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For x € H\ S and § > 0, the d-projection of z onto S, is the set proj%(x) = {s € S:|ls— 2|2 <
dg(z)? + 62}. We prove that each vector x — s with s € proj%(x) can be approximated by some nearby
proximal normal. We also give a simple proof (new in the context of an infinite dimensional Hilbert

space) of a result due to Rockafellar [17] concerning the approximation of “horizontal” normals to the
epigraph of a lower semicontinuous function by “non-horizontal” ones.
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1. Introduction

The purpose of this article is to shed new light on a few fundamental results in proximal
analysis, in a Hilbert space setting. We are concerned mainly with the following two
issues: first, the approximation of “almost”-proximal normal vectors to a closed subset
S of a Hilbert space H by nearby exact ones, and second, a generalization of a result
by Rockafellar [17] on the approximation of “horizontal” normals to the epigraph of a
lower semicontinuous function by “non-horizontal” ones. Our approach, based on the
distance function and its differentiability properties, emphasizes once again the particular
relevance of these tools to geometric issues in nonsmooth analysis.

The results have been motivated in part by certain applications to the theory of differential
inclusion problems involving invariance of trajectories and monotonicity along trajectories
(see [10, 16]).

If H is a Hilbert space and S is a closed nonempty subset of H then the distance function
dg is defined by

dg(z) := inf{||xz — s||: s € S}.
We recall that the distance function is globally Lipschitz of rank 1. The projection of x
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onto S is the set of closest points to x in S:

proj(a) == {s € S:[la — 5| = ds(a)}.

For § > 0, we introduce the §-projection of x onto S, which is the set
proj%(z) := {s € S: ||s — z||* < dg(z)? + 62}.

Note that proj%(ac) is always nonempty if § > 0, while projgv(:v) coincides with the possibly

empty set projg(x).
A vector u € X is said to be a proximal normal to S at a point s belonging to S if there
are x ¢ S and A > 0 such that

u= Az —s) and s € projg(z).

The set of all proximal normals to S at s is denoted N 5 (s) and is referred to as the
proximal normal cone to S at s. If x € int S, or if no proximal normals to S exist at zx,
then by convention, N (z) = {0}.

Let f: H — (—o00, 0] be a lower semicontinuous function and z € dom f := {y: f(y) <
oo}. An element ¢ € H is said to be a proxzimal subgradient of f at x provided that

(¢, —1) € Napi 5 (z, f(2)) -

The set of proximal subgradients of f at z, denoted Opf(z), and called the prozimal
subdifferential of f at x can be empty; however, it is nonempty on a dense subset of
dom f. The proximal normal cone can be given an analytical expression via the indicator
function of the set S:

NE(s) = 0pys(s) Vses. (1.1)

The following particular sum rule will also be invoked.

Proposition 1.1. Let g: H — R be of class C* on an open set Q and zy € Q be a local
minimum for the function f + g. Then —g'(z¢) € Op f(zo).

We will require the following result of [11] regarding proximal subdifferentiability of the
distance function and the existence of nearest points (for related work in Banach space
settings see [1, 2, 13, 14]).

Theorem 1.2. Suppose z ¢ S and ¢ € Opdg(x). Then
(a) ||<|| =1, projg(z) is a singleton {s} and

r—S

opds(o) = { 2= b = 16} € NE (o)

[l — s]]

(b) any minimizing sequence for the infimum defining dg(x) converges in norm to s;
(¢) if zn — = and §, € Opdg(zy) then G — C.

The closed t-outer approzimation of S (t > 0) is defined by

S(t) :={x € H:dg(z) < t}.
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In [12], the authors gave the following characterization of the subgradient of the distance
function.

Theorem 1.3. Suppose that dg(u) =t > 0. Then
Opds(u) = NEy(u) N {C € H ¢l = 1},

where emptiness is not precluded.

More about the geometry of the t-outer approximation was developed in connection with
proximally smooth sets and the Complementary Normal Formula (see [12, 8]).
We will make reference to the following consequence of the Mean Value Inequality of [7].

Theorem 1.4. Let xz, y € H. Then for all v < dg(y) — ds(x) and € > 0, there exist
z € [x,y] +eB and ¢ € Opds(z) such that

r< <Cay_$>

2. Geometric Approximations

The converse of Theorem 1.2 is not necessary true; i.e. even when projg(x) is a singleton
we can have Opdg(xz) = @ (for an example see [11], Remark 4.13). However, a partial
converse still holds; it was inplicitly stated in [11]. Here is the explicit formulation.

Proposition 2.1. Let x ¢ S and s € projg(z). Then for all t € (0,1),

Opds(s +t(z — ) = {Q}

[l — ]|

Proof. We may suppose without loss of generality that ||z — s|| = 1. Fix ¢t € (0,1) and
let u:=s+t(r—s). Thenz—u € Né)(t)(u). (Indeed: we have dgqy(z) < |lz —ul| =1-t.
Suppose that the inequality is strict. Then there exists z; € S(t) such that ||z —z¢| < 1—t
which implies that dg(z) < dg(z¢) + ||z — ¢|| < t + (1 —t); contradiction.) Now we apply
Theorem 1.3 to deduce that dpdg(u) # (). Then by Theorem 1.2 and since s € projg(u),
Opds(u) = {(u—s)/||lu—s||} = {(x — s)/||x — s||} as required. O

We note the crucial role played by the set S(t), which however does not appear explicitly
in the above statement.

The following result asserts that approximate projection directions can be estimated by
nearby exact ones.

Theorem 2.2. Let dg(xz) > 0. Then for any § € [0,dg(z)) and € € (0,dg(z) — 9), for
any s € proj%(x), there exist T € S, ||T — z|| < § + 2¢ and ¢ € Opds(T) such that

4(6 +¢)
ds(z)

Further, projg(T) = {3} for some 5 € S satisfying ||s — 3| < d +«.

H v (2.1)

<

[l = ]|
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Proof. We may suppose § > 0, since for 6 = 0 the conclusion follows from Proposi-
tion 2.1. Consider the function f(y) := ||y — ||* + ¥s(y) where ¢g is the indicator
function of the set S. By hypothesis, we have

f(s) < ingf(y) + (0 + 5)2.
ye

We apply the Borwein-Preiss Variational Principle with A = § + ¢ (see Theorems 2.6 and
5.2 in [3]) to deduce the existence of points 5 € S and zZ € H such that

IIs—s||<d+e |Z—3||<d+e
and such that the following function of y attains a minimum over S at y = s:
ly — 2® + [ly — =[I*.
It follows from Proposition 1.1 and formula (1.1) that 2’ — s € NZ (), where
o =z+(z-3).

Because ||z — 5|| < § + & < dg(x), we have 2’ ¢ S. We now apply Proposition 2.1 to
deduce the existence of T € S, ||T — 2/|| < € and ¢ € Opdg(T) such that

/! _
r — S
¢

R
where projgq(z) = {5}. Also,
|17 — =l < [[Z — 2’| + |2’ — 2] <0+ 2,

as required. It remains to verify (2.1), which will follow if we prove that the quantity

i

is bounded above by 4(§ + €)/dg(z). But the quantity in question can also be written as

x—Ss ' —3

’

le = sl [l«" —5]]

=ty @ =9 - -9+ (=t 1) @ -9
le =l e =5l |z — s||
e =l + 15— sll + [lle — sl — ||’ — 5]
N ds(z)
I_ __
<ol =zl + 15—l
ds(z)
_ Iz =l + s = sl
ds(z)
40+e)
ds(z)
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As a consequence we obtain the Proximal Density Theorem (see [12]; see also [15, 1] for
a Banach space version).

Corollary 2.3. The function dg has a nonempty subdifferential on a dense subset of
H\ S, so projg(z) # 0 for all z in a dense subset of H\ S.

We remark that Theorem 2.2 is used in [16] to extend the “proximal aiming” technique
of [10] to infinite dimensions.

We now address the issue of “horizontal” normals to epigraphs of functions, an impor-
tant point in developing proximal calculus. By definition, to any proximal subgradient
of a lower semicontinuous function at a point y € dom f there corresponds a proximal
normal to the epigraph of f at (y, f(y)). But there are proximal normals to epi f which
do not necessarily correspond to some subgradient of f. These are the so-called “hori-
zontal” normals, vectors of the form (y*,0). (Locally Lipschitz functions do not exhibit
such anomalies.) However, one can find a nearby subgradient of f defining a nearby
“nonhorizontal” normal.

Theorem 2.4. Let f: H — (—o0, +o0] be a lower semicontinuous function, y € dom f
and (y*,0) € Né;if(y,f(y)) with y* # 0. Then for any € > 0 there exist T € (y +
eB) Ndom f with |f(Z) — f(y)| < &, A € (0,¢), and ( € y* + B such that ({,—\) €

NG 1@, f(T)).

Proof. Let us set ¢ := f(y), S := epif and without loss of generality assume that
ly*|| = 1. Then there is a point (x, ¢) ¢ S having closest point (y, ) in S, and such that
(x —y)/|lzr — y|| = y*. Also, in light of Proposition 2.1, there is no loss of generality in
supposing that (y*,0) belongs to dpdg(z, ¢).

Note that for any (z/, ') we have

ds(z',¢') <dgs(a',¢' —t) Vit >0,

as a consequence of the nature of an epigraph. Suppose that it is possible to find (z/, )
arbitrarily close to (z, ) and ¢ > 0 arbitrarily small so that strict inequality holds in this
relation. Then Theorem 1.4 produces an element (¢, —\) of Opdg(Z,P), where (T, ) is
as close to (z, ) as we wish, such that

0 <{(¢,=A), (@, ¢ — 1) — (a',¢")).

Consequently, A > 0. Also, by Theorem 1.2.c, such ({, —\) necessarily converges to (y*,0)
so the theorem follows.
The only situation to be dealt with, then, is that in which there exists § > 0 such that

|z —z|| <6, |¢ —¢|<d=ds(z,¢ —t)=ds(z',¢) Vte]0,d] (2.2)

Choose z; — = and t; € (§/2,6) so that (z;,0 — t;) & epif = S (we can do so by
semicontinuity of f) and for certain y; € H and §; > 0,

ds(zs, ¢ — t;) = ||(zs, 0 — i) — (vs, f(ys) + 6)|

(by the Proximal Density Theorem). Then in view of (2.2), for large i

ds(zi, @) = |[(zis ) — (Wi, f(yi) + 6 + ti)]]-
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Now, since dg is continuous and x; — x, we have

(2, ) — (s, f(ys) + 0 + ti)|| = ds(z, o)

which means that f(y;) + 6; +t; € S is a minimizing sequence for the infimum defining
ds(z, ). Thus

by Theorem 1.2. But the limit of f(y;)+ d; +¢; must be at least f(y)+9/2, since t; > 6/2
and f is lower semicontinuous. This contradiction completes the proof. O

Remark 2.5. Rockafellar, in his paper [17], gave an optimization-based proof in the
case of R™. Borwein and Strojwas [5] built upon Rockafellar’s idea and proved the result
in the framework of a reflexive Banach space with Kadec and Fréchet differentiable norm.
The proof is very technical, due not only to the specific geometry of the space (less rich
than the geometry of a Hilbert space) but also due to their “constructive” approach. Our
approach, based on the differentiability properties of the distance function and on the
Mean Value Inequality, is shorter, less technical, but limited to the Hilbert space for the
moment.
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