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1. Introduction

One of the important features of variational inequalities is their applicability to many
physical problems (see e.g. the monographs [10], [2], [6] and [15]) which has strongly
influenced their mathematical development closely connected with convex analysis (cf.
[21], chap. 54, 55 and [3]). This contribution deals with a class of evolutionary variational
inequalities with a memory term, resulting from the application of a generalized Baiocchi-
type transformation to degenerate free boundary problems (’zero-specific heat’ Stefan-type
problems). The consideration of such problems is motivated, for instance, by the electro-
chemical machining (ECM) process. In particular, the conductivity of the electrolyte is
assumed to be space- and time-dependent, which causes the memory (integral) term in the
evolutionary variational inequality formulation. It is worth emphasizing that such a type
of variational inequality also occurs in various other engineering applications. In [18] and
[17] we have considered evolutionary obstacle problems arising in non-isothermal Hele-
Shaw flows. Compared to this, the inequality problems studied here are characterized by
different boundary conditions and time-dependent convex constraint sets.

The present article is organized as follows. After the derivation of the variational inequal-
ity formulation in section 2, we prove the existence of a unique solution as a continuous
mapping from the time interval [0, 7] to the Sobolev space H'(f2) in section 3. The proof
is based on a fixed point argument in connection with a convergence result for convex
sets. In order to study the regularity of the solution with respect to time and its time
evolution, the variational inequality is approximated by means of a penalization method.
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This can be interpreted as a regularization of the associated multivalued operator equa-
tion (regularization of the subdifferential of the indicator function of the convex sets).
Finally, the last section is concerned with the discussion of the spatial regularity, based
again on an investigation of the penalized problem.

In addition to the (spatial) Sobolev spaces W;(Q) (H*(Q) = WE(Q)) we shall use
the notation (C'([0,7]; X) for the Banach space consisting of all continuous functions
u: [0,7] — X (X as Banach space) and L,(0,7;X), 1 < p < oo for the Lebesgue

space of vector-valued functions (see e.g. [21], chap. 23). Furthermore, we shall work with
t
W)(0,T; X) = {v] Fw € L,(0,T; X) : v(t) = v(0) -I—/ w(t) dt" vt e0,T]}
0

for p = 2 (in which case we abbreviate H'(0,7;X) = W;(0,7; X)) and p = co. We
identify w with the generalized time derivative w = v for v € Wpl(O, T;X) (see [15],
sect. 9.5 and [11]).

2. Variational inequality approach for the ECM process

The electro-chemical machining process in which a metal workpiece is shaped by placing
it as an anode in an electrolyte cell (ablation process of anode metal) may be modelled
as a moving free boundary problem (Stefan-type problem with ’zero-specific heat’). An
applied potential difference between the anode and the fixed cathode, separated by an
electrolyte solution, causes a chemical reaction at the anode. As a result, anode metal is
removed electrochemically, while the tool (cathode) remains unaltered. The electrolyte
together with the reaction products are pumped through the gap between the electrodes.
The two-dimensional annular situation corresponding to the shaping of a long cylindrical
metal part by placing it inside a cylindrical tool is schematically depicted in Figure 1.

o0 (cafuhode)

Q(t) (électrolyte)
T's(t)
Figure 1: Cross section of an annular ECM problem. Left: initial situation. Right: situa-
tion at time ¢ > 0.

We refer to [12] and [5], sect. 6.4 as well as to other textbooks concerning the physical-
chemical basics. Based on an order-of-magnitude analysis performed in [13], the derivation
of a quasi-stationary mathematical model can be found in [15], sect. 2.7. Moreover, a
survey of mathematical methods and results for both electro-chemical machining and
related problems is contained in [8] (chap.: Session on Stefan problems and applications).
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For more recent studies of this application problem we refer to [20] (further developments
of conformal mapping techniques) and [19]. The last paper contains investigations and
a comparison of different methods (fixed domain, front tracking and level set methods)
especially from the application point of view.

Based on the assumption that the electric ﬁeld E between the electrodes is approx1mately
irrotational, Ohm’s law gives the relation j = oF = —0 V® for the electric current 7
Here, ® is a potential and o denotes the conductivity of the electrolyte. Furthermore,
assuming the density of the electric charge to be constant, the conservation of charge
leads to divj = 0, and so div(c V&) = 0 holds in Q(t) (electrolyte region). A potential
difference yp = yp(t) > 0 is applied across the electrodes, and we may take ® =~p >0
at the anode and ® = 0 on 0} (cathode surface).

Due to Faraday’s law the dissolution rate of the workpiece (anode) is proportional to the
normal magnitude of the local current density. This leads to the condition ;ﬁ =AU on
I'¢(t) (anode surface as moving boundary), where 7 is the unit normal directed towards the
workpiece and where v-17 > 0 1is the normal interface velocity. The constant A < 0 denotes
the jump of the electric charge across I'¢(¢) (the so-called electro-chemical equivalent).

Summarizing, the free boundary problem for the ECM process can be written as follows.

—div(o(z,t) VO(z,1)) =0 in Q(t), ®=0 on ') =090,

2.1
®=7p(t)>0 and o V®-ii=—Xid-i on(t)=0dA(t)NONt) 21)

for t € (0,T]. The initial shapes A(0), 2(0) = Q\A(0) are given and 0 < T' < oo is the
machining time. We denote by € the (complete) region inside the cathode surface 99.
By means of the maximum principle we verify 0 < ®(z,¢) < vp(?) in Q(¢). Hence, the
potential ®(z,?) can be extended by continuity, i.e. we set ®(z,¢) = yp(t) in A(¢) for
every t > 0. Furthermore, we represent the free boundary I'f(¢) = dA(t) N9Q(t) and the
electrolyte region by an unknown function w = w(z) > 0, such that

Li(t)={zeQ: 5, t)=t—w(x)=0}, Q) ={zeQ:t>w(x)},
where w(z) := 0 is defined for = € Q(0).

Assuming the conductivity o of the electrolyte to be constant, a change of the dependent
variable is introduced by

u(z,t) = /Ot(’yp(t') — ®(z,t) dt' = /: (vp(t') — ®(z, ) dt', z€Q, t€]0,T]

in [4] and [15], sect. 2.8. This integral (Baiocchi) transformation leads to a family of elliptic
obstacle problems, where the time ¢ appears only as parameter (see also Remark 2.1).

As a generalization of a constant conductivity, we consider a conductivity o = o(z,1)
depending both on the space variable x and, in particular, on the time ¢. Such a situation
occurs in applications, when, for instance, the conductivity of the electrolyte depends on
the temperature (cf. [5], sect. 6.4.5).

Let us briefly indicate the derivation of an evolutionary obstacle problem for the just
mentioned situation. Calculating formally the differential equation satisfied by the new
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unknown u(z,t), we have to distinguish the three cases
(i):z € A(t), (i):2 € (A0)NQ(L) and (iii): z € (Qt) N Q(0)).
Using ®(z,w(z)) = yp(w(x)) on I'f(t), we obtain

t t
Vu(z,t) = —/ Vo(z,t') dt' = —/ Vo(z,t)dt!, z€Q, te]0,T],
w(z) 0

which shows the regularizing effect of the Baiocchi transformation. Taking into account
o = o(z,t) and integrating by parts with respect to time, we verify

(oVu)(z,t) = / [(0r0 Vu)(z,t') — (¢ VO)(x,t")] di'.

w(@)
Now, let us define the differential operators

(Au)(z,t) = —div(o(z,t) Vu(z,t)) and (Bv)(z,t) = —div(do(z,t) Vo(z,t)).

The next step is the computation of Au. We use (2.1), in particular the second (jump)
condition on I'f(¢), which can be rewritten as oV® - Vw(z) = —A. We obtain

t
[ xa@) =1 xa@) — (Au)(z,1) +/ (Bu)(z,t') di' inQ, [=-X>0,
0
t
u = gD(t) = / ’XD(t/) d! onTp =00, te (O,T]; u(w,O) =0, Q(O) given.
0
Here, xqq) (resp. xq()) denotes the characteristic function with respect to Q(¢) (resp. to

Q(0)). Now, we conclude: if ® > 0 is a solution of the free boundary problem (2.1), then
u will solve the complementarity problem
u = 0.

t t
[ > / Bu dt' +1 xqo) — Au, uw>0, |[+ Au— / Bu dt" — 1 xg(0)
0 0

Applying Green’s formula we derive the following evolutionary variational inequality.

Find wu(t)e K(t)={we H'(Q):w >0ae. inQ, w=gp(t)on'p=00}

‘ (2.2)
a(t;u(t),v —u(t)) > (F,o—u(l)) + /0 b(t';u(t’),v —u(t)) di’ Vv e K(t)

for t € (0,7] with the right-hand side F = F(z) = (XQ(O) -1l = —Xa() ( (note
that [ = —X > 0 as electro-chemical equivalent) and the initial condition u(0) = 0. The
bilinear forms a and b are defined by

a(t;o(t),w) = / o(z,t) Vo(z,t) Vw(z) dz,
“ (2.3)
b(t';v(t'), w) = /Qata(;v,t') Vo(z,t'") Vw(z) dz.

We mention that, owing to ' < 0 and ¢gp(0) = 0, the initial condition «(0) = 0 in (2.2)
will automatically be satisfied if we solve the obstacle problem for t = 0 in (2.2).
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Remark 2.1. Let us recall that such an integral transformation applied to classical one-
or two-phase Stefan problems leads to parabolic variational inequalities of first or second
kind (see [16] for a detailed investigation).

The elliptic inequalities with b = 0 (i.e. 0 = const) have been analysed in [11] and [15],
sect. 9.5. Beside the proof of regularity results for the solution, the smoothness of the
free boundary is studied in a special case (starshaped configuration). Furthermore, the
convergence of the solution of the associated one-phase Stefan problem is discussed in the
situation when the specific heat tends to zero.

Let us also mention that, assuming the separability of o into o(z,t) = o1(x) o,(t), one
obtains elliptic inequalities (without the memory term b) by means of the transformation
u(z,t) = fot oa(t") (vp(t') — ®(t')) dt' (see [15], sect. 2.9 and [1] concerning a similar
problem arising in Hele-Shaw flows).

3. Properties of the variational solution

In the previous section we have seen that a variational inequality approach to the electro-
chemical machining problem with space- and time-dependent conductivity o = o(z,1) of
the electrolyte leads to evolutionary obstacle problems of the form (2.2), (2.3), which will
now be investigated for more general right-hand sides F' = F(x,t). In the course of this,
we shall pay special attention to the time-dependent convex sets K (t) characterized by a
zero obstacle and Dirichlet boundary conditions depending on the time ¢, but not on .

Sometimes we will consider an equivalent inequality problem, which is obtained by a
simple translation trick, i.e. we set u(t) = (1) + gp(t) and get

Find a(t) € K(t) ={we Hj(Q): w>—gp(t) ae. in Q}, t€]0,7T],

t N (3.1)
a(t;a(t),v—a(t)) > (F(t),v—a(t)) + /0 bt a(t'),v—a(t)) di’ Yve K(t).

Obviously, a(t;u(t),v) = a(t;u(t),v) and b(t;u(t),v) = b(t;u(t),v) for v e HI (D).

Let © C R” be a bounded domain with a Lipschitz boundary I'p = 9. Furthermore, we
suppose

o e WL(0,T; Loo(Q), FeC([0,T]; Ly()), ¢gp € C[0,T],
] (3.2)

(
gp(t) >0 Yte[0,T], o(z,t)>00>0, z€Q, t€][0,T],

such that the bilinear form a is H'-elliptic, i.e. a(t;v,v) > m HUH?’_]l(Q) for all v € H ()
with 0 < m # m(t).

Similar to evolutionary inequality problems arising in non-isothermal Hele-Shaw flows
(see [17], [18]) we prove the existence of a unique solution for (2.2)/(3.1), (2.3) by means
of a fixed point argument and the theory of elliptic variational inequalities. But, due to
the time dependence of K, we require in addition a convergence result for convex sets (in
Mosco’s sense, see [14]).

Theorem 3.1. Under the assumptions (3.2) problem (3.1), (2.3) possesses a unique so-
lution u(t) € %(t) Vit € [0,T] with we C([0,T]; Hy(Q)) (resp. w € C([0,T]; H'(R)) for
problem (2.2), (2.3)).
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Moreover, the estimate
lua = U’ZHC([O,T];Hl(Q)) <M || - F?Ho([o,T];H—l(Q)) with M = M(m,T,L)  (3.3)

is satisfied for solutions w; = w;(F;), 1 =1,2, where L = L(||o|yn (O,T;Lm(ﬂ)))'

Proof. (i). Assuming 0,0 = 0 (i.e. without memory term b) we show at first that

problem (3.1) has a unique solution @ € C([0,T]; Hy(€)) for each F' € C([0,T]; H™'(Q)).

The existence and uniqueness of @(t) for each fixed ¢ € [0, 7] is an immediate consequence
of the elliptic variational inequality theory (Lions-Stampacchia-Theorem, cf. e.g. [10], [2]
and [15]).

To show the continuity of @ : [0,T] 3 ¢t — Hg(f2), we use an abstract stability result
(Theorem 4.4.1 in [15]; convergence of convex sets in Mosco’s sense, see also [14]). Let
a sequence {t,} C [0,7T] with t, — ¢ € [0,T] be given. Owing to the continuity of gp
we have ¢p(t,) — gp(t). We conclude that R(tn) — [z’(t) holds in Mosco’s sense,
i.e. the following two conditions are satisfied. For all v € [{’(t) there exists a sequence
v, € [z’(tn) with v, — v in H'(R) (take e.g. v, = max{v,—gp(t,)}) and for any
sequence v, € R’(tn) with v, — v (weakly) in  H'(Q) it follows v € R’(t).

Furthermore, we have the convergence a(tn; Un, w) — a(t; 'U(t), w) for any sequence {v, }
with K(tn) Sv, — v E ﬁ’(t). Taking these properties together with the assumption
F € C(]0,T]; Ly(2)), we have shown that all the conditions of the above mentioned

Theorem 4.4.1 in [15] are fulfilled. Consequently, we get a(¢,) — @(t) in H'(Q) for
@(t,) and @(t) as solutions of (3.1) for ¢, and ¢, respectively.

Taking v = us—;(t) in the inequality for wu;(t), « = 1,2 and adding both inequalities, we
obtain the estimate (3.3) (with M = m™") for problem (2.2) with d;0 = 0.

(ii). Let us define mappings @ = U, o w for j=0,1,2,..., by

a(t;w(t),v —w(t)) — a; / b(t";w(t'),v —w(t) dt' > (F(t),v—w(t)) +
. 0 (3.4)
+ (a- aj)/ btz w(t), v — w(1)) dt' Vo € K(1), t € [0,T).

First of all, we consider the case a; = ag =0, 0 < a <1 for the mapping (3.4). Taking
an element

we K = {we C([0, 7] Hy(Q)) : w(t) € K(1) Vi [0,T]),

we get F, € C([0,T]; H71(2)) with (F,,(¢),v) = (F(t),v) + (o — ap) fot b(t';w(t'),v) dt'.
Owing to step (i) the relation KX 3 @ = Uy, w is guaranteed. To apply the Banach Fixed-
Point Theorem, we check that Uy , is contractive for solutions w; = w;(F,), ¢ = 1,2 with

the help of estimate (3.3). We deduce

/t b(t'5wi (1) — wo(t'),v) di'| <

o . < M ~ -1
|01 wz”c([o,T],Hl(Q)) > Mo tg%f%]yei}?zm”v”m(m

T
<M é L/ [wi(#) = wo( )1y d' <M & T L |Jwr — wsl opo,10,m0(52))
0
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with & = o — ag. Consequently, we get a fixed point mapping @ = U,j—o.w for
a € (0,(LTM)™!). The evolutionary variational inequality

a(t;u(t),v —u(t)) > (F(t),v —u(t)) + « /0 b(t';u(t'),v —u(t)) di’ Vv e K(t)

therefore has a unique solution w € C([0,T]; HY(Q)) for « € (0,(LTM)™1).

The a priori estimate (3.3) for this inequality can be derived by means of the choice
v = us—;(t) in the inequality for w;, 7 =1,2. The addition of both inequalities leads to

i
m ||uy () — u2<t>“H1(Q) < |k - FZHC([O,T];H—l(Q)) + L/ [ (2) — u2(tl>”H1(Q) dt’
0

for all ¢ € [0, 7], and now Gronwall’s inequality implies (3.3) with M = M(T, L, m).

If (MLT)™" > 1 holds, the proof is complete. Otherwise, we repeat the above consid-
erations successively for @ = U, ,, sw with o; < a4 < aj + (MLT)™' until, after a
finite number of steps, the situation oo = 1 is reached. O

For the further investigation of the evolutionary variational inequality (3.1) (resp. the
equivalent problem (2.2)) we will consider a penalization problem given by

Find Z(t) € Hy(Q) 1 a(t; Z(1),0) + (&(1) B- (Z=(1) + gn(1)) ,v) =
= (F(t)+§(t),v)+/ b(t'; Z.(t'),v) dt’ Vv e H)(Q), t €[0,T] with

w (whje)r  _  (w*)?

Be(w) = (E) - (w/e +1/2)? a (w+e/2)?

(3.5)

fore >0 and ¢ =¢(z,t) > 0.

In what follows we denote z.(t) = Z:(t) + gp(t). Furthermore, throughout this paper we
use the notations w™ for the positive and w™ for the negative part of a function w, i.e.

wh =wV0=max{w,0} >0 and w” =wA0=min{w,0} <0,

such that w = wt 4+ w~.

Remark 3.2. It is easy to see that § = ((r) = (r+)2/(r + 1/2)* is a nondecreasing
Lipschitz (actually a C'') function 3 : R — [0,1] with 8(r) = 0 for r <0, B(+o0) =1,
(1 —p(r)) r <1 for r > 0. These properties imply in a sense the convergence of 3.(r) =
B(r/e) to the Heaviside graph as ¢ — 0 (see also [15], sect. 5.3).

The penalization method defined in (3.5) can be interpreted as a regularization of

<F(;c,t)+/0(Bu)(.r,t') dt'—(Au)(x,t)) € 0j(u(z,t)),

where A and B are the elliptic differential operators associated with the bilinear forms
a and b, respectively. The functional j = j(r) is given by j(r) = 400 for r < 0 and
j(r) =0 for r > 0. Its subdifferential (see [3] and [21], chap. 54) is denoted by 0;.

In the following lemma we summarize some properties of the solution z. of the just defined
auxiliary problem (3.5).



70 J. Steinbach / On a variational inequality containing a memory term . ..

Lemma 3.3.
(i)  Let the assumplions (3.2) and & € C([0,T]; Ly(Q)) be fulfilled. Then, there exists
a unique solution z. € C([0,T]; H)(R)) of problem (3.5). Moreover, one has

HZEHC (o) < O independent of & > 0.

i) If, additionally, F' and & belong to I/V1 0,7; Ly(Q)) and gp € COY[0,T], the solution
(ii) 1f, v, g to W, (0,75 g ,T1,
Z. of (3.5) will be such that
Z. e WL(0,T; H](Q)) for each fired >0 and
HZEHOO A2 (0T HN (@ < C  independent of ¢ > 0.
(ii1)  Together with the assumplions 0f part (ii) let the following conditions be fulfilled:
E(t) € L,() with p = max{2,n/2}, O F()+ (1 —r) 0&(t) > 0 a.e in 9,
Vr €10,1], Owp(t) >0, a.e. in(0,T). Then,
Oize > —Owgp  a.e. in Q@ =80 x(0,7T),
H@EEHM(O’T;H%Q)) < C independent of ¢ > 0.

(iv) Under the further assumption O,F = 0§ = 0, one has 0;z. < 0 a.e. in Q =
Q% (0,7).

Proof. (i). Applying the fixed point argument used in the proof of Theorem 3.1 in
connection with the theory for elliptic equations (with monotone operators), the existence
of a unique solution 2. € C([0,7T]; Hy(Q)) for problem (3.5) is deduced. To show the
boundedness of Z., we take v = Z.(¢) in (3.5). Owing to £ > 0 and (.(r) r > 0 we get

T +’72
('m ) IEAG: )HHl <7 (HFHC ([0,T];L2 (2 + HSH(‘ ([0,T];L2 (9))) +

TI?
+ C lgpllepry IElloo ;o) + 3

t
[ 1wt el
0

by means of Young’s inequality (with the parameters 47,7, > 0). Finally, the application
of Gronwall’s inequality leads to the desired estimate.

(ii). Subtracting the equations in (3.5) for ¢; € [0,T], ¢ = 1,2 with ¢; # {5, we obtain

a(ty; Ze(h) = Ze(t2),0) + (§(12) [Be (ze(11)) = Be (22(t2))] 1 v) =
= (F(t2) +&(t) = F(L2) = €(t2) + [£(t2) = §(10)] Be (2e(t2)) 5 v) +

t
+ a(tz;gs(tZ),7)>_a(t1;§5<t2),7))+/ b(f 2'5( ) )df’
to

Taking v = Z.(t1) — Z.(¢2) and using the monotonicity (5.(r)— B:(s))(r —s) > 0, we get

=], =

2)
+
1_f2

ml|Z(h) = Z(t2) [ o) < [0 — o] .
Ly (2

O'(t1> — O'(tg)

th — 1

1_f2

+ “Zs(t2)HH1 + L HZEHC ([0,T];H(R)) } [2:(t1) — 5a(t2>”}11(9) +

Lo ()

+ [l = b €)@

‘gD (t1) — gp(t2) 18 (2 (t1)) = B= (ze(t2) | 1y

1— 19
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The crucial point is now the last term. We conclude z, € 00’1/2([0, T); Hi(Q)) uniformly
in & > 0 by means of ||3.(z:(t1)) — 0. (Zs<t2>>”L2(Q) < C and Young’s inequality.

On the other hand, using |B.(r) — B:(s)| < e7'|r — s|, we deduce z. € WL (0,T; Hy(Q)),
but not uniformly in ¢ > 0.

(iii). To deduce monotonicity properties of the solution Z. of problem (3.5), we differen-
tiate the penalty equation (3.5) with respect to time.

Find w.(t) € Hy(Q) : a(t; we(t),0) + (£(1) B2 (2:(t) (we(t) + dgn(t)) ,v) =

, (3.6)
= (B F (1) + 0£(1) [1 = Bz (2(1)] ,v) Yo € H(Q), ae. in (0,T).

Owing to . > 0, ¢ > 0 and the assumption £(¢) € L,(Q) (note the Sobolev embedding
H'(Q) C L, (Q) with ¢ depending on the space dimension n; see e.g. [21]), problem (3.6)
has the unique solution w. = 9;z..

To show 9;z. > 0, we take 0> v = (9;z:(1))” € Hy(Q) in (3.6). By means of ¢ 3. >0,

we derive

1(@r2=(0)" Nl @) <0,

which proves the first statement of part (iii).

To prove the boundedness of 9;Z., we put v = 0,2.(¢t) € H}(£) in (3.6), which leads to

m |02 (D)7 gy + (€(1) B2 (22(1)) Oy 2e(1), Beze(t)) <
< 0 FN 1) + H&SHLQ(QJ 1002 ()11 + (1) B2 (2e(1)) Drze(t), Drgn(1)).

Using Young’s inequality and noting 0 < 3. (z.(t)) Osz.(t) = 0:0: (z:(1)), we arrive at

Ch Hafgs(t)HiIl(Q) < Oy {H&‘Fﬂig(n) + Hatfﬂig(n)} + Oigp(l) (0B (2:(1)) , &(1)).

By integration in time we obtain
A RN <G [l + ol +
elLx(0,15H Q) = 2 t L, (0,T502()) 5112 (0,T512(2))

110l o / (O (o.(1)) . £(1) d.

Integrating the last term by parts with respect to time we get H&EEHM(O’T;H%Q)) < C.
(iv). The statement follows with 0 < v = (0:2.(1))T € Hy(Q) in (3.6). Recalling the

special assumption of part (iv), i.e. & F = 0§ =0, we have

m | (92 (1) |1 g + (601 BL(2e(1)) Biz(1) , (Biz(1)F) <
< = (&) BL(z(1) Bign(t) , (Bz(1))*) <0

and, hence, (0;z.(1))* =0in H'(Q). O
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Let us now perform the passage to the limit as ¢ — 0 in the penalization problem (3.5).
As a result we will derive monotonicity and regularity properties of the solution u of the
variational inequality (2.2), (2.3).

Theorem 3.4. In addilion lo the preceding assumplions of Lemma 3.3(iii) we demand
the condition F(z,0) 4 &(x,0) > 0 a.e. in Q.

() The unique solution % = %(1) of the penalization problem (3.5) belongs to K(1
(resp. z.(t) = (2.(t)+ gn(t)) € K(t)) for each ¢ > 0 and for all t € [0,T].

Moreover, the estimale

1/2
[u—z|lo ([0, T;HY(Q < C Ve HEHC’/[OT] L (2

is satisfied, where u is the unique solulion of the obstacle problem (2.2), (2.3).
(i1)  The unique solulion u of (2.2), (2.3) is such thal

we€ H'(0,T; H'(Q)) and du>0 ae inQ=0x(0,T).
Supposing additionally 0;F = 06 =0, one has 0 < 0w < digp  a.e. in Q.

Proof. (i). We consider the penalization problem (3.5) for ¢ = 0, which coincides with
the elliptic equation

a(0; 2(0), v) + (£(0) Be (2:(0)) ,v) = (F(0) +£(0),0) Vv € Hy(Q).

Due to gp(0) > 0, we can take 0> v = (2.(0))" € Hj(Q) in this equation. Therefore,
2:(0) > 0 holds and, hence, z.(0) € K(0) is guaranteed. Owing to Lemma 3.3(iii) we
have z.(t) > z.(0) >0 in Q for ¢t > 0. Hence, it follows z.(t) € K(t) for all ¢ € [0, T].

Consequently, it is allowed to take v = z.(¢) in (2.2) and v = (u(t) — z.(¢)) € Hy(Q) in
(3.5). Recalling the notation & = u — gp, we obtain

aft; Z:(1) —a(t), ze(t) — a(t)) < (€(1) [1 =B (z=(1))], 2 (1) —u(t)) +

+ /0 Bt 2 (1) — a(t'), 5.(4) — a(t)) de’

by subtraction. Due to (1 — 8(r)) r < 1 for r > 0 (see Remark 3.2) and the relations
£2>0, 0:(z(t)) <1, u>0, the first term on the right-hand side can be estimated by

(6() [1 = Be (ze()] 5 2e(t) — u(t)) < (€(8) [1 = Be (2(1))] , 2(1)) <& (£(), 1)

Now, using Young’s inequality, we arrive at

L~y . N
mHZs( ) = @)y < & Néllogorimy + 5 1Z() — ()5 qy +

LT 1t = ey i€ 0.1, 2>,

such that after the application of Gronwall’s inequality the statement is concluded.

(ii). Owing to the statements of Lemma 3.3(i), (iii) we can extract a subsequence Z., of
Z., such that 2., — z and ;20 — 0z (weakly) in Ly(0,7; H'(2)). The function =z
belongs to H'(0,T; Hy(£)).
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But in the previous part (i) we have proved the strong convergence z, — @ = u—gp in
C([0,T]; HY(S)), such that z and u — gp coincide as mappings from [0, 7] — Hg(f).
Hence, we have u € H*(0,T; H(Q)).

Finally, the monotonicity results for the variational inequality solution u are obtained by
means of the statements of Lemma 3.3(iii), (iv). O

Remark 3.5. In the situation d;F > 0 the monotony assumptions of Lemma 3.3(iii)
and Theorem 3.4 are satisfied, for instance, by the choice & = £(t) = £(0) = (—=F(0))*
independent of . Moreover, in the electro-chemical machining problem one even has
0:F = 0, such that the last statement of Theorem 3.4(ii) is also fulfilled.

Finally, let us prove that the electro-chemical machining inequality (2.2), (2.3), which was
given in section 2 with F = F(z) = —X4(@) [ £0 and gp(t) = fg yp(t') dt' as a special
case of the inequalities investigated in this section, has a unique solution u belonging
to WL1(0,7; H(Q)). In order to demonstrate this property, we first propose a general
criteria and then this criteria will be checked for the special ECM inequality.

Lemma 3.6. Consider (3.2) logether with the conditions F € WZL(0,T, Ly(R)) and
gp € CYY0,T]. Suppose that a function

§eWL(0,T; H'(Q)) with §(z,1) = —gp(t) forz € dQ and &(z,1) <0 forzeQ

is given for all t € [0,T], such that the function n = n(z,t) defined by 1 := u+4§ salisfies
n(z,t) > 0.

Then, the solution u of the problem (2.2), (2.3) belongs to WL(0,T; H(Q)).

Proof. To verify the assertion, we substitute w =1 — d into (2.2), which leads to
a(tyn(t),w(t) —n(t)) > (F(t),w(t) —n(t)) +
t
+ at3(0),w) =) + [ ble5u(t)w(0) -~ n(0) df

0

for all functions w(t) = v+4§(t) with v € K(¢), i.e. w(t) € Hy(Q), w(t) > (1), t € [0,T].
Owing to 6(z,t) <0 and H}(Q) 3 n(t) > 0 it is now allowed to take w(t;) = n(t3-;) for
t; €[0,T],7 =1,2. Adding the inequalities for ¢{; and t¢,, we arrive at

a(ty;n(t) — n(t2),n(t) —n(t2)) < (F(t) — F(t2),n(t) —n(t2)) +
+ altyn(ta) = 0(t2), n(t) —n(t2)) — altyyn(tz) — (t2),n(t) — n(t2)) +

+ a(ty;0(t) — 0(t2),n(tr) — n(tz)) + [1 b(thu(t), n(tr) — n(tz)) dt"
By means of the estimate
mln(t) = n(t)gqy < 1F () = Ft)llr, @ + lo)lln @ 16(t) — 0l +
+ flo(tz) — ot (g [Hn(tz)l\m(g) + H5(t2)HH1(9)} + Lty =t Nullogorymey -

we verify n € W1 (0,7; H'(Q)) and, thus, v € WL (0,7; H'()) is proved. O
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Let us now establish corresponding functions d and n for the electro-chemical machining
problem introduced in section 2. We emphasize that the underlying idea is a generalization
of an argument which has already been used in [11] and [15] for the ECM problem with
o = const (cf. Remark 2.1).

Corollary 3.7. Under the assumptions (3.2) the solution u of the ECM problem (2.2),
(2.3) with F(z)= —X4() [ and gp(t) = fot yp(t') dt', ~vp € C[0,T], yp(t) > v > 0 for
all t €[0,T] is such that we WL(0,T; H'(Q)).

Proof. Based on the penalization problem (3.5) and its time derivative (3.6) we construct
a function

Hy(Q) 3 (1) = (2(1) + 6(1)) > 0, L € [0, 7).
Then the desired function 0 < n = u + ¢ will be obtained by passing to the limit as

e — 0.

We mention that, owing to 0;F = 0, we take 0 < ¢ = £(z) = (= F(z))7 in the penalization
problem (3.5) (cf. Remark 3.5).

Let GG be a smooth closed subset of Q, such that A(0) C G C Q (cf. Figure 1). We define
the function § by

t
oz, t) = / p(z, ') vp(t') dt’,
0
where p = p(x,t) is given as solution of the auxiliary problem

/ o(x,t) Vp(a,t) Vo(z) de =0 Yoe H(Q\G), v=0 on 09, 0G;
oG (3.7)

plz,t)=—1, z€09Q; plz,t)=0, € dG; te]0,T].

The function p is extended by 0 into the subset G, such that p € C([0,T]; H'()). By

means of the maximum principle we get 0 > p(z,1) > —1. Therefore, we have
t
§e WL(0,T;H'(Q)), &(=,0)=0, 0> d(x,t)> —/ yo(t') di" = —gp(t).
0

Thus, we obtain 0 < 7.(0) = 2.(0) € K(0) (cf. Theorem 3.4(i)). To have 0 < 5.(t) for
t > 0, it remains to show n.(t) > 0 in Q.

By virtue of 0. = 0;z. > 0 in G and 0yn. = 0 on 0N, we have (On.(t))” = 0 in G
and on JQ. By means of problem (3.6) (note & = x40 [, A(0) C G) and the auxiliary
problem (3.7) we deduce

—

/ o Voiz Y ((0.)7) de = — / B!(2) Buz. (Bm.)™ xa@ | dz =0 and
Q Q

(vp ()™ /Q\GU V(9:8) V ((9n.)”) da = / o Vp V ((0m:)”) dz =0.

G
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Consequently, we obtain

m ([ (9= (0) ™ (371 < alts (9m=(0))7, (m=(1))7) = alt; Dulz=(t) + (1)), (Ime(1))7) < 0,

such that (0:(1))” = 0 in H'(R) holds and therefore din.(t) > 0. Hence, we end up
with 7.(t) = 7.(0) + fot One(t") dt’ > 0. O

4. Spatial regularity

In this section we concentrate our study on the spatial smoothness of the solution of the
evolutionary obstacle problems (2.2)/(3.1), (2.3). We shall employ a semi-discretization
in time procedure (Rothe’s method, see [9]) in connection with the regularity theory and
a priori estimates for second order elliptic equations. These auxiliary tools are applied
to the penalization problem and after that a passage to the limit as ¢ — 0 yields the
assertions for the solution of the variational inequalities. This framework is similar to the
investigations of evolutionary variational inequalities with Robin boundary conditions
arising in non-isothermal Hele-Shaw flows (see [17]).

Let us recall the regularity statement that the solution w of the Dirichlet boundary value
problem

—div(k(z) Vw) = f(z) inQ withw =0 on TI'p =099

belongs to the Sobolev space W;(Q) (2 < p < ), provided k € CY(Q), k(z) > ko > 0,
J € L,(Q) and @ C R™is a domain with a C"' boundary (see e.g. [7], chap. 2 and [15],

sect. 3.7). As a second major tool we will exploit a general a priori estimate of the form
lollwz@ < € (Idiv(EV )l @ + ol @) Yo W) (4.1)

with a constant C' > 0 (see [7], sect. 2.3.3). In addition to the conditions (3.2) we shall
assume

c e WL(0,T;C'(Q)), boundary I'p = 99 of Q is of the class C'"'. (4.2)
In the following lemma we discuss the spatial regularity of the solution of an auxiliary
problem given by:  Find z(¢) € Hg() such that
t
a(t; z(t),v) = (F(t),v) —I—/ b(t';2('),v) dt' Vv e Hy(Q), t €10,T] (4.3)
0
with the bilinear forms a, b defined in (2.3). Moreover, the regularity of z as the solution
of problem (4.3) will be extended to the solution Z. of the penalization problem (3.5).

Lemma 4.1.
(i)  Suppose that the conditions (3.2) and (4.2) hold. Then, for every right-hand side
F € Ly(0,T; L,(Q)), there exists a function

2 € (C([0, T Hi () 0 L0, T; WEQ)))
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which is the unique solution of problem (4.3) and satisfies
12l a0 mwzi)) < Cr 1F N, 0,m5m00) T C2 IFloqomina@), 2<p < oo

Assume additionally that € € Ly(0,T; L,(2)) N C([0,T]; Ly(Q)) holds. Then, the
unique solution Z. of the penalization problem (3.5) satisfies
Z € (C([0,T]; Hy() N La(0,T; Wi (%))
HgEHLZ(O,T;Wg(Q)) < C wuniformly in € > 0.
(ii) In addition to part (i) suppose that , € belong to Loo(0,T;L,(Q)). Then, the
W(

be
solution z of (4.3) belongs to L. (0, V) and there exist constants Cy,Cy > 0,
such that

2
p

12l Loz € O IFlngorimue) T C2 1Floqorynaay > 2<p < oo
Furthermore, the unique solution Z. of (3.5) fulfills

Z € (C0, T Hy () N Loo(0, T WH(Q)) 5 el 0,120y < €
uniformly in ¢ > 0.

Proof. Recalling the existence results derived in section 3, it remains to show the spatial
regularity. Using a time discretization procedure we prove at first z € Ly(0,7 W;(Q))
Afterwards we deduce z € Lo(0,T; W;(Q)) in part (ii) and, finally, the spatial regularity
is extended to the solution Z. of the penalization problem (3.5) in part (iii).

(i). Let [0,T] be discretized into {¢t; = j7, 7 = 0,..., N}, N7 =T, where N will later
tend towards +o0o. We define a sequence {w; }é\f:_ol by the solutions of the elliptic problems

7-|-1
a(tj;wi,v) = (Fj,v —I—Z/ b(t';wi,v) di! Yo € Hy(9) (4.4)

with F; = %fj(_fﬂ)‘r F(t') dt’.  On the one hand, taking v = w; in (4.4) and applying

Gronwall’s inequality in its discrete version (cf. Remark 4.2(ii)), we get

ijHHl )<cl HFHL2 + e HF“LgoTLg(Q)) (4.5)

where ¢;, ¢; do not depend on j and 7. On the other hand, due to the elliptic regularity
(cf. [7], Theorem 2.4.2.5 and [15], Theorem 3.7.4) we successively conclude w; € W;(Q)
for y=0,..., N — 1. Furthermore, there is an a priori estimate of the form

. . J— (i4+1)7
loslhugior <€ (1Pleier + loile) . B=Ft > [ By widt (16)

with the differential operator B(t') w = —div (0;0(t') Vw). In particular, the constant
(' can be chosen independent of j and 7 (see (4.1) and cf. Remark 4.2(i) below). Due
to the regularity w; € W;(Q) we have HF HL ) < || F; ”Lp +Cr Z;é ‘wZ-HW?(Q).
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Therefore, by means of (4.5) and the discrete Gronwall inequality, the estimate (4.6) is
rewritten as

il < Cr 1PN 07ia@) + C2 IFill, @) + Cs TZ IEill 1, @ (4.7)

where the constants C;, i = 1,2,3 are independent of j and 7. Now, we define step
functions F. and w, by

F.(t)=F;, for jr<t<(j+1)7r, j=0,...,N—1 and F(T)= Fn_y

(analogously w; based on w;). By means of Holder’s inequality we get

N-1 1/2 j-1
[1F: ]y = <TZ I‘Fj”zp(ﬂ)> <HFlx s ™Y M E @ < VE 1l ,@)
7=0 =0

with X = Ly(0,T; Ly(2)). Combining these estimates with (4.7) and performing some
calculations, we find that w, can be bounded by HwTHLFZ(O’T;WQ(Q)) < HFHLg(O,T;Lp(Q))'

Therefore, w; remains in a bounded subset of L,(0, 7 W;(Q)) Hence, extracting a subse-
quence, again denoted by w;, we get w, — w in Ly(0,T; W;(Q)) (weakly). Integrating
(4.4) in time and multiplying it by v € L(0,T; Hy(£2)), we derive

/OTa(t;wT(t),v(t)) dt_/OT (a(t; wo(t), 0(t)) — a(l; wo(1), (1)) dt =
:/OT(FT(t),v(t)) dt +/OT (/Otb(t'; w. (1), v(t)) dt’—/{t b(t"; w, (1), v(1)) dt’> dt,

where 1 = [L]7 for t € [0,T) ([4] as integer part of £) and t=T—7fort =T. Now, in
passing to the limit as 7 — 0, we obtain

[ atswtowyan= [ Eoeoya v [ [ esom a) @

for all v € Ly(0,T; H(S)) and hence
t
a(t;w(t),v) = (F(1),v) +/ b(t',w(t'),v) di' Vv e Hy(Q) ae. in (0,7).
0
This equation implies, together with (4.3), that w(¢) = z(¢) holds a.e. in (0,7). Thus,

z € Ly(0, T; W2(Q)) is proved.

In order to show the estimates for z we first take v = 2(¢) € Hy() in (4.3) and apply
Gronwall’s inequality. As a result we obtain HZ”C([(),T];Hl( <ec HF”C (0.T] T (2 meg

to the previously proved regularity z € Ly(0, T} VVPZ(Q)) for ’rhe solution of (4. 3), we have
the a priori estimate

IO < C (Bl + 1P Ol [ 1B Oley @) (09
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a.e. in (0,7), where the constant C' does not depend on ¢ (see (4.1) and cf. Remark 4.2(i))
and (Bz)(t') = —div (0;0(t') Vz(t')). Combining the last two inequalities, we obtain

1
2
H'Z(t)l‘?/Vg(Q) <G HFHé([O,T];LQ(Q)) + (s HF(t)Hip(Q) + 03/0 Hz(tl)ng(Q) dt’ (4.9)

a.e. in (0,7). Integrating (4.9) in time and using again Gronwall’s inequality, we get

¢ ¢
/0 Hz(tl)Hivg(Q) dt’ < G4 HFHZC([O,T];L2(Q)) + Oy /0 I\F(t’)l\i,,(g) dt' vt e[0,T]. (4.10)
The estimate for HZHLQ(O,T;Wg(Q)) follows by means of (4.10) for t = T.

(ii). Substituting (4.10) into (4.9) we obtain z € L. (0,7} WPZ(Q)) and the desired estimate
for HZHLDQ(O,T;W[?(Q))'

(iii). The statements for the solution Z. of problem (3.5) follow from the parts (i), (ii),
which are applied with a modified right-hand side F(t) = F(t)+ [1 — 8. (z.(t))] £(t). The
assumptions guarantee that I belongs to Ly(0,7; L,(Q)) (resp. to Lo (0,75 L,(2))). O

Remark 4.2. (i) Let us briefly point out that the constants in the a priori estimates
(4.6), (4.8) can be chosen independent of ¢ and 7. Considering the elliptic problem
—div(o(z,t) Vo) = F(z,t) inQ, v=0 ondQ

for fixed ¢ € [0,7], one has v € W2()) resulting from the elliptic regularity theory
(cf. [7], Theorem 2.4.2.5 and [15], Theorem 3.7.4). Thus, the differential equation can

be multiplied by |Av[P~! € L%(Q) Integrating over ) as well as using Young’s and
Holder’s inequality, we obtain HAUHLP(Q) <C (HUHWl(Q) + ||F(t)HLP(Q)) with a constant

C = C(p, 00, Ha(t)H01(§)>' Owing to the assumptions (4.2), this constant C' can be taken
independent of .

Applying now the general a priori estimate (4.1) to Av with v € W;(Q) and v =0 on
01}, we deduce

oz < € (Iolwyay + 1P O)l1, g0 )

Iollwa@ < € (10l + IFOllq)

The second estimate is obtained from the previous one using a Gagliardo-Nirenberg in-
equality (cf. [21], sect. 21.17, 21.19). Combining (4.11) and the Sobolev embeddings
Wi(Q) C L,(Q), j=1,2 for corresponding values of 7 and ¢ (depending on 2 < p < oo

and the space dimension n a multiple application can be necessary), we arrive at

olhwzia < € (Ilhmngay + 1F @) - 2 << o0,

where C' does not depend on {.

(4.11)

(ii) In the proof of Lemma 4.1 we have used several times a discrete version of the Gronwall
inequality. Suppose, that the discrete functions d; = d(t;) > 0 and g; = g(t;) > 0
satisfy dop < go and d; < ¢ ZZ;S 7d; + g; for all y = 1,...,N, 0 < ¢ = const.
Then, the estimate d; < g; + ¢ e b1 ZZ;S 7¢; holds for all 7 = 1,..., N, where
{t;=yr, j=0,...,N}, Nt =T.
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We come now to the global spatial regularity of the solution of the obstacle problems
(2.2), (3.1). These main statements are obtained connecting the results of Theorem 3.4(i)
(strong convergence of Z. to & = u — gp) and Lemma 4.1 (boundedness of z.).

Theorem 4.3. Under the assumptions of Theorem 3.4 and Lemma 4.1(i) the solution u
of problem (2.2), (2.3) is such that

we (H'(0,T; H'(Q)) N Ly(0, T;WE(Q))), 2<p< oo
Furthermore, under the additional assumptions of Lemma 4.1(ii), one has

we (H'(0,T; H'(Q)) N Loo(0,T;W2(Q))), 2<p<oo
Jor the solution u of (2.2), (2.3).

Proof. Owing to Lemma 4.1(i) the family {Z.} of penalty solutions is bounded in the
space Ly(0,7;WZ(Q)) (independent of ¢). Hence, there exists a subsequence 2./, which
converges in Ly(0,T; W2(Q)) weakly to an element w € Ly(0, T; W2(52)).

Thus, we have, on the one hand, z., — win Ly(0,T; H'(Q)) (weakly). On the other hand,
owing to Theorem 3.4(i), we obtain 2z. — @ in Ly(0,7; H'(2)), such that u — gp = w
holds.

p

The second statement u € Lo
2(Q))*) is a separable Banach space (cf. [21], chap. 23, in

We observe that L (0,T'; (W;
particular, problem 23.12).

Hence, due to the boundedness of Z. in the space Lo (0,7 W;(Q)) (see Lemma4.1(ii)),

there exists a subsequence Z. of 2. with %, —— w in Lo (0,T; W;(Q)) Again, the
strong convergence z. — @ in C([0,T]; HY(€)) derived in Theorem 3.4(i) implies that
w = u — gp solves the variational inequality (2.2). O

0,7; W?2(€2)) is proved by means of the weak™ convergence.
(

In the end let us briefly return to the special ECM problem from section 2, the regularity
of which with respect to time is discussed in Corollary 3.7. The solution u of this problem
has been shown to satisfy

uwe (WL(0,T; H'(Q) N Le(0,T; W2(Q))) .

Moreover, owing to the Sobolev embedding W () C Ch(Q) for 0 < a=1-—n/p, the
solution u belongs to L.,(0,T;C"*(Q)). Recalling Theorem 3.4(ii) (observe 0;F = 0)

we conclude that all derivatives of wu are bounded. Therefore, we end up with

u € CONQ % [0,T]) = WL(Q  (0,T)).
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