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We establish a necessary and sufficient condition for the existence of the minimum of the functional
1

/ F(t, v (2))dt in the class WE = {v € W'P([0,1]) : v(0) = 0,v(1) = d,'(t) > a}, in terms of a limita-

tion of the slope d. Some applications to quasi-coercive and non-coercive integrands are also derived.

1. Introduction

In a recent paper [11] we considered one-dimensional free problems of the Calculus of
Variations of the type

minimize {/0 F(t,0'())dt} (P)

over the class V~V§ = {v € W2([0,1]) : v(0) = 0,v(1) = d}, with f(¢,-) convex but not

necessarily coercive.

We proposed a necessary and sufficient condition expressed as a limitation on the width of
the slope d, which improves an analogous result given by P. Brandi [6]. The key tool is the
Euler equation, which in this setting provides to be a necessary and sufficient condition.

As particular cases, we discussed integrands of the type f(t,z) = ¢(¢)h(z), both quasi-
coercive (i.e. h has a superlinear growth and m = min¢(¢) = 0) and non-coercive (i.e. h
has a linear growth).

In more detail, in the quasi-coercive case the result shows a strict link between the ex-
ponent p, the infinitesimal order of the function ¢ and the infinite order of the function
h. The sufficient condition fits with the existence theorem given in a joint paper with A.
Salvadori [13], regarding multiple integrals on W' with constraints on the gradient.

Whereas, in the non-coercive case, the condition depends on the the infititesimal orders

of the functions [¢(¢) — m| and [A'(z) — |£|l_i>r_r|_100h'(§)].

The aim of the present paper is to discuss variational problems with contraints on the
derivatives. More precisely, we deal with problem (P) over the class

WE = {v e W'([0,1]) : v(0) =0, v(1)=d, v'(t) > a}.
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Recently, the Euler inclusion was proved in [12] as a necessary condition for the existence
of the minimum of constrained problem (P). By using this result, we herein characterize
the existence of the minimum in terms of a limitation of the slope d.

In particular, for integrands f(f,z) = ¢(t)h(z), we show that the presence of a constraint
on the derivatives has a regularizing effect on problem (P), since it widens the range of
the slopes d for which the minimum exists.

More precisely, if [h’(a)glim h'(€) > 0], then the conditions we obtain are the same to
—+o0
those of the free problem. Whereas, if [h’(a)glim h'(€) < 0], the range of the slopes for
—+o0

which the constrained problem admits minimum is larger than that of the free problem.
Infact, when A'(a) < 0 we prove that the minimum exists for every d € [a, &), with &

such that A'(&) = 0.

Finally, we wish to remark that the present result improves an analogous one proved by
B. Botteron and B. Dacorogna in [5], where they gave a sufficient condition in the case
p = o0.

2. Preliminaries
Let R=RU {—00,+00}. For every X C Rwe denote by X°, cl(X) and |X| the interior,
the closure and the measure of X respectively.

Let f:[0,1] x R — R f = f(t,2), be a given Carathéodory function, convex in the

second argument for a.e. ¢ € [0, 1].

Moreover, we assume that a function A € L([0, 1]) exists such that f(¢,z) > A(¢) for a.e.
t € [0,1] and every z € R.

Let us now recall some properties of convex functions we will use in the following.

Let g : R — Rbe a given convex function. For every ¢ € R there exist (finite) the right
and left derivatives g*,¢g~. These functions satisfy the following properties (see, e.g.,

[16]):
(i) they are monotone non decreasing;

(i) g7() 2g7(5), ¢ e R

(iii) g* [ respectively g~ | is right-continuous [ left-continuous |.
We will denote by dg(&) the subdifferential of g at the point £, i.e. dg(&) = [g7(£), g7 (£)].
We can extend the functions ¢=, g% to R (with values in ]R) by putting

g (—o0) =gt (—o0)=i= lim g7 (&) = lim g% (&),

E——00 §——o0

g~ (+00) = g"(+oc) =5 = lim g7 () = lim g7 (¢).

E—+o0 £—=+o0
In this way the extended functions g¥, ¢~ again satisfy properties (i), (ii), (iii).
Recall that the conjugate function g* : R — RU{+00}, defined by ¢*(¢) = sup{¢z—g(z)},
z€R

is a convex function satisfying the following property (see [16]):

y € 09(&) & £ € g (y) (2.1)
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Let dom[dg*] = {y : dg*(y) # 0} and range[dg] = an . From (2.1) it follows that
EER

Ji, s|C range[dg] = dom[dg”] C [, s].
For every y € range[dg] we put
(y) =supdg(y) , ¢ (y) = infg"(y).

Note that for every y €]i,s[ we have ¢*T(y) = maxdg*(y) and ¢*~(y) = mindg*(y).
Whereas if i € range[dg] [s € range[dg]], we have ¢*7 (i) = —oc [¢*T(s) = +o0].

g

In order to extend the domain of the functions ¢**, ¢*~ over R if i, s ¢ range[dg] we

put
g7 (i) = g7 (i) = —o0 = lim g™ (&) = lim g"*(¢)
*t(s) = ¢g* (5) = +o0 = lim ¢*(£) = lim ’
g7 (s) = g7 (s) = oo = lim g™ (¢) = lim g™ (¢)

whereas, we put

gt y) =g (y) = —o0 for y <1 .
gt (y) =9 (y) = + for y>s

In this way, the extended functions ¢**, ¢g*~ satisfy the same properties (i), (i), (iii) of
the analogous functions g*, ¢g~. Moreover, for every y € R we have

g <y & £<gd (y): g () <y & £< g ().

Let o € Rbe fixed. In what follows we will consider the following elements of R:

[ =essinf f7(t,a), [; = essinf f+(t +00),

t€[0,1] te[0,1]

where f7(t,-), fF(t,-) are the left and right derivatives of f(¢,-) extended to R as showed

above.

For every y € R we put
Ay={tel0,1] : ff(t,a) <y}={tec0,1] : a< fF(ty)}

B,={te0,1] : f[7(t,a)<y}={t€[0,1] : a< fc*"'(t,y)} ,
where fc*_(t, ), fc*'"(t, -) are the left and right derivatives of the conjugate function f*(¢,-).
Of course, we have A, C B, and, if y; < y,, we have A,, C A,,, B,, C B,,.

Let us now consider the following sets:

T = {y € [l L]NR: £ (y) € I(A)}.

Tp+ ={y €[l., ;] N R: fg*-l-('ay) € L*(By)},
where, if [A,| = 0 [| By| = 0], no condition is required for f77(-,y) [fg""(,y)]
Of course, the sets T~ Tp+ can be empty for some p, but the following result holds.
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Lemma 2.1. The sets Tp_,Tp"' are connected for every p € [1,4+00]. Moreover, Tp"' cT;
and (Tp"')o = (Tp_)o.

Proof. Let y,yo € [la,[s] N Rbe fixed, with y < yo. Note that

a < fi7(ty) < fEF(Gy) < f(By)  in Ay, (2.2)

aéfg+(t7y>§f<_(t7y0> ng+(t7y0) in By' (23)

Therefore, since A, C By, by (2.2) it immediatly follows that T;f C T,~. Moreover, since
By C By,, by (2.3) we deduce that if yo € T,} then [la,yo] N R c T;. Analogously, we
have [l,,y0] N IR C T for every yo € T7. Hence, the sets Tp+, T are connected.

Finally, if yo € T, by (2.3) we have fC*-I-(t’ y) € LP(A,, N By). But for every t € B, \ A,
we have fc*'"(t,y) < fi(ty) < a < fc*'"(t,y), ie. fc*'"(t,y) = a. Thus, we have
fc*'"(t,y) € LP(B,) for every y € [l, yo] N IR, Therefore, (Tp_)o C (Tp"')o and the proof is
complete. O

Remark 2.2. In view of the proof of Lemma 2.1, when T, T~ are nonempty, we have
inf 7 = inf Tp+ =1y, sup Tp+ =sup T .

Moreover, if [, € R then min T =minT} = ,. Therefore, the set T, \ T} contains one
point at the most, which is the least upper bound of both the sets.

Let o=, ¢t : [0,1] x [la, ;] = R be the functions defined by
— x4
Y(ty) = { ff ) vt y) :{ ff L

otherwise otherwise

and let U=, Ut : [1,,1,] — Rbe the functions defined by

= [vena v [ e

Lemma 2.3. The function Ut [ respectively U~ | is monolone non decreasing and right-
continuous in cl(T}") [ left-continuous in cl(Ty) ].

Proof. Asit is easy to check, the functions ¢ (¢, ), ¥y~ (¢, -) are monotone non decreasing;
hence, also the functions ¥+, U~ are non decreasing.

Let us now prove that the function ¢* (¢, ) is right-continuous in cl(7T;F) for a.e. ¢ € [0,1].
In order to do this, let yo € Tit, yo # sup T;F, be fixed.

For every t € By, we have that { € B, for y > yo and the assertion follows from the
right-continuity of fc*'"(t, ).

Let us now take t € By, i.e. a > fC*-I-(t’ Yo)- Then we have o > fﬁ*+<t’ y) for some y > yq.
Hence, we deduce lim ¥t (t,y) = a = T (¢, yo).

¥ \Yo
The right-continuity of the function ¥+ can be deduced by using the monotone conver-
gence theorem, taking the right-continuity of ¢)*(¢,-) into account.

The proof regarding ¥~ is analogous. O
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)

Remark 2.4. Of course, if f(t,-) is strictly convex, we have fc*'i'(t,y) = fc_(t,
fc*(t,y). Therefore, if f(t,-) is strictly convex for a.e. t € [0,1] we have Tp"' =T;
and Ut (y) = ¥~ (y) = ¥(y) is continuous in cl(7y).

N

Ty

3. The general result
Let a € R be fixed. For every d € Rand every p € [1, +00] we put

= {v e W'([0,1]) : v(0) = 0,v(1) = d,v'(t) > a}

and let F: WY — R be the functional defined by F(v / F,o'(

In this paper we will consider the following variational problem with constraints on the
derivatives

minimize {F(v) : v € Wg}. (P)

In a recent paper [11], we obtained a necessary and sufficient condition for the solvability
of the free problem, given in terms of a limitation on the slope d. The aim of this paper
is to establish an analogous result for the constrained variational problem (P).

In what follows we will make use of the following result proved in [12].

Lemma 3.1 ([12]). Let [ : [0,1] x R — R be a Carathéodory function, convex in the
second argument, and let ug € WY be such that

/ftuo dt—mln/ftv
vEWE

Then, put A* = {t €[0,1] : uy(t) > a}, there exisls a constant yo € R such that

Yo € 0. f(t,ug(t))  for a.e. t € A”.

The following lemma completes the study of the necessary conditions we need in our main
theorem.

Lemma 3.2. Let ug € WY be a non linear minimizer for problem (P) and let yo be the
constant given by the Fuler inclusion (see Lemma 3.1).

If f(t,-) is strictly convex and C* for a.e. t € [0,1], then we have
uy(t) >a  forae tE€A,.

Proof. Since ug is not linear, put A* = {¢ : u{(t) > o} we have |A*| > 0. Let us suppose,
by contradiction, that |A4,, \ A*| > 0.

From now on we will divide the proof into steps.

Step 1. Let us now prove that a real value § < yy exists such that the set

C={te Ay, \ A" :a < f{(t,§) < +oo}
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has positive measure.

In order to do this, for every y put
Fy=A{te Ay, \A": fi(l,y) < +o0} .

We have two cases: |Fy,| > 0 or |F,| = 0.

If |Fy,| > 0, let (yn), be an increasing sequence convergent to yo. Put C, = {t € Fy, :
fC*(t’ yn) > a}, taking the continuity of fc*(t, -) into account, we deduce that F, = U Ch.

neN
Hence, an integer n exists such that put § = y;, the set

Ci C{t € Ay \ A" 1 a < f7(1,9) < +oo}

has positive measure.

In the other case, if |F,,| =0, let
y'=inf{y <yo:|F,|=0}.

Of course, y' € Rand |F,| = 0.

Let (gn), be the sequence of all the rational numbers of [y’ — 1,y'[. Put H, = {t €
Ay \ A"t a < fi(t,qn) < +oof, let H = U H,. The assertion of Step 1 will be proved if

n€EN
we show that |H| > 0.

Assume, by contradiction, |H| = 0. Then, for a.e. t € A, \ A* and every n € Nwe have

Jeltgn) <aor fi(t,gn) = oo . (3.1)

Put B={t € Ay, \ A*: f{(1,q,) <« for some n € N}, since |F, | > 0 we have |B| > 0.

Let us now fix tg € B\ Fjy. Put s = sup{q, : fZ(to,Qn) < a}, we have fc*(to,.s) < a. But
since to € Fy, we have s < y" and by (3.1) we deduce f{(to,y) = +oc for every y €]s,y[,
in contradiction with the continuity of f(to, ).

Step 2. By virtue of the continuity of fZ(¢,-), we can also deduce that there exists a real
y* €]7, yo[ such that the set

D={te A*:fé‘(t,y*) > a}

has positive measure.

By virtue of Lemma 3.1 we have that fZ(t,yo),fC*(t,y*) € L' (D). Let

I = A[fé‘(t,yo) — [E(t,y7))dt. (3.2)

Since f,(t,-) is differentiable, we have I (t,y*) < fZ(t, yo) for a.e. ¢ € [0,1], hence I > 0.
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Let £ C C be a set of positive measure such that fé(t, §) € L'(F) and

[ szt = al <172 (33)
For every y € [y*, yo] let
6lo) = [ et -l + [ (720t - Sl

Note that G is continuous; moreover, G(yo) = /[fg(f,ﬂ) — a]dt > 0, whereas by (3.2),
B
(3.3) we have

Gly") = A[fz‘(t,zj) — a]dt + A[fg(t,y*) — [t yo)ldt < T/2— T <0.

Hence, there exists y €]y*, yo[ such that G(y) = 0.
Let us now consider the function w : [0,1] — IR defined by

fetg) i D
w(t)=9{ fi(ty)  inE

ug(t) otherwise ,

and let 1)(15) = ft w(T)dT.

0
Note that w(t) > a for every t € [0, 1]. Moreover, we have

[ wwa= [ i [ gepas [ g -4 —alp -

:/ fc*(t,yo)dt-l-a(] _|A*|)+/[f§*(fvﬂ)_fg(far'JO)]df_l_/[f(*(fvﬂ)_(’Y]df:
A* D E

_ /1 ()t + Gly) = d.

Therefore, we have v € WY, but

Pl ~ F) = [ (1) = F(L () >

v

o [ o) = ool [ =l [ el - ool -

[0,1\(PUE)

/D (o)~ o0l + ) / () — o (D)dt = (7 — 7) / o — F2(t,)]dt > 0,

which is a contradiction. O

Il
<
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We are now ready to state and prove our main result.

Theorem 3.3 (necessary and sufficient condition). If one of the following condi-
tions is salisfied

(i) d=a
1
(i) a<d< sup YT (¢, y)dt, (TF#0)
yeT Jo
(iii) d= max/ vt y)dt, (T;F #0)
yeT
then problem (P) admits an optimal solution in WY.

Conversely, zfproblem (P) admils an optimal solution and f(t,-) is C' and strictly convex
for a.e. t €[0,1], then one of the conditions (i), (ii), (iil) is satisfied.

Proof of Theorem 3.3. (Sufficient condition) Let us first prove that

a = inf / Y7 (t,y)d
yeT,
By virtue of what observed in Remark 2.2, if [, € R we have [, = min T and =(t,1,) =

1
a, hence a = min / 7 (L, y)dt. Whereas, if —co =1, =inf T, since lim o7 (¢,y) =

yel, Yy—+—00

1 1
for every ¢t € [0, 1], we have that inf / Y7 (t,y)dt = lim Y7 (ty)dt = a.

yeTy Yy== Jo

If d = a then W) = {ug} where ug(t) = dt. Hence, of course, ug is the optimal solution

for problem (Py).

Assume now that (ii) holds. Since Ut is right-continuous and ¥~ is left-continuous, we
have that a constant yo € Tp"' exists such that U~ (yo) < d < Ut (yo).

For every s € [0, 1] let us now consider the function vy : [0,1] — R defined by

[ wt(ty) i 0<t<s
wlt) = Y7 (, yo) if s<t<1

1

and let V : [0,1] — R be the continuous function defined by V(s) = / vs(t)dt. Since
0

V(0) = U (yo) < d < Ut(yg) = V(1), a constant sq € [0,1] exists such that V(sg) =

1
/ s, (t)dt = d.
0

Put uy(t) = fat s, (1)dt, let us prove that ug is a minimizer for the problem (P).
Of course, ug € Wi, Let us fix v € WY and prove that F(v) > F(uy).

Let £ = [0,s0] and F = [sg,1]. By virtue of the convexity of f(t,-), we have that
F(t, ) — f(t,6) > y(& =€) for every y € 0f.(t,§), hence we have

F(o) = Fluo) = / [F(,0'(8)) — £t (1))t + / [F(,0'(8)) = £t ub(t)))dt >

F
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2 [l =i [ el -l

E\By,

+ AmAyO yo[,U/<t) — ug(t)]dt + L\Ayo f:_(t, a)[,0/<t) . a]dt _

= yo/o [0'() — ug(t)]dt + / [f7(t, @) — yol[v'(t) — a]dt+

F\By,
+/ [fF(t, ) — yol[v'(t) — a]dt > 0.
F\Ay,

Finally, in the case (iii) is satisfied, there exists a constant y € Tp‘l' such that Ut (y) = d.

Then, put ug(t) = /1 ¥*(t,y)dt, we can analogously prove that ug is a minimizer for the
problem (P). ’

(Necessary condition) Let ug € WY be an optimal solution for problem (P).

Note that d > « is a necessary admissibility condition. Then, assume now d > «a and let
us prove that (ii) or (iii) holds.

Put A* = {t € [0,1] : uy(t) > a}, since d > a we have |A*| > 0. Then, since f(¢,-)is C"

and strictly convex, by applying Lemma 3.1 we have that a constant y, € R exists such
that

Yo = [2(t,ug(t)) a.e. in A™ (3.4)

The result will be proved if we show that yo € T}, and (¢, yo) = ug(t) for a.e. t € [0,1].

Since |A*| > 0, by (3.4) we have [, < yo. Moreover, by Lemma 3.2 we deduce that for a.e.
t € Ay, we have yo = f.(1, uy(t)), whereas, if t € Ay, we have yo < f.(¢,«). Therefore, we
deduce yo < f.(t,4+00) for a.e. t € [0,1], ie. y <.

Furthermore, for a.e. t € Ay, we have yo = f.({,ug(t)), i.e. f7(t,y0) = ug(t). Hence, we
have f7(,y0) € LP(Ay,) and then yo € T),.

Finally, note that for a.e. ¢t € A* by (3.2) we have yo > f.({,), i.e. t € By,. Hence,
U(t,y0) = f7(t,y0) = ug(t). Whereas, by Lemma 3.2 we deduce that |A,, \ A*| = 0, then
we have (1, yo) = o = u((t) for a.e. t € A*, and the proof is complete. O

Remark 3.4. Note that if sup Tp+ = 400, we have

sup YT (t,y)dt = +o0. (3.5)

yeTF Jo

Infact, in this case we have [y = 400, i.e. f7(t,400) = 400 for a.e. t € [0,1]. Hence,

lim fc*+(t, y) = lim ¥*(¢,y) = +oo a.e. t, and by virtue of the monotone convergence
Yy—+00 Yy—+00

theorem we deduce (3.5).
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Remark 3.5. If f(¢,-) is strictly convex for a.e. t € [0, 1], by virtue of the continuity of
the function W in cl(7}) (see Lemma 2.3 and Remark 2.4), the necessary and sufficient
condition of the previous theorem for p = 1 becomes: Ty # ) and

1
a<d< sup/ (i, y)dl
0

yeT)

Moreover, when (Tp)o #£ (0, put s = sup T}, we have

sup L/J(t y)dt = hm ¢ ty)dt = / JE(t,s)dt + (1 — | Bsl),

y€Tp JO v/'s Jo

where B, = {t € [0,1] : f.(t, ) < s}.

We conclude this section with two examples.

Example 3.6. (non existence for any d # o). Let a = 0 and

exp(z — 1/t) fort £0
0

J(t:2) = fort =0

Of course f,(t,€) = f(t,€) and [, = ess i{lf ]fz(t, +00) = 400, whereas Il = ess inf f,(¢,0)
te[0,1

te[0,1]
= 0. Moreover, fi(t,y) =Iny+ 1/t for y > 0 and f7(¢,0) = —oco. Therefore, |Bo| = 0,
B, =10,1/|Inyl|] for 0 < y < 1, whereas B, = [0,1] for y > 1. Hence, fc*(,y) ¢ L'(B,) for
any y > 0 and then T, = {0} for every p € [1, +o0]. Therefore, by applying Theorem 3.3,
we deduce that the minimum exists if and only if d = 0.

Example 3.7. (existence for every d > a). Let o = 0 and f(¢,z) = exp(—z — 1/t). We
have lp = —1/¢, s = 0, B, = [-1/In]y|,1] for every y € [—1/e,0[. Then, fc*(t,y) =
—1/t —Inly| € L}(B,) for every y € [—1/e,0[, and

hrn/ fE(t,y)dl = 400,

i.e. there exists the minimum for every d > 0.

This example was already considered by Botteron and Dacorogna in [3], where they gave
a sufficient condition for the existence of the minimum (see Remark 5.10 for the details).
4. Applications: quasi-coercive case

In the following we consider integrands of the type

f(t,z) = é(t)h(z) ,
with ¢(t) > 0 for a.e. t € [0,1] and h € C'(IR) strictly convex. In this framework, denoted
the inverse function of &’ by g, we have that fc*(t, y) = g(%) for a.e. t € [0,1].

In the present and in the next section we assume d > «, in order to exclude trivial cases
of existence (d = a) or of non-existence (d < a).
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We now discuss the “quasi-coercive” case, i.e. integrands which are coercive, with the
exception at the most of a finite number of straight lines orthogonal to the t-axis, where
it may happen that the function f does not grow.

More precisely, we assume that

lim h(z)/z =400, but m =essinf ¢(1)=0.

Z2—+00 te[0,1]
Moreover, assume that there exists a finite number of points ¢1, - - - , ¢} such that lim¢(t) =
t—t;
0,2=1,---,k, but liltninf o(t) >0 for 7 € [0, 1]\ {t1, - L&}
—T

In what follows, we denote by o*(3) (for t — tg) the family of the functions which are
infinitesimal for ¢ — tg of order > 3, and we denote by O*(3) the family of the functions
which are infinitesimal of order < (3.

Theorem 4.1.
(i)  Let p < 4+oo. Assume thatl two positive real numbers 3,~ exist such that ¢(t) €

O*(B) whent — t;, 1 =1,--- |k, and h’zz)

Then, if Bp <~y the functional F' admits minimum in WY for every d.

€ 0"(7y) when z — +oo.

(ii) Let p < 4oo. Assume that ¢(t) € o*(3), % € O0*(v), with Bp > ~.
z
Then,

- if M'(a) > 0 the minimum does not exist;
- if M'(a) < 0 the minimum exists if and only if d < &, where & > a is such thal
h'(&) = 0.
(iii) Let p=+4oo. Then, the same conclusion of part (ii) holds.

Proof. The proof of part (i) is analogous to that of part (i) of Theorem 5 in [11].

(ii) Since lil_l"_ﬂ h'(z) = +oo, we have [, = +oco. Moreover, analogously to what done
Z—r+00
)

in the proof of part (ii) of Theorem 5 in [11], we deduce }in?“ — ti|%|gp(w)| # 0.
—t;
Therefore, since pw—ﬁ > 1, we have g(ﬁ) ¢ LP(B,) for every y > 0.

Note that if A'(a) > 0 we have [, = 0 and as it is easy to see, we have T, = {0} and
U(0) = . Hence, since d > a, the minimum does not exist.

Whereas, if h'(a) < 0 we have [, = ess inf ¢(1)h'(a) = h'(a)esssup ¢(t) < 0.
t€[0,1] tef0,1]

Moreover, for y €]l,,0] we have h/(a) < % < 0 for a.e. ¢t € By. Then, by the mono-

tonicity of g we have a < g(%) < g(0) = & in By, hence g(%) € L>(B,) for every

y €]l,,0]. Therefore, maxT, = 0 and

maX/O P(t,y)dt = g(0) = &o.

yETp

Thus, the minimum exists if and only if d < ¢(0) = &.
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%) = 4oo for every y # 0, in the case A'(a) > 0 we have that
g(%) ¢ L*°(B,) for every y > 0, then T,, = {0} and the assertion follows.

) € L(By) for

(iii) Since th_)rgg(

Whereas, if h'(a) < 0, by virtue of what proved above we have that g( 70

every y €|l,,0] and IIldX/ P(t,y)dt = g(0) = &. O

yEco

Remark 4.2. The assertion is similar to that obtained in [11] (Theorem 5) for the free
problem, with the exception of (ii) and (iii) when h'(a) < 0. Infact, in these cases the
free problem admits a solution only in the trivial case A'(d) = 0, whereas the constrained
problem admits a solution for every d € [a, &].

In a joint paper with A. Salvadori [13], we have considered the problem of the existence
of optimal solutions for the multiple integral of the calculus of variations

— [ #tt.o0). Dele)ya
G
over a class @ C WH(G,R"), G C R™, under constraints of the type
(Lo() € A, Dolt) € QUt,of).

We proposed a precise comparison among various growth conditions on the function f, and
we achieved (via direct method of the calculus of variations) an existence result under the
assumption that one of these conditions holds. In particular, we cosidered a generalization
of a Tonelli’s local growth condition (74) (see [13]), which essentially requires that

[tz 2) > ¢()h(]|2])
where ¢ € O*(3), 1/h € 0*(1 + ), with 8 < ~.

The present Theorem 3.3 shows that in our setting if A'(«) > 0 the assumption 3 < v in
condition (74) is optimal, and gives a necessary and sufficient condition for the regularity
of the minimizer.

5. Applications: non-coercive case

Also in this section we discuss the case of integrands of the type

f(t,2) = o(t)h(z) ,

with ¢(¢) measurable, nonnegative, and i € C'(IR) strictly convex, but with linear growth,
at the most, for z — 4o0. In more detail, we now assume

lim A'(z) = heR;

z—r+00
then, f.(t,400) = h o(t).
As before, we assume d > « in order to exclude trivial cases.

We put m = ess inf ¢(t) and M = esssup ¢(t) € RU {+o00}. Moreover, when 0 € #'(R),

t€[0,1] t€[0,1]

let & € R be such that 2/(&) = 0.
We divide the treatment into three cases: h >0, h <0, h = 0.
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5.1. Case h >0
Theorem 5.1. Let h > 0.
(a) Ifm =0 and h'(a) > 0 then the minimum does not exist.

(b)  Ifm =0 and h'(a) < 0 then the minimum exists if and only if d < &.
(¢) Ifm>0,put B={t€[0,1] : A'(a)p(t) < ]N’L’HL} and

s:ém%%w+au—wm

if d < S the minimum exists for every p € [1,400]; conversely, if the minimum
exists for some p € [1,4+00], then d < S.

Proof. (a) In this case we have [, = [, = 0. Put By = {t € [0,1] : ¢(t)h/(«) < 0},
if A'(a) > 0 we have |By| = 0 and since d > o the minimum does not exist; whereas, if
h'(a) = 0, then By = [0,1] and ¥(0) = ¢(0) = a. Then, again the minimum does not
exist.

(b) Now we have [, = Mh'(a) < [ = 0. Moreover, for every y < 0 and every t € B, we
have h'(a) < % < 0, then

a < g(i) < g(0) =& < +oo  for every t € By,

(1)

then g(ﬁ) € L*(B,) for every y €]l,,0] and

y€Ty

max/ Y(t,y)dt = g(0) = .

(¢) Note that [, <, =m h. Moreover, for every y € [lo,ls[ and every t € B, = {t €

[0,1] : % > h'(a)} we have a < g(%) < g(y/m) < 4oo, then g(%) € L>(B,) for
every y € [l,,[s[. Hence,

1

sup [ ottgpie = [ glh m/ot)d+ a1 - |B)

yeTp Jo B

and the assertion is proved. O

The next result gives a sufficient condition to have S = 400, in such a way that the
minimum exists for every d > a.

Theorem 5.2. Let h > 0 and m > 0. Assume thal there exists a finite number of
points ty,--- ,tx € [0,1] with lim$(t) = m for i = 1,--- k, but liminf ¢(t) > m for
t—1; t—T

T E [071] \ {tla"' atk}'
Moreover suppose that there exist two constants v > 3 > 0 exist such that

[p(t) —m] € 0"(7) when t —t;; for some i =1,k (5.1)

[h'(z) — lNL] € 0*(#) when z— +oo. (5.2)

Then, the functional F' admils minimum in WY for every d > a and every p € [1, +00].
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The proof is analogous to that of Theorem 6 in [11].

Remark 5.3. The previous theorem provides a result on existence of the minimum for
every d € R, and it is based on conditions which guarantee that the upper bound S is
+o00. When these conditions are not satisfied, the previous bound may be finite. In this
case, Theorem 5.1 asserts that for every d < S the minimizer is in W1 but it does not
provide information in the case d = S. However, taking account of Remark 3.5, we have
that if d = S there exists the minimum for p = 1, but we do not know anything about
the case p > 1.

The following theorem discusses the regularity of the minimizer when d = 5. The proof
is analogous to that of Theorem 7 in [11].

Theorem 5.4. Suppose that the assumptions of Theorem 5.2 are satisfied, with (5.1),
(5.2) replaced by the following conditions

(9) [0(t) —m] € O*(y) whent — t;, 1=1,--- |k

(10") [h'(z) — 71] € 0*() when z — 400,

mh

Then, S = /
e
in WY for every p < 3/7~.

Jdt+a(1—|BYJ) is finite. Moreover, if d = S there exists the minimum

As a first application of Theorems 5.2, 5.4 it is immediate to prove the following result.

Corollary 5.5. Let f(t,z) = ¢(1)V1 + 22, with ¢(t) salisfying the assumptions of Theo-

rem H.2.

(i)  If [¢(t) — m] € o*(B), with B > 2, when t — {;, for some 1 = 1,--- .k, then the
minimum exists for every d > a and every p € [1,+oc].

(i1)  If [¢(t) —m] € O*(B), with § < 2, when t — t;, i =1,--- k, and

1
a<d< / [$%(t) — m?)~'/2dt

0
then there exists the minimum in WY for every p < 2/0.

5.2. Case h <0
Theorem 5.6. Lel h < 0.

(a) If M = 400 the minimum does not exist.

(b) If M < 400, then put B*={t € [0,1] : h'(a)p(t) < }NLM} and

5 =/*g<%>dt+a<u 1B,

if d < S* the minimum exists for every p € [1,4+0o0], conversely, if the minimum
exists for some p € [1,400], then d < S*.

Proof. (a) In this case we have [, = [, = —oo, then the minimum does not exist.
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(b) Now we have [, = Mh'(a) < [, = Mh < 0. For every y € [lo,1s] and every t € B,

we have y
a < g(-75) < g(y/M) < +oo.

()

Then g(%) € L*(B,) and

up [ vttt = [ gGMo0)dr + ol - |57,

yeTp

and the assertion is proved. O
Analogously to what done in the case & > 0, the following result gives a sufficient condition
to have S* = +o00, in such a way that the minimum exists for every d > a.

Theorem 5.7. Let M < 4o0o. Assume that there exisls a finite number of points T,
-, 15 € [0,1], such that tlimqé(t) =M, for j = 1,---,s; but limsup ¢(t) < M for
—Ty

t—To
T € [0,1] \ {Tl,"' ,TS}.

Moreover assume that there exist two constants v > 3 > 0 such that

[¢p(t) — M] € 0*(y) when t— 7, for some j=1,---s (5.3)

[R'(z) — h] € O*(B) when z — +o0. (5.4)
Then, the functional F admits minimum in WY for every d > o and every p € [1,+0o0].

5.3. Case h =0

Theorem 5.8. ]f/Nz =0 and M < +o0, then the minimum exists for every d > «.
Proof. Note that [, = Mh'(a) < 0 = [,. For every y € [l,,0] and every t € B,, we
have a < g(%) < gly/M) < 40, ie. g(%) € L>*(B,) for every y € [l,,0[. Then,

max T}, = 0 for every p € [1,40c]. Hence, we have

sup Y(t,y)dt = g(0) = +oo,

yeTp JO

i.e. the minimum exists for every d > a. O

Note that the existence of the minimum for the functional of Example 3.7 can be deduced
also by the previous theorem.

In the next result we discuss the case h = 0 and M = +o00. In what follows we assume
that there exists a finite number of points 7,--- , 7, € [0,1], such that lim¢(t) = +oo,
t—T;

for j=1,---,s; but limsup ¢(t) < +oo for 7o € [0, 1]\ {m,- -, 75}

t—7o

We omit the proof of the following theorem since analogous to that of Theorem 4.1.

Theorem 5.9. Lel h =0 and M = +00.
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(a)  Assume that there exist lwo constants v, > 0 such thal

[1/o(t)] € O(B) when t =75, j=1,--+.s (5.5)

[M/(2)] € 0o*(y) when z— +oo. (5.6)

Then, if pB <~y the functional F' admits minimum in WY for every d > a and every
p € [1,+o0].
(b)  Assume that there exist lwo constants v, > 0 such thal

[1/o(t)] € 0*(B) when t — 1, for some j=1,---s (5.7)

[h'(2)] € O*(y) when z — 4oo. (5.8)
Then, if pB > ~ the functional F' does not admit minimum in WY.

Remark 5.10. In [3], B. Botteron and B. Dacorogna gave a sufficient condition for the
existence of the minimum in the case p = +oo, f € C'([0,1] x R). In more detail, they
proved that if

< i X
sup fo(t,d) < inf f2(t, +00), (5.9)

t€[0,1]

then the minimum exists.

Note that this condition is only sufficient. For example, let f : [0,1] x R — R be defined
by f(t,z) = (t* 4+ 1)v/1 + 2%, The condition (5.9) is satisfied if and only if 0 < d < 4/1/3,

whereas, by virtue of Corollary 5.5 we have that the minimum exists for any d > 0.

Finally, we wish to remark the recent paper by F. Weissbaum [17] where the Author gives
a necessary and sufficient condition for the existence of the minimum for problem (P)
whose proof is based on the Kuhn-Tucker theory (see Lemma 2.4 in [17]). But note that
the cone determined in I? by the constraints has empty interior, and then such a theory
can not be applied.

Acknowledgements. The author is very grateful to Professor Paolo Marcellini for his useful
advice and suggestions.
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