(¢,w — z) + *[|C[|2 < 0,
which is clearly true for small ¢ > 0 since (¢, w — z) > 0. a

Lemma 3.5. Fort > 0 sufficiently small, one has z +t( € S,.
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Proof. If not, then there exists a sequence y; € S such that

|z +t:i¢ — il <,

where ¢; | 0.
Now, if (¢, yi — z) > —2|lyi — z|| infinitely often, then by Lemma 3.3 , since
).
ol - L= e 5
llyi — 2|l

we have ||y; — z|| > r¢. But this contradicts ||z + #;¢ — y;|| < r for small ¢;.
On the other hand, suppose that ((,y; — 2) < —3||ly; — 2| for all large i. Squaring and
expanding the inequality ||z + ;¢ — yi|| < r gives

Iz — il + 26:(C, 2 — i) + £2)IC)12 < 2

Since ((, z — y;) > 0, this implies that ||z — ;|| < 7, contradicting z € S,.. O

Now Lemmas 3.4 and 3.5 imply that for small positive ¢, z + ¢t lies in S, and is nearer to
w than z, which is a contradiction. This completes the proof of the proposition. O

We now are in position to prove the theorem:

Proof of Theorem 3.1: Obviously, we only need to consider z € bdry(S), since the
assertion of the theorem is trivial for interior points. Let 0 # ( € NEF(z). Then for some

t > 0 chosen sufficiently small, one has w := z 4+ t¢ € S and projg(w) = {z}. Since z is
by hypothesis the limit of interior points of S, one has that S, # ¢ for all small » > 0.
Consider a sequence 7; | 0, and let z; € projg, (w). Since z is the unique closest point in

S to w, we have z; — x. Upon applying Proposition 3.2, for arbitrary given § > 0 one
obtains

w — z; € ¢o | cone U (y — zi) + (5riB-|
Yy€EProj¢(2;) J

Now, if y € projg(z;), then
y—z+0or;B € —[Ng(y)]é,

and the preceding formula yields

w-zmews U [~V

y€projg(zi)

This in turn readily yields (21). O

3.2. The case 6 =0

In this subsection we will prove the following version of Theorem 3.1 in which extra
hypotheses are imposed so as to permit formula (21) to hold true with § = 0. As always,
S is closed:



F. H. Clarke, Y. S. Ledyaev, R. J. Stern / Complements, approzimations, smoothings 201

Theorem 3.6. Let S = epi(f), where f : R" — R is continuous at x. Then formula
(3) holds, that is,

—N(@, f@) i | NE@w.fw)p ve>o. (24)
lly—=z|l<e

The proof of Theorem 3.6 will be based upon the following fundamental connection be-
tween proximal subgradients and supergradients, which is valid for Hilbert spaces too. In
the case of R™, a related result was employed by Barron and Jensen [7] in the theory of
lower semicontinuous viscosity solutions of Hamilton-Jacobi equations. The proof below
is based upon the mean value inequality:

Proposition 3.7. Let f: R" — R be continuous at x. Then for any € > 0 one has

opfycasi |J oPfw)

lly—zll<e
and

o fw)cwd | opfly)y. (26)

lly—=ll<e

Proof. Clearly it suffices to prove only (26). To this end, let ( be a proximal supergra-
dient to f at x. The proximal subgradient inequality then says that

¢z —y) —olly —=]* < f(=) — f(y) (27)

for all y near z. In particular, let us take § € (0,£/2) so that (27) holds for all y € z+¢B.
Temporarily fix such a y, and consider

re={Ca—y)—oly—z|* - &%

Then r < f(z) — f(y).
By the mean value inequality, there exist z € [z,y] + dB and £ € Opf(z) such that
r < (£,x —y). We can write y = x — dv for some v € B. Then

(C,v) — 00 — 6 < (&, v).

Now let us introduce the set

Se):=w{ |J orfly)

lly—=ll<e

Note that dpf(z) C S(e), since ||z — z|| < 2§ < e. It follows that for § > 0 taken
sufficiently small and any v € B,

(¢,v) =00 =6 < sup (§,v).
£eS(e)
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Rearranging terms and letting ¢ | 0 leads us to

max inf (( — & v) <0.
vEB 565(6)<C &)

In accordance with the lopsided minimax theorem of Aubin [6], we then have

inf max({(( —&,v) = inf —-¢|| <0.
cege) UEE<C §,v) geS(e)”C 3|

Consequently ¢ € S(¢), which is the assertion (26). O

Proof of Theorem 3.6: Let ( € NE(x, f(z)). Then ¢ = (n,a) where n € R" and
a € R. It is readily checked that o < 0.

Case 1: a< 0.

In this case, by conicity, we can without loss of generality assume that o = —1. Then
n € Opf(x) by the definition of the proximal subgradient. By Proposition 3.7 and formula
(5), we then have

—~¢el® |J op(-H) g1

lly—=l|<e

for every £ > 0. Then in view of formula (6) and the fact that S = hyp(f), we arrive at
(24).

Case 2: a=0.

By the approximation result of Rockafellar mentioned in the introduction, { = (n,0) =
lim(n;, ;) where o; < 0, (mi, ) € NE (x4, f(2;)), with z; — 2. Let € > 0 be given. Then
by Case 1, for each ¢ we have

—(n,ai) e | N, ()

lly—zill<5

Upon considering i so large that ||z — z;|| < €/2, it follows that for every ¢ > 0, —( is a
limit of points in

! U N

Then —( is contained in this set as well, which is (24). O

Remark 3.8.
(a) It remains unknown to us whether Theorem 3.1 holds true in general with § = 0.
(b) Proposition 3.7 goes through in Hilbert space, unchanged.

It is not hard to show that if S is only assumed to be locally isometric to the epigraph of a
continuous function, then (21) holds with 6 = 0. In particular, this is true in case S is epi-
Lipschitz. An alternative proof in the epi-Lipschitz case can be based upon optimization,
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as follows: For S closed and possibly not epi-Lipschitz, let us introduce a new condition
on S:

(CQ): Sy is (nonempty and) epi-Lipschitz for all » > 0 sufficiently small.

Condition (CQ) always holds when S is epi-Lipschitz and possesses compact boundary;
see proposition 5.1 below).

Claim. When (CQ) holds, then Theorem 3.1 is valid with § = 0.

It is possible to adapt the proof of Theorem 3.1 in order to verify the above claim. A
somewhat simpler optimization based proof goes as follows — here (CQ) lives up to its
name, since it plays the role of a constraint qualification:

Let z € bdry(S) be as in the theorem; that is, z € cl[(int(S)]. Let 0 # ¢ € NE (),
I€|| = 1. Then there exists z ¢ S such that

Z—X

¢

e =l

where z is the unique closest point in S from z.
For r > 0, let us consider the mathematical programming problem (P) given by

minimize ||z — y||

subject to  dg(y) > -

A minimizer z, exists, and it is not hard to see that dg(v;) = r and 2, € x + ¢(r)B,
where ¢(r) } 0 as r | 0. Therefore

xr — Z
o2 (25)
[z — 2]

asr | 0.
The nonsmooth Lagrange multiplier rule (see [10]) for problem (P) implies the existence
of \g > 0, A1 > 0, such that A\g + A1 = 1 and

.T/r- —Zz

0e
Mz — 2]

+ Mo (—dg)(2r),

and since d¢(—dg)(zr) = —0c(dg) (), one obtains

xr_z

Ao
|z — 2]

€ Alagdg(xr).

Now consider any ¢ € dcdg(zr). One has
5 € co {limg}- (G € apds,(a?i), T; — :vr} .
Hence

~ L X — Y .
€co {hmm P @i = o, Projg(wi) = {yi}} :
1 2
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and it follows that

~ x —_ .

¢ € co {Tiy” 1y € pI‘O_]S(CUT)} )

”331" -y

Now note that the definition of S, implies y — x, € NgT (zr) if y € projg(z), and so we
have shown that . .
dcdg(zy) C co{( € =N§ (x,) : |I]| = 1}. (29)

By (CQ), we may take r small enough a priori so as to ensure that Ngr (z,) is pointed.
Then from (29) we readily deduce that

0 & dcdg(wr).
Therefore Ay > 0, and so

Ty — 2 A p
—— € —O0¢pdz(zr) C Ng (xy).
o — 2] © 2 Cs1) & N (o)

Now (28) yields (21), proving the claim.

4. The complementary C-normal formula revisited

The next proposition provides useful directional information about the distance function
at a point where S is epi-Lipschitz. This result is known, and is part of Theorem 2.5.8 in
[10]. We refer the reader there for its proof, which is not reliant upon proximal methods,
but rather upon the C-calculus:

Proposition 4.1. Let z € bdry(S), and let v € int {T§ (z)} (so that in particular, S
is epi-Lipschitz at x). Then there exists v > 0 such that

do(y +tw) <do(y) Yyex+~yB, Ywev+~vyB, Vte (0,7] (30)

The following global topological condition on S is now introduced:
(T): S = cl[int(9)].

Let us state, without proof, an elementary topological lemma involving (T), and which
bears upon the remainder of the article:

Lemma 4.2. For any nonempty closed set S C R", the following inclusions all hold:

~

(a) bdry(S) C bdry(S).

(b) clfint(S)] C S.

(c) clfcomp(S)] C S.

Furthermore, if equality holds in any one of these inclusions, then the others hold as
equalities as well; in particular, (T) holds.

Upon taking y = z in (30), a useful specialization of the Proposition 4.1 ensues:

Corollary 4.3. Under the hypotheses of Proposition 4.1, there exists v > 0 such that

z+tv €int(S) Ve (0,7]. (31)
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In particular, x € cl[int(S)|, and if S is epi-Lipschitz, then (T) holds.
In the next proposition, directions in — int{7§ (z)} are considered. Unlike Proposition 4.1
and its corollary, however, its proof relies on proximal arguments:

Proposition 4.4. Under the hypotheses of Proposition 4.1, there exists v > 0 such that
y—tv g S Vye{r+yB}nNbdry(S), Vte (0,7]. (32)
Furthermore, z € bdry(S).

Proof. The assumption on v implies the existence of A > 0 such that

(¢v) < =All¢ll V¢ € N§ (2).
Then there exists 4 > 0 such that

(o) < =SIell Ve NE(w), Yy e SN {z+BB). (34)

Suppose that, contrary to the assertion of the proposition, x; — t;v € S for every 7 along
sequences z; — z, x; € bdry(S), t; L 0. The fact that x; is a boundary point of S implies
that for each ¢ there exists w; € comp(S) arbitrarily close to x;; we shall in fact insist
that

A
lwi =]l < St (35)

Since dg(w;) —dg(z; —t;v) > 0 for each 7, the mean value inequality implies the existence
of
zi € [wg, xj — tiv] + ;B

such that for some (; € Opdg(z;),
(Ci, wi — i + tiw) > 0. (36)

Then for large i, ||G;|| > 0, implying that z; ¢ int(S). Hence for large i, ¢; € N& (u;),
where u; = {projg(z;)} is a point in the boundary of S; this follows from (7) if z; ¢ S or
from (9) if z; € bdry(S). Note that u; — x, and ||(;|| < 1 (since the distance function is
Lispchitz of rank 1). In view of (34) and (36), for large ¢ we therefore arrive at

A
|lwi — zil| > =i,
2

which contradicts (35).
The “furthermore” part of the assertion follows directly from (31) and (32). O

We are now in position to provide an intrinsically geometric proof of the complementary
normal formula for the C-normal cone to an epi-Lipschitz set, as well as a dual form in
terms of the C-tangent cone:

Theorem 4.5. Let S be epi-Lipschitz at © € bdry(S). Then the following hold:

T (x) = —Ty (x). (37)
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N§ (z) = —N§ (). (38)

Proof. By polarity, (37) and (38) are equivalent, and so we shall only prove the former.
To this end, let v € int {T§ (z)}.
We first claim that \

e [N}; (w)] (39)

forallwe S sufficiently near x. To see this, consider 0 # ¢ € N g (w). Then

w € bdry(S) C bdry(S).
By the proximal normal inequality, there exists o > 0 such that
(h,w' —w) < ollw' —w|? Vu'€S.

But by (32), w' =w —tv € S for small positive ¢ and w € bdry(S) near z, in which case

(¢, —tv) < ot? for such t and w. Letting ¢ | 0 gives (v, —v) < 0, which proves (39). Then
it follows that

—v € [Ng(x)] =T (),
and so we have shown that

int {TSC (m)} c TS (2). (40)
In particular,

int{TS(0)} # 0. (40)

Since, by the present epi-Lipschitz hypothesis, the closed convex cone Tg (x) has nonempty
interior, it satisfies (T). Hence (40) gives the inclusion

7§ (z) € —T¢ (). (42)

N

For the reverse inclusion, we have z € bdry(S) (by Proposition 4.4 ). Therefore, in view

of (41), we can let S play the role of S in the first half of the proof, using (31) in place of
(32). Upon doing so, we obtain

TS (z) € T (x),

which verifies (37) and completes the proof. O

An immediate corollary of the preceding proof is now noted:

Corollary 4.6. S is epi-Lipschitz at x € bdry(S) iff S is epi-Lipschitz at z.
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5. Geometry of outer and inner approximations

For a closed convex nonzero cone K C R", we denote the mazrimal angle of K by
O(K) := arccos [min{(u,v) :u € K, v € K, ||[u|]| = ||v|| = 1}],

where we restrict 0 < ©(K) < «. The primary use of the maximal angle is in characteriz-
ing pointedness; in particular, it is clear that K is pointed iff ©(K) < 7 (or equivalently,

cos(©(K)) > —1). Observe that S is Lipschitz at = € bdry(S) iff O(N§ (z)) < 7.
We define the Lipschitz index of a closed set S as

Og :=sup {@[Ng(x)] tx € bdry(S)} .

In view of the closedness of the mapping Ng on S when S is epi-Lipschitz, it follows
that in this case the function ©(N§(-)) is upper semicontinuous on bdry(S). So if S has

compact boundary and is epi-Lipschitz, then bearing in mind that bdry(S) = bdry(S)
(since (T) holds), Corollary 4.6 and formula (38) imply that S is epi-Lipschitz and

Oy =065 = max{O[N§ (z)] : z € bdry(S)}
= max{@[Ng(:v)] : x € bdry(S)}.
Note also that a compact set S is epi-Lipschitz iff Og < 7.

The next result provides basic information on the Lipschitz indices of inner and outer
approximations:

Proposition 5.1. Let S be epi-Lipschitz and assume that bdry(S) is compact. Then
one has

limsup Ogr < Bg. (43)
rl0
and
limsup©g, < Og. (44)
r]0

In particular, both S™ and S, are epi-Lipschitz for all r sufficiently small.

Note: In general, the limits superior in (43)—(44) are not equal, and the asserted

inequalities can hold strictly. Consider for example the situation where S C R2 is a
square. Then ©gr = 0 for all » > 0, but ©g = § = Og, for all small 7 > 0.

Proof. We first will verify (43). Suppose to the contrary that there exist sequences
ri 4 0, z; € S™i, § > 0, and unit C-normals u;, v; to S™ at z;, such that (u;, v;) > Og + 0
for each 7. It is not difficult to verify that

Nei(z)c U NEW). (45)
y€Eprojs(z;)

Therefore u; and v; are contained in the set

Qe)=cod | NE®)

y€projg(zi)
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Since bdry(.S) is compact, we may assume that z; — z € bdry(S), whence d(Q(z), z) — 0.
Also, since ||u|| = ||vi|| = 1, we can assume u; — u and v; — v. We now claim that

the limit vectors u and v are contained in Ng(z); the argument is provided for u. By

Carathéodory’s theorem,
n+1

v =limu; = limz ag ij, (46)
j=1

where Cij € Ng(yf), ||Cf|| =1, a{ > 0, and yf — z as 1 — oo for each

j=12,....n+1. Ifu ¢ Ng(z), then since Ng(z) is closed, convex and pointed, a
standard separation argument yields the existence of a vector p and scalar v > 0 such
that (p,u) < 0 and (p,{) >~ for all unit vectors ¢ € N§ (z). Now, the closedness of the

multifunction Ng implies the upper semicontinuity of N g N €. Consequently, (p, Czj ) >3

for each Cij in (46), for all i sufficiently large. This violates the stated separation property
of p; hence u and v are contained in N (z). Now, (u,v) > Og + &, which contradicts
the definition of ©g, and so (43) has been verified. What is more, this implies that S” is
epi-Lipschitz for sufficiently small 7.

In order to verify (44), one repeats above the argument with S replaced by S. This leads
to

limsup®, a4, < Oy = 0Og
rl0 (%) S

and (S)" being epi-Lipschitz for sufficiently large 7. But then cl[comp((S)")] = S, and

$0 Oz, = Og,, and (44) follows. O
(5) 4

We require a pair of technical lemmas. The first of these provides an elementary “half-

angle inequality”:

Lemma 5.2. Let v and w be nonzero vectors in ™ and let

© := arccos [
o] [|wl|

be the angle between them. Then

cos (%) < vt wll. (47)

~ ol + flwll

Proof. Upon squaring and using the cosine half-angle formula, we see that (47) is equiv-
alent to
1+ cos(©) < ]2 + |lw]|? + 2{v, w)
2 7l + lwll? + 2]l [Jwl]

Now apply the definition of © and regroup terms in order to rewrite this as

(w, ) [Iloll = lwl* < ol kol (ol = flwll)*.
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The validity of the last expression follows from the Cauchy-Schwarz inequality, completing
the proof. 0

The next lemma’s proof is inductive in nature:

Lemma 5.3. Assume Og <, and let x € bdry(S). Suppose that 0 # ( € N&(z) and
r > 0 are such that

( €co {& € NE(z): C is realized by an r—ball} : (48)

Then (C is realized by a ball of radius r [cos (@S)} .

Proof. Let ¢ be as in (48). Then ¢ = Y_;_; a;(;, where the (; are r-realizable P-normals
to S at x, and where the o; are nonnegative scalars summing to 1.
First suppose that s = 2. Upon appealing to (10), we have

Gi .
%Ily—xllzz (G,y—x) Yyes, i=1,2.

Then
o ||Gl| + oGl

2r||a1C1 + aala|

Clearly © < Og < 7, where © is the angle between (; and (3 (and so between «;(; and
ag(y as well). Then by Lemma 5.2 we obtain

1
7||y—x||2z<i,y—x> Vyes, i=1.2
2r cos (%5) ||C||

ly —=|> > (¢, y—=) VyeS, i=12.

Hence ( is realizable by a ball of radius r cos (95 )

Suppose now that s = 3. Then ( can be expressed as a convex combination of two
P-normals ¢ and &, where v is r-realizable and where £ is a convex combination of two P-

normals, each r-realizable. In particular, ) is realizable by a ball of radius 7 := r cos (95) ,
and by the case s = 2, so is . Applying the s = 2 case again then allows us to conclude

2
that ¢ is realizable by a ball of radius 7 cos (%) =7 [cos (95)} . Continuing in this

n
way, until s = n + 1, shows that ( is realizable by a ball of radius r [cos (%)] for each
s=1,2,...,n+ 1. O

Proposition 5.1 and Lemma 5.3 yield the following useful consequence regarding inner
approximations:

Proposition 5.4. Suppose that r > 0 is such that S, # ¢ and Og, < m. Then S, s

proximally smooth of radius
. 0s.\1"
pr =1 |cos — .
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Proof. Let 0#( e N 5 (x). Then certainly ¢ is a C-normal to S, at z, and therefore

(e N(%)T(x) =co [N(%)T (:c)} .

Consider any n € N (%)T (x).

Now, as in (45), we have 7 € Ng(y) and y € projg(z). But then ||z — y[| = r, and so
also = € projg, (y). Hence —n € N 5 (z), and each such P-normal is realized by an r-ball.
Now apply Lemma 5.3 (to Sy). O

6. Applications to invariance issues

We now set, ourselves the task of investigating the degree to which complements, approx-
imations and associated smoothings of S inherit invariance properties posited for S.
First, complementary strong invariance will be dealt with. Our main result in this regard
depends upon the following lemma on continuity in in initial data; this is well known (see
e.g. Deimling [20], Aubin and Cellina [4] or [17]), but we sketch the proof for the sake of
completeness:

Lemma 6.1. Suppose that F' satsifies (SH), (L) and let x(-) be a trajectory of (4) on
[0,T]. Then for any given € > 0, there exists 6 > 0 such that the following holds: For
any yo € z(0) + 6B, there exists a trajectory y(-) on [0,T] satisfying y(0) = y, and
y(T) € z(T) + ¢B.

Proof. Consider the selection of F' given by
f(t,y) := proj g, (@(t)).

The assumptions on F' imply that f is Lebesgue measurable in £, continuous in y, and
satisfies linear growth in y. Hence for any y, € R", there exists a trajectory y(-) of the
differential equation ¢(t) = f(¢,y(t)) on [0, T] satisfying y(0) = y,. Furthermore, in view
of (L),

19(t) — ()]l < K|ly(t) — z(@)||

on [0, T], where K denotes the Lipschitz rank of F'. An application of Gronwall’s inequality
now provides the result. O

Theorem 6.2. Assume that S satisfies (T), and that conditions (SH), (L) hold for the
multifunction F. Then (S, F) is strongly invariant iff (5‘ , —F) is strongly invariant.

Proof. In view of (T), cl[comp(S)] = S. Hence we only need to show that strong invari-
ance of (S, F) implies strong invariance of (S, —F). Suppose, by way of contradiction,
that (S, —F) was not strongly invariant. Then there exists a trajectory of &(t) € —F (z(t))

~

satisfying 2(0) € bdry(S) = bdry(S) (by (T)) and z(T) € int(S) for some T > 0. Now, by
the preceding lemma, there exists a trajectory satisfying y(¢t) € —F(y(t)), y(0) € comp(S),
and y(7') € int(S). A straightforward time reversal argument implies that z(¢) := y(T —t)
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satisfies 2(t) € f(z(t)), 2(0) € int(S), and 2(T') € S, violating the strong invariance of
(S, F). O

Let us now consider the characterization of complementary forms of weak invariance. A
first result in this regard is the following:

Proposition 6.3. Assume that F satisfies (SH), (LG), and that S is reqular and epi-
Lipschitz. Suppose that (S, F) is weakly invariant. Then (5’ ,—F) is weakly invariant.

Proof. Because of regularity, the weak invariance of (S, F') may be characterized by the
condition

TS (x) N F(z) # ¢ YV € bdry(S).
In view of (37), the epi-Lipschitz hypothesis implies that we then have

T (x) N{—F(z)} # ¢ ¥z € bdry(5),

which implies

TSD(x) N{=F(z)} # ¢ Yz € bdry(S).
Therefore (S, —F) is weakly invariant. O
We require the following geometric lemma dealing with certain points in {bdry(S)} N

A

bdry(5):
Lemma 6.4. Let0# (€ Ng(:c) and assume that N§ (z) # {0}. Then

Ng(x) = -—NF(z)={aC:a>0}. (49)

Proof. From the definition of proximal normals, there exists a > 0 such that the closed
ball
Bi =z + ol +a||¢||B

meets S only at x. By hypothesis, there exists 0 # n € Nf;(S). Hence, for some 3 > 0,
the closed ball B
By ==z + fn+ B|nl|B

meets S only at x. Clearly B; N By has empty interior, which implies that

< L> _
<||<||’ /="

The arbitrariness of 7 therefore implies that —N¥ (z) is the half-line on the right of (49)
A similar argument shows that this set also equals N 5 (x). O

Remark 6.5. The preceding lemma may be used in order to prove the following:
(a) If S satisfies the topological hypothesis (T), then

Noary(s)(@) = N& (x) UN (z) V2 € bdry(S).
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This leads to a conclusion regarding weak invariance of the boundary of S:

(b) Suppose that (SH) and (LG) hold. Then under the assumption that ('T) holds, bdry(S)
1s weakly invariant iff both S and S are weakly invariant.

The lemma yields a counterpart to Proposition 6.3 , in which mild proximal smoothness

replaces “regular and epi-Lipschitz”. Note that these sets of hypotheses are independent;

in fact, the following result does not even require the topological assumption (T) (which

always holds in the epi-Lipschitz case):

Proposition 6.6. Assume that F satisfies (SH) and (LG). Suppose that S is mildly

prozimally smooth and that (S, F) is weakly invariant. Then (S , —F) is weakly invariant.

Proof. Let ¢ be a nonzero P-normal to S at z. In view of the proximal characterization
of weak invariance of (S, F'), the lemma then tells us that hp(z,—() < 0. But then

h_p(x,¢) <0, and the weak invariance of (S, —F) follows. O

Remark 6.7. Proposition 6.3 is false if regularity is not assumed, and Proposition 6.6
is false if there exists z € bdry(S) with NI (z) = {0} (i.e. if mild proximal smoothness
does not hold). A single simple example which illustrates both of these phenomena is
the following: Let S be a compact subset of R? which near the origin coincides with the
epigraph of the function —|z|, and take F(z) = {(z1,—1) : |z1| < 1} for all 2 near the
origin.

We now turn our attention to the question of inheritance of weak invariance by approxi-
mations. For outer approximations we have the following:

Proposition 6.8. Suppose that S is compact, (SH) holds, and that (S, F) is weakly

invariant. Then for any given ¢ > 0, (S™, F + ¢B) is weakly invariant for all 7 > 0
sufficiently small.

Proof. Let ( € NE (z), and let y = {projg(z)}. Then ¢ € NI (y), and the weak invari-

ance assumption implies Ar(y,() < 0. Then since F' is uniformly Hausdorff continuous
on a neighborhood of the compact set S, it is readily noted that r may be taken small
enough to ensure that by z(z,() <0. O

We now consider inner approximations, in which case further assumptions on S are re-
quired.

Theorem 6.9.  Suppose that (SH) holds. Assume that S is compact, regqular, epi-

Lipschitz, and that (S, F) is weakly invariant. Then for any given € > 0, (S;, F +¢B) is
weakly invariant for all r > 0 sufficiently small.

Proof. We proceed by way of contradiction. Suppose that the assertion was false. Then
there would exist € > 0 and sequences 75 | 0, z; € Sy, and (; € Né’r.(xi) N €, such that
for each ¢ Z

hF+E§(xi, ¢i) > 0. (50)

The fact that ||(;|| = 1 implies that
hp(zi, G) > e. (51)
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Since Sy (z;) € S and S is compact, we may extract a subsequence (not relabeled) such
that z; — = € bdry(S) and ¢; — . We claim that

¢ € N§ (). (52)

This will provide the requisite contradiction, because the Hausdorff continuity of F' then
implies hp(z, () > &, violating (16), which characterizes weak invariance of (S, F') when
S is regular.

We now turn to the verification of (52). Let us first note that, by Proposition 5.1 |

the sets Sy, are epi-Lipschitz for i sufficiently large, and so cl[comp(Sy,)] = (S)". Then
Remark 3.8 (b) implies that for 7 taken large enough,

~Gewq U NGy (53)

lly—=sll<i~

Now, if n € N(%)

implies —n € Ng(w). Upon noting that

.(y), then n € Nf;(w) C Ng(w), where {w} = projg(y). Hence (38)

lw =zl <flw =yl + ly = zill + [lz; — =[] = 0
as i — 00, it follows from (53) that

n+1

¢=lim |) ole|, (54)
j=1

1—00

where the Ckzj are nonnegative and fg € Ng (wf )N Q, im0 w{ = z. Now, since Ng is
a closed multifunction, we may assume that {-“g — &€ Ng(:r) N as i — oo, for each
j. Suppose (52) did not hold. Then, in view of the pointedness of Ng(x), there would

exist a vector p € R™ and a scalar 6 > 0 such that ({,p) < 0 and (£,p) > § for every
€€ Ng(x) N Q. It follows that for ¢ sufficiently large, (&, p) > g for each j =1,2,...,n.

But then (54) implies ({,p) > 0, a contradiction. Hence (52) holds and the proof is
completed. O

Remark 6.10. The example in Remark 6.7 shows that the regularity hypothesis is
crucial in Theorem 6.9.

A result now ensues which asserts the existence of C'*-smooth inner approximations S
which inherit the weak invariance property from S (albeit for a “slightly enlarged” velocity
map F'). This weakly invariant “inner smoothing” is a double approximation of the
form (Sr)‘s; that is, an outer approximation of an inner approximation. The smoothness
properties of such sets were originally studied by Benoist [8].

Theorem 6.11. Let S be compact, epi-Lipschitz and regular. Let F satisfy (SH),
and assume that (S, F) is weakly invariant. Then given any £ > 0, there ezists a set



214 F. H. Clarke, Y. S. Ledyaev, R. J. Stern / Complements, approzimations, smoothings

Q C int(S) such that d(Q, S) < &, where Q is C**-smooth, and such that (Q, F + ¢B) is
weakly invariant.

Proof. By Theorem 6.9 , (S;, F + ¢B) is weakly invariant for small 7. Furthermore,
by Propositions 5.1 and 5.4, S, is proximally smooth for small positive . Hence, upon

fixing such an r and bearing Proposition 6.8 in mind, the set @ = (S,)® has the required
properties for sufficiently small § > 0. O

Next on the agenda is the existence of a Lipschitz feedback law which achieves penetra-
tion of sets S satisfying certain hypotheses including a strict tangentiality or inwardness
condition:

Theorem 6.12. Let S be compact, epi-Lipschitz, and prorimally smooth. Assume that
(SH) holds and that there ezists o > 0 such that for every x € S one has

he(z,Q) < —all¢]| V¢ € Ng(x). (55)

Then there exist § > 0 and v > 0 satisfying
S C int [(SV)‘S} (56)

and the following: For any ¢ > 0, there exists a Lipschitz function v on (57)5\57 such
that

v(z) € F(z) +¢B, (57)

and such that for any zo € (S,)°\ int(S), the solution to £(t) = v(z(t)) emanating from
z(0) = zg satisfies x(T) € int(S) for some T > 0.

Proof. Let r € (0,(), where 3 is the radius of proximal smoothness of S. Then S =
(S")r, and S is epi-Lipschitz for small y (and in particular satisfies (T)). Armed with this

(as well as the fact that S is epi-Lipschitz since it is C'T), we deduce that Sy = (S7)y4.
Also, by Propositions 5.1 and 5.4, we see that for sufficiently small y, there exists 6 > 0 so
that (56) holds, with dg, € C'* on (S4)°\S,. Furthermore, 7 > 0 can initially be chosen
small enough a priori to ensure that

hp (@, Vs, () = min (Vds, (2),v) < —g Ve (S,)°\S, (58)

Indeed, if z € (S,)%, and ds,(z) = p >0, then Vdg (v) € N(Igv)p(a:) N as a consequence

of proximal smoothness, and condition (55) leads to (58) via an argument similar to the
proof of Proposition 6.8.

Denote the minimizing set of v in (58) by I'(x). It is readily checked that I'(z) is compact
and convex. Also, the multifunction I is upper semicontinuous on (57)5\5'7, which follows
readily from the continuity of Vdg and Hausdorff continuity of F. It follows that for

every 7 > () there exists a locally Lipschitz function v such that gr(v) C gr(I')+7B (where

“gr” denotes graph); see e.g. [4] for this “approximate selection” result . (Since (S,)°
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is compact, v is in fact globally Lipschitz on that set.) Any such v, for 7 small enough,

satisfies
o

(Vds, (), 0(z)) < =7 V2 €(5))°\S,.

Hence starting at any point z(0) = x9 € (Sy)°\{int(S)}, the (unique) solution of Z(t) =
v(z(t)) satisfies

d Q

—dg (z(t)) < —= V>0

s, (n(t) < 5 Vi>
on its maximal interval of existence. Consequently, z(-) is a trajectory of the differential
inclusion (4) which enters the interior of S. This completes the proof. O

7. Remarks on analytic versions

Let f : R® — (—o0,0] be a lower semicontinuous extended real valued function. For
r > 0, let g, denote the infimal convolution of f with the function

=2 = lull?if flull <r
ky(u) == {

00 otherwise

That is,

gr(2) i= it {f(y) +kelo = v)}.
y€e

Then it is not difficult to show that

epi(gr) = {epi(f)}"

and
dom(gy) = {dom(f)}".

Seeger [26] and Toffe [21] studied the smoothing properties of this type of convolution op-
eration in case f is convex. Unfortunately, for discontinuous f, ¢, need not be continuous;
furthermore, one can exhibit a continuous f such that g, is not locally Lipschitz. Hence
the convolution g, does not possess the nice regularization properties of the Moreau-Yosida
infimal convolution

inf {f(y) +rlle—yl*}

yeR®
when f is only required to satisfy a mild coercivity condition; see Attouch [1]. On the
other hand, as will be made clear, the “geometric convolution” g, is the right tool for
formulating analytic versions of the invariance results of the preceding sections. Before
proceeding, let us note that if f is Lipschitz of rank K on R", then so is g,, for any r > 0.
To see this, let n = (¢, —1) be a P-normal to epi(g,) = {epi(f)}" at (z, gr(z)), where z
is arbitrary. Then 7 is a P-normal to epi(f) (at the unique point closest to (z, g-(z))),
implying ||¢|| < K. But then g, is Lipschitz of rank K.
Since g, is a lower approximation of f, we are enticed to define an upper approximation
as the supremal convolution

hi(x) == sup {f(y) — kr(z —y)}.
yeR?
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This function has the same domain as g,, and

hyp(hr) = {hyp(f)}"

We can also consider the double convolutions
wr,s(x) = inf {hr(y) + ks(x - y)}
yeR"

and

tr,s(z) == sup {gr(y) — ks(z —y)}.

yeR™

As is the case with g,, all these functions inherit the Lipschitz rank of f should f be
globally Lipschitz.
Lasry and Lions [22] and Attouch and Azé [2] considered double convolutions built from
the Moreau-Yosida infimal convolution. In spite of the fact that the convolutions g, and
h, fall short of the Moreau-Yosida convolution as regularizers of nonconvex functions, it
turns out that when f is Lipschitz, double convolutions of the type w,, and s do in
fact exhibit similar smoothing properties to those derived in [22] and [2]. For example,
when f is globally Lipschitz, we have

epi(hy) = {epi(f)}- (59)

Since hy is globally Lipschitz, one has ©cpip,) < 7, and therefore by Proposition 5.4,
epi(hy) is proximally smooth. Then for small s > 0, the set [{epi(f)}r]* = epi(wyrys)
is C1*-smooth. Furthermore, it is quite transparent that when f is also assumed to be
regular, then (epi(wy ), (F x {0})¢) inherits weak invariance from (epi(f), F' x {0}) in the
sense of Theorem 6.11, when the underlying differential inclusion satisfies (SH), (LG) and
a uniform Hausdorff continuity assumption. (One needs to posit these extra hypotheses in
order to make the earlier arguments work, because the sets presently under consideration,
i.e. epigraphs, are unbounded.) Since (Vw,s(x), —1) is a proximal normal to epi(w;, ) at
(z, wrs(x)) for any x € R", weak invariance of (epi(wys), (F x {0})?) is equivalent to the
condition
: n
(v,u)e(II?(lxI;x{o})E( u+ (Vwrg(z),v)) <0 Ve R
After recapping this discussion in Hamiltonian terms, one arrives at the following result:

Proposition 7.1. Let f : R® — R be globally Lipschitz and regular. Assume that F is
uniformly Hausdorff continuous on R™ and that (SH), (LG) hold. Suppose that (f, F) is
weakly decreasing, or equivalently, the proximal Hamiltonian inequality

hp(x, apf(.’r)) <0 VzeR" (60)

holds. Let &€ > 0 be given. Then for each r > 0 sufficiently small, s > 0 can be in turn
chosen sufficiently small (depending on r), such that wy s is a C™ function satisfying

wrs(x) > f(x) VoeR", (61)

|f(z) —wrs(x)|]| <& V2eR, (62)
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as well as the smooth Hamilton-Jacobt inequality

hp 5@ Vuwrs(r) <& VzeR" (63)

Another smoothing result in a similar vein to Proposition 7.1 (but one involving only a
single convolution, and where the smoothing function is majorized by f) can be obtained
by similar reasoning if the assumptions on f are strengthened to o-weak converity; that
is, there exists o > 0 such that f(z) + o||z||? is a convex function. The discussion in §5

of [14] shows that epi(f) is then proximally smooth (of radius ).
Proposition 7.2. Let F' satisfy the hypotheses of Proposition 7.1. Assume that f is

o-weakly conver and satisfies the Hamilton-Jacobi inequality (60). Let ¢ > 0 be given.
Then for all small r, one has

gr(z) < f(z) Va, (64)
1f(x) —gr(2)] <€ Vu, (65)

and
hp 5@ Vor(z)) <0 VzeR" (66).

We can use the smoothing function w; s in Proposition 7.1 to construct a “universal”

Lipschitz feedback law (i.e. one operative on all of ®”) which “nearly” achieves monotone
behavior along trajectories:

Theorem 7.3. Let the hypotheses of Proposition 7.1 hold, and let v > 0 be given. Then
there exists a locally Lipschitz function © on R" satisfying v(x) € F(x) + vB, and such
that

f(a(t) < f(@(0)) +vt+y VE=0 (67)

along solutions of &(t) = v(x(t)).

Proof. Let € > 0 be given, and take r, s so that wy s is as in Proposition 7.1. From (63)
we obtain

min _(Vw,4(z),v) <e VzeR" (68)
vEF(z)+eB

We now proceed similarly to the proof of Theorem 6.12. Denote the set of minimizers in
(68) by I'(z). Then I' is an upper semicontinuous compact convex valued multifunction
on R". Consequently, for any 7 > 0, there exists a locally Lipschitz function v : R — R
satisfying

gr(v) € gr(l) + 7B Cgr(F)+eB+7B VxR

Let the (global) Lipschitz rank of f be K. Then ||Vw,4(z)|| < K on R", and therefore
from (68) we obtain
(Vwys(z),(x)) < 7K + €. (69)

Hence, along solutions of z(t) = ©(x(t)) one has

d

awm(x(t)) < 7K +¢,
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implying that
wys(2(t)) < wys(2(0)) + (TK +¢e)t.

This, combined with (62), yields (67) upon taking ¢ and 7 sufficiently small, and completes
the proof. 0

Remark 7.4. Another reference in which the “Lipschitz plus regular” hypothesis was
used in constructing “invariant feedback”—but in a geometric setting (as opposed to an
analytic one as in the present section)— is Clarke, Ledyaev and Stern [18], which dealt
with the existence of equilibria in nonconvex epi-Lipschitz sets. Specifically, the proof
techniques of that article show that if a compact homeomorphically convex set S C R"
is weakly invariant with respect to a multifunction F' satisfying (SH) (where now F need
only be defined on S), and if S is regular, then for any given v > 0 there exists a Lipschitz
function v on S, with gr(v) C gr(F) + v, such that S is invariant (in the classical sense)
with respect to the differential equation %(¢) = f(z(¢)). Examples in [18] demonstrate
that both the regularity and epi-Lipschitz hypotheses are crucial in this assertion.

Remark 7.5. An alternate method of proving Theorem 7.3, based upon C-calculus
(as opposed to smoothing ideas) is to replace (60) with (20)—which is permissible by the
regularity hypothesis—and then apply Theorem 10.2 of [12].
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