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In this paper we are interested in functions defined, on a set of matrices, by the mean of quadratic forms
and we compute the rank-one-convex, quasiconvex, polyconvex and convex envelopes of these functions.
For that, and for a given quadratic form, we prove, in a first part, some general decomposition results
for matrices, with a rank-one-compatibility condition. We also study the James-Ericksen stored energy
function.
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1. Introduction

Let us denote by IM™*™ the set of m x n real matrices and by W a function defined on

M™*™ with values in IR. Moreover, let 2 be a bounded domain in IR”. The Calculus of
Variations in the vectorial case addresses problems of the type : minimize

I (u) = /Q W (Vu(z)) d (1.1)

over some class of functions. Here Vu denotes the Jacobian matrix of u -i.e. the matrix

defined by
ou; . :
Vu = <6mz~)’ i=1,....m, j=1,...,n
J
where u1, ..., U, denote the components of u. In general I; (u) is not lower semicontinuous

and the direct method of the Calculus of Variations fails for the minimization of (1.1) (see
[8]). One way to overcome the situation is to consider the so-called relaxed problem, that
is to minimize

I(u) = /Q QW (Vu(z)) dz (1.2)
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where QW denotes the quasiconvex envelope of W. We refer the reader to [8] for the
relationship between (1.1) and (1.2). Before to go on, let us recall the definition of
quasiconvexity and related notions.

e IV is said to be polyconvex if there exists a convex function W such that

where T'(F') stands for the vector of all minors of F' (see [8]).

e W is said to be quasiconvex if
1
W(F) < — / W(F + Vo(z)) da (1.3)
1Dl Jp

for any bounded domain D and any smooth function v : D — R, vanishing on the
boundary of D.

e W is said to be rank-one-convez if
WOAF+(1-)G) < A\W(F)+ (1-XMW(G)

for any couple F, G such that
rank(F — G) <1

and any X € [0, 1].

The notion of polyconvexity has been introduced by J. Ball (see [1]) to address problems
of nonlinear elasticity (see also [5], [6]). Quasiconvexity goes back to Morrey (see [11])
and insures weak lower semi continuity of I1(u) in some spaces (see [12], [8], [2]). Of
course, condition (1.3) is not easy to test.

It is now well known that

W convex = W polyconvex =—> W quasiconvex =—> W rank-one-convex. (1.4)

These implications are one way in the sense that the converse implication does not hold
in general. It has been an outstanding challenge to decide that

W' rank-one-convex #= W quasiconvex.

This has been established recently by V. Sverdk (see [16]) for dimensions m > 3 and
n > 2. Of course, in the case m =1 or n =1 all these notions are the same (see [8]).
This terminology being precised, one can define the following convex, polyconvex, quasi-
convex, rank-one-convex envelopes by setting

CW =sup{f; f convex and f < W}

PW =sup{f; f polyconvex and f < W}

QW =sup{f ; f quasiconvex and f < W}
RW =sup{f ; f rank-one-convex and f < W}.
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Clearly by (1.4) one has
CW < PW < QW < RW (1.5)

and these four envelopes coincide in the case m = 1 or n = 1, but also, in the general
case, when RW is convex.

The goal of this paper is to compute some of these envelopes for functions W defined on
the set of m x n matrices through quadratic forms.

In the last section, we will consider a function used, for instance in [7], to study a two-
dimensional crystal. This energy density, proposed by Ericksen and James, is given by

9 2
O(F) = $(C) = w1 (tr(C) = 2)° + rachy + s ((%) - 52) (L.6)

where

O=FTFp = <C11 612)
€21 C22

is the Cauchy-Green strain tensor, where the nonnegative constants 1, k2, k3 are elastic
moduli, and where ¢ is the transformation strain.

In the case where k3 = 0, the function ¢ is convex and thus the rank-one-convex envelope
of ¢ is convex and can be compute by using the Pipkin formula (see [13], [14], [15] and

[10]).
See also [9] for a numerical approach of minimization problems associated to the func-
tionnal ¢.
Finally, let us recall that, for « € R and b € R", we denote by a ® b the rank-one-matrix
defined by (a ® b);j = a;b;.
2. Decomposition results for matrices
In this section, we denote by ¢ a quadratic form defined on IM™*™:
g: M™" - R

and by B the symmetric bilinear form associated to ¢, that is the function defined on
men X men by

1

VE.G € ™", B(F,G) = 5 (a(F +G) — a(F) - a(G)).

We will assume that ¢ # 0, and thus either the range of ¢ is IR, or ¢ is nonnegative, or ¢
is nonpositive.

We have the following decomposition result:
Proposition 2.1. Let us consider F € M™*" and o € R such that q(F) < a. Assume

there exist a € R™ and b € R" satisfying q(a ® b) > 0. Then, there exists A € [0,1] and
t € Ry such that, if E =ta®b, one has

qF+AE)=q(F - (1-)E)=q. (2.1)
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Proof. First, let us remark that, for F, E € M™*™ and X € [0, 1], one has
q(F + \E) = q(F) + 2)3(F, E) + \%q(E) (2.2)
¢(F = (1= NE) = q(F) = 2(1 = N)B(F, B) + (1 — A)*q(E) (2.3)

If ¢(F) = «, then (2.1) holds with ¢ = 0. Now, let us assume that ¢(F) < «. Since
g(a ®b) > 0, we have
B(Fa®b)? q(F)—a

(@2 gaod) 0

and, if we set

tZQ(ﬁ(F,a(X)b)2 ¢(F) —«

3
_ FE =
q(a®b)2 q(a®b)> and ta®b

then
AEBY o) o 1 (a0l ) 1 -
q(E)? oE) 2\ qa®b)?  qa®d)) 4~ '
Consequently, by choosing
1 26(F, E))
A== (1 - 2.5
2 q(E) 25
we obtain, with (2.4)
—20(F, E)
A+ (A—-1)=
-1 q(E)
and
BE,E? 1 _q(F)-a
MMA-1)=—r-—F——"——-="—"—
(2 (2
Therefore, A and A — 1 are the solutions of the following equation
q(F)X? +26(F, E)X +q(F) —a = 0.
Then (2.2) and (2.3) give (2.1). Moreover, (2.4) and (2.5) imply that A € [0, 1]. O

Now, let us consider © : R™ x ... x R™ — R? an antisymmetric n-linear function,

and denote by © the function defined on M™*" by O(F) = O(F1, ..., Fy), where Fj is
the jth column of the matrix F'.
Proposition 2.2. Let us consider F € M™*" and o € R such that q(F) < a. Assume
there exist j € {1,...,n} and b € R" satisfying

q(F5®b) >0 and b =0

h

where b; 1s the jt entry of b.
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Then, there exist A € [0,1], A, B € M™*" such that,

F=(1-MNA+AB, rank(A-B)<1 (2.6)
q(4) = ¢(B) = (2.7)
©(A) =0(B) =0(F) (2.8)

Proof. First, we use the previous proposition and so there exists a real ¢ such that, if
we set
A=F+XMF;®b and B=F-(1-AtF;®b
one has (2.6) and (2.7).
Next, since b; = 0 and © is antisymmetric,

O(A) = O(F + MF; ®b)
= O(F1 + MbiFj, ..., Fj_1+ Mbj_1Fj, Fj, Fjy1 + Mbj1Fj, .. ., Fy + Atb, Fj)
=O(Fy,..., Fp).
By same way, we compute ©(B) and (2.8) holds. O

Remark 2.3. This last proposition gives, in the case where ¢ is positive definite, some
results already obtained in [3] (lemme 3.2 p. 31, lemme 1.2 p. 41) and [4] (theorem 2.1).

3. Rank-one-convex envelope of function depending on a quadratic form

In this section, we still denote by ¢ a quadratic form defined on M™*" (¢ # 0), by I an
interval of IR and by ¢ : I — IR a function satisfying

inf = —00. 3.1
%glw(t) > —00 (3.1)

Thanks to (3.1), there exist o €I and a sequence #;, € I such that

lim ¢, =a and lim @(tx) = p. (3.2)
k—+o0 k—+o0

For instance, if ¢=1({u}) # 0, we can choose a € ¢! ({}) and Vk, t;, = a.
We have the following result:

Lemma 3.1. Let us assume that either I = IR or I = IRy, and consider the function
W defined on IM™*"™ by
W(F) = ¢(q(F)).

If there exists a rank-one-matriz a @ b such that

¢(a®b) >0 (3.3)
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then, for F € M™*™, one has
q(F)<a = RW(F)=QW(F)=PW(F)=CW(F)=pu. (3.4)
Proof. Let us consider FF € M™*" such that ¢(F) < a. Then, by (3.2), there exists

ko € IN such that

So, using proposition 2.1, there exist a rank-one-matrix Ej and \; € [0, 1] such that
q(F + MpE) = q(F — (1 = Ap) E) =t
and if we set Ay = F' + A\ E and By, = F — (1 — \;) Ey, then
F = (1—-Xg)Ag + M\ By
rank(Ag — Bg) <1
q(Ax) = a(Bg) =t

and thus
W(F) < (1= Ag) RW (Ag) + A\ RW (By)
< (1= X)W (Ag) + AW (Bg)
= (1 = Ar)w(q(Ax)) + Arp(e(Br))
= ¢(tx).

Therefore, using (3.2) we obtain

¢(F) <a = RW(F)=p.
Finally, by continuity of ¢ and RW, and thanks to (1.5), (3.4) holds for all the matrices
F such that ¢(F) < a. O

Theorem 3.2. Let us assume that I = R4, q is nonnegative, and consider the function
W defined on IM™*"™ by

Then, for I € M™*", one has
q(F)<a = RW(F)=QW(F)=PW(F)=CW(F)=pu.

Proof. In order to apply the previous lemma, we are going to prove that the condition
(3.3) is always true.
Since ¢ is nonnegative and ¢ # 0 then, thanks to the Gauss-decomposition theorem, there

exists a linear form [ 2 0 on IM™*" such that
VF e M™™  ¢(F) > (I(F))>.

Next, [=1({0}) is a hyperplane of IM™*™ but the vectorial space spanned by the rank-

one-matrices is the whole space IM™*". Therefore, there exists a rank-one-matrix a ® b
such that ¢(a ® b) > 0.
So, we can apply lemma 3.1 and the proof is complete. O
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Theorem 3.3. Let us assume that I = R, g : M™*" — R is onto, and consider the
function W defined on M™*™ by

If there exist two rank-one-matrices a ® b and ¢ ® d such that
g(a®b) >0 and q(c®d)<0 (3.5)
then, RW = QW = PW =CW = p.

Proof. Let F € M™*",
First, assume that ¢(F') < «; then, thanks to (3.5) and lemma 3.1, we obtain

RW(F) = QW (F) = PW(F) = CW(F) = pu.

Next, assume that ¢(F) > «. Let us consider the function ¢ : R — IR defined by
@(t) = ¢(—t). Then

W(F) = ¢(—q(F))
—g(c®d) >0
and inf o(t) = u
thus, since —¢(F') < —a, we can apply lemma 3.1 and obtain
RW(F)=QW(F)=PW(F)=CW(F) = p.
The proof is now complete. O

Remark 3.4. For a quadratic form with a range equal to IR, it is not always possible
to have (3.5); indeed, when m = n = 2, the quadratic form F —— det I’ is onto and for

every a,b € IR? one has det(a ® b) = 0.

4. Some applications

Example 4.1. Let ¢ : R — R be convex and such that inﬂ% Y(t) = (0).
te

If ¢ is a nonnegative quadratic form on IM™*"™, « a positive real number and W the
function defined on IM™*" by

(4.1)
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Indeed, if we set ¢(t) = ¢(t — «), then

p= teil?ni p(t) = 9(0) = ¢(a)

and thus, by theorem 3.2, one has
G(F) Sa = RW(F) = p=1(0).

Moreover, the function W defined by

(0%
(0%

IV IA

is convex (since ¢ is convex, 1 is convex and non decreasing on R) and < W; therefore
W < RW. So, if ¢(F) > « one has

W (F) =W (F) < RW(F) < W(F).
Thus (4.1) holds, and since RW is convex, we have

RW = QW = PW = CW.

Example 4.2. Let ¢ : R — IR be a function satisfying

inf ©(t) = u > —oc.
teRw() 1

Let us consider the following quadratic form on IM™*"

qF)= > - > 1

(4,9)eT (4.9)eT

where Z and J are two disjoint nonempty subsets of {1,...,m} x {1,...,n}.

Clearly, the range of ¢ is IR and the conditions (3.5) occur; so, we can apply theorem 3.3,
and, if W : M™*" — R is defined by W (F) = p(q(F)), then RW = QW = PW =
CW = p.

Example 4.3. Let us consider the quadratic form defined on IM™*" by

s n
g(F) =Y |FP= Y R}
=1

1=s+1

where 1 < s<n—1and Fi,...,F, denote the columns of the matrix F'.
Now, let © :IR™ x ... x R"™ — IR? be an antisymmetric n-linear function, and denote

by © the function defined on M™*" by ©O(F) = O(F1, ..., F,). Moreover, assume that
© is polyaffine (i.e. © and —© are polyconvex); for instance, if m = n we can consider
O(F)=det F, and, if m =n+1, O(F) = adj, F, see [8]. Next, let ¢ : Ry — Ry be
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such that ¢(a) =0 (e € RY), ¢g: R” — IR be a convex function and W : M™*" — R
defined by

W(F) = ¢(q(F)) + g(0(F)).

Then,
RW =QW = PW =go00. (4.2)

To prove (4.2), it is sufficient, since g o © is polyconvex, to show that
RW =go00. (4.3)

First, since 1) > 0, one has W > go © and thus RW > go ©. Next, let F' € IM™*" be
such that F} # 0 and F), # 0; thus, if b = (1,0,...,0) and ¢ = (0,...,0,1), then

¢(Frn®b)>0 and ¢(F1®c)<O. (4.4)

e Assume that ¢(F) < «; by (4.4) and proposition 2.2 there exist A € [0,1], A, B € M"™*"
such that,

F=(1-)MA+\B, rank(A—B)<1
q(A)=¢(B)=a
0(A) = O(B) = O(F).
Therefore,
RW(F) < (1 — A)RW(A) + ARW(B)
W(A) + AW (B)
9(6(4)) + Ag(0(B))

e Assume that ¢(F) > «; then —¢(F') < —« and, since —¢(F} ® ¢) > 0, we can proceed
as above to obtain

So, for F € M™*" such that Fy # 0 and F,, # 0 we have RW (F) = g(©(F)). Finally, by
continuity of RW and g o ©, the equality (4.3) occurs.

Example 4.4. Let us consider the function W defined on IM™*" by

D=

W(F) = ¢(la(F)[?)

where ¢ is a quadratic form on M™*" and ¢ : Ry — IR is such that

Bt ()= (0),
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Then, if ¢ is either nonnegative or nonpositive, PW > CW in general (see [8], theorem
1.3 (iii) p. 217, 218). But, if ¢ is onto and if (3.5) holds, then by theorem 3.3, one has
RW = PW = QW = CW = (0).

5. The case of Ericksen-James stored energy function

In this last section, we would like to consider the function ¢ : M2*2 — R defined by
(1.6).

For F = <§%i j%;) one has

O(F) = k1(fi + f + flo + f3o — 2% + k2(finfrz + for fa2)?

. ((ffl i f§2)2 _€2>

2

= ¢1(F) + ¢2(F) + ¢3(F).
If we set
A=(fn) = n=(f)

$1(F) = k1 (|[F1f* + | Fo|* — 2)?

then

¢2(F) = I{z(Fl.FQ)2

2 2
¢3(F) = ks ((‘F1‘2 ; |F2|2) _52>

Now, let us denote by g1, g2 and ¢3 the following quadratic forms
q(F) = A+ R
q@(F) = F1.F,
3(F) = |F|> — |

Therefore, thanks to theorems 3.2 and 3.3 (see also examples 4.1 and 4.2), it is easy to
obtain

VF € M**? R¢y(F) = { ; (5.1)

<
o(F) i q(F) >
VF € M**%2 Repy(F) =0 (5.2)

VF € M?*2, R¢3(F) =0 (5.3)
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Remark 5.1. The equality (5.2) can also be obtained by using the Pipkin formula; see
[10] and below.
We have the following result:

Theorem 5.2. If k1 =0, then
Rp=Qop=Pp=Co¢p=0. (5.4)

Proof. Let F e M?*2.
First, assume that g3(F) < 2¢. Let a € {F3}*, a # 0 and b = (1,0); then

3(a®b) =ad +al > 0.
So, by proposition 2.1, there exist t € Ry and A € [0, 1] such that, if we set
A=F+Xa®b and B=F—-(1-MAta®b
then
F=(1-XNA+)AB, rank(A-B)<1

q3(A) = q3(B) = 2e.

Next
@2(A) = A1.Ay = (Fi + Ma).Fy = F1.Fp = ¢o(F).

The same computation gives ¢2(B) = g2(F).
Therefore, for F' € IM?*2 such that ¢3(F) < 2¢, one has

Ro(F) < (1= AN)Ro(A) + ARo(B)
< (1=X)o(A) + Ao(B)
= (1= A)p2(A) + Ap2(B)
= ¢a(F). (5.5)
Next, assume that g3(F) > 2. Let a € {F1}, a # 0 and b = (0, 1); then
g3(a®b) = —af — a3 < 0.

Applying proposition 2.1 for the quadratic form —g3, we see there exists ¢t € R4+ and
A € [0,1] such that, if we set

A=F+Xa®b and B=F—-—(1-MAta®b
then
F=(1-XNA+)AB, rank(A-B)<1
—g3(4) = —q3(B) = —2¢.

Now, as before, we can prove that ga(A) = ¢q2(B) = ¢2(F), and for F € M2*2 such that
q3(F) > 2, one has

R¢(F) < ¢a(F). (5.6)
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Thus, (5.5) and (5.6) give R¢ < ¢y , which implies R¢ < R¢y. Finally (5.2) gives
R¢ =0 and (5.4). O

After having obtained this first result, we were hoping to be able to prove that R¢ = R¢q;
unfortunately this is not true as we will see in the next theorem. Before that, let us recall

the Pipkin formula; when a function W : M"™*" — R (with m > n) satisfies
VF e M™"  W(F)=W(C) where C=F'F
and, if W is convex, then

YF e M™" | RW(F)=QW(F)=PW(F)=CW(F) = in§f+ W(FTF+S) (5.7)
Se§,

where §' denote the set of real n x n symmetric positive semidefinite matrices. See [10]
(theorem 2 and comment (i) following this theorem). One has:

Theorem 5.3. If k3 = 0, then R = Q¢ = Pp = Cd and for F € M**? and
C =FTF, one has

e RO(F)=0 if tr(C) < 2 and 2|c12] < 2 — tr(C)

e RY(F) = k1(tr(C) — 2)% + ka2, if tr(C) > 2 and ka|c12| < 2k1(tr(C) — 2)
_9) _ 2

o RY(E) = k1 (1r(C) 202+ ey — 10O =2~ ralea)

tr(C) > 2 and ka|ci2| > 2k1(tr(C) — 2)
if < or
tr(C) <2 and 2|c12| > 2 — tr(C)

Proof. Since k3 = 0, then for F € M?*2 and C = FTF, one has

$(F) = ¢(C) = k1(tr(C) — 2)° + kacty.
Clearly, the function ¢ is convex, and using (5.7) we can write Rp = Q¢ = P¢ = C¢ and
VF € M**? | R$(F) = inf ¢(FTF+8S). (5.8)

Se§;

Let us remark that, if S = (811 512 >, then
521 522

S e §;_ <= 519 = S91, S11 > 0, s99 > 0 and 8%2 < 8$11899. (5.9)

Now, let us consider F' € M?*2, C = FTF and set p = tr(C) — 2 and r = ¢12. Thanks to
(5.8) and (5.9) we have

RO(F)= inf A
B(F) e (z,y,2)
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where

h(z,y,2) = ¢ (C’—l— <xz2 yzz>> = k(2?2 + 42+ p)? + Koz +7)?

and D = {(z,y,2) € R® ; 2* <2y}

Since h(z,y,z) — +oo when 22 + y% + 22 — +o0, it follows that ( in§ Dh(x, Y, 2) is
z,Y,2)€

attained by a certain (zg, yo, 20) € D.
e Case 1 : Let us assume that p < 0 and |2r| < —p; then there exists (zg, y0,20) € D

such that
w24+yti=—p and z=-r

and thus

h(zg,y0,20) =0= inf h(z,y, 2).
( ) (z,y,2)€D ( )

e Case 2: Let us assume that either p > 0 or |2r| > —p; then

V(z,y,2) € D, (22 +y>+p,z+71)#(0,0). (5.10)

Next,

(9h _ 2 2

a—x(zr,y,Z) = 2k1(2° + Yy~ +p)z

oh

_("anaz) = 2”1(3:2 + y2 +p)y

dy

oh

_— =9

az(mayaz) H2(2+7')

and therefore, thanks to (5.10), it is easy to see that

o

V(z,y,2) € D, Vh(z,y,2) #0
which implies

inf  h(z,y,z)= inf h(z,y,z)= inf g(x,y
(z,y,2)€D ( ) (z,y,2)€8D ( ) (x,y)E]R2 ( )

with g(z,y) = k1(2? + y? + p)? + ka(wy +7)2. Now, to obtain this last infimum, let us
compute Vg(z,y):

dg
5, (1Y) =261 (22 + y® + p)z + 2k2(zy + 7)Y

dg
a—y(m, y) = 2k1(2% +y* + p)y + 2k2(zy + 1)

So, if Vg(zo,yo) = 0 then
(=3 + 95 +p)(f — ) =0
(zoyo + ) (g — ¥5) =
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which gives, with (5.10), 23 = y3. Therefore

inf z,y) = min | inf [.(x 5.11
(x,y)eleg( v) EE{—lal}(xe]R el )) (5:11)

where
le(z) = k1(22% + p)? + Ko(ea® +r)?
= (4k1 + /@2)3:4 +2(2k1p+ 5&27‘)3:2 + k1p® + Kar2.

Now, if we look for the infimum of the function z — az*+2822+~, we obtain immediatly

k1p? + Kor? if 2k1p + ekor > 0
inf [.(z) = 2 ckor )2
zelR © mp2 + kor? — (261p + erior) if 2k1p + ekor < 0
4Kk1 + K3
and to conclude, it is enough to replace p and r by their values and use (5.11). O

Remark 5.4. When k3 # 0, the function 6 is not convex and we can not apply the
Pipkin formula.
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