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We prove the existence of solutions of a differential inclusion u’' € F'(¢,u) in a separable Banach space X
with constraint u(t) € D(t). F is globally measurable, weakly upper semicontinuous with respect to u
and takes convex, weakly compact values. D is upper semicontinuous from the left, and, for every r > 0,
the sets D(t) NrB are compact. F and D fulfil a well-known tangential condition, which is expressed by
means of the Bouligand cone.

1. Introduction

In this paper we are going to deal with a differential inclusion of the kind «' € F(t,u),
where F'(t,u) is a closed, convex subset of a separable Banach space X. The growth of F’
with respect to u is at most linear, while u is subject to the constraint

u(t) € D(t), telCR.

In this field, several results were achieved in the last years, first in the case D(t) = D,
then in the general case: we recall the books by Aubin-Cellina [3], Aubin [2], Deimling
[15], and the wide references therein. In particular, as regards the upper semicontinuous
case, we refer to Haddad [19], Deimling [12,13], Tallos [22], Bressan [7], and more recent
works by Benabdellah-Castaing-Ibrahim [4], Bothe [5,6], Castaing-Moussaoui-Syam [9],
Cavallucci [11], Malaguti [20], Frankowska-Plaskacz [18].

As is known, any viability result needs a tangential condition, in order to keep the tra-
jectory wu(t) inside D(t). In some recent papers, the following property is required, at
least almost everywhere: whenever u € D(t), the set F(t,u) must contain a vector v such
that (1,v) € Tr(t,u), where I" is the graph of D and Tr(z) is the Bouligand cone of T’
at the point z = (¢,u) (Def. 2.2). This assumption looks quite natural, since the vector
(1,4/(t)), where it exists, lies in the Bouligand cone of T" at z = (¢, u(t)).

If F' is globally upper semicontinuous, and the graph of D is closed, the proof can be
reduced to the autonomous case, and the given conditions are known to be enough to
ensure the existence of global solutions, at least when X = RP (see, for instance, [12]
for the case D(t) = D). If the dimension of X is not finite, some further assumptions
must be introduced, about F' or D: for instance, if nothing more is required on D, the
non-compactness measure of the sets F(¢,u) should be controlled in some way, as in [15,
§9]. An alternative approach, which is adopted in [20] and the present paper, leads to the
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following assumptions: for every r > 0 the sets D(t)NrB are compact, but the sets F'(¢, u)
are only supposed to be weakly compact. Moreover, in this context, it looks natural to
assume that F' is upper semicontinuous with respect to the weak topology on the space
of its values (“scalarly” upper semicontinuous) as in [9], [20].

Further difficulties arise when F'(¢, u) is upper semicontinuous only with respect to u, since
the reduction to the autonomous case does not look easy (see [13], [4], [5]). In particular,
an example in [5] shows that solutions could miss even if F' is measurable with respect
to t. Indeed, in [5], F' is supposed to be almost upper semicontinuous, that is to say, for
every € > 0, upper semicontinuous on sets of the kind I' N (I x X'), where the measure of
I\ I, does not exceed €. Here we like better to assume that F' is upper semicontinuous with
respect to u and globally measurable, that is measurable with respect to the product of
the Lebesgue o-field on I with the Borel o-field on X. As is known, the two assumptions
are equivalent if X is a euclidean space, and also in more general cases (see, for instance,
[23, Thm. 2]|). As far as we know, however, the question is left open in our context:
indeed, the space where F' takes its values is endowed with the weak topology, which does
not fulfil the assumptions of [23].

In the case X = RP, our main result (Theorem 2.3) is equivalent to Theorem 1 of [5] (see
Remark 2.10), and strongly related to Theorem 3.1 of [18]. When the dimension of X is not
finite, the main difference with respect to [6, §3] lies in the assumptions about compactness
and upper semicontinuity, which here are referred to the weak topology in the space where
F takes its values. Furthermore, our approximate solutions are built in a different way,
since we do not suppose (at least directly) that F' is almost upper semicontinuous. Indeed,
our approach is rather direct, since it relies on a suitable use of measurable selections and
their Lebesgue’s points: in particular, it needs neither Scorza-Dragoni’s property (as the
proof given in [18]), nor the approximation of F' through the Aumann integral means,
which some authors used in order to get global upper semicontinuity (see, for instance,
[9], [20]).

The plan of the work is conceived as follows: in §2 we explain the problem and prove
the main result (Theorem 2.3), on the ground of the existence of suitable approximate
solutions (Def. 2.4). In §3 we deal with the most important part of the work: the
construction of the approximate solutions, which is performed through a suitable use of
Zorn’s Lemma. In §4 we explain some auxiliary results: in particular, in Prop. 4.1,
we exploit a result by Castaing [8], in order to get the compactness of the sequence of
approximate solutions. Finally, in Theorem 4.5, we show some useful properties of the

function ¢(t, z) = d(x; D(t)).

2. Statement of the problem

Let I = [0,7] be an interval of the real line, (X, || - ||) a separable Banach space, B the
closed unit ball of X. We denote respectively by £ and B the Lebesgue o-field in I and
the Borel o-field in X. Given A € L, |A| stands for its Lebesgue measure. If z € X
and C C X, d(z;C) is the distance of x from C, while ||C|| means sup{|z||; x € C}.
We also define in £ = I x X the distance between two points w = (t,z), w' = (¢',2') as
d(w,w") = max(|t — [, ||x — 2'||). Then, given w € E, G C E, §(w;G) will denote the
distance of w from G. AC(I; X) will be the space of all absolutely continuous functions
u: I — X. Now, for every t € I, let D(t) # 0 be a closed subset of X, and, for every
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tel, z € D(t),let F(t,z) C X be again a closed, non-empty set. Given zq € D(0), we
are interested in the following problem: find a function u € AC(I; X) such that:

u(0) =z9, u(t)€ D(t) on I

u'(t) € F(t,u(t)) ae.on I (P)

Definition 2.1. If & is a multifunction from a set A to X, and C' C X, the script
®~1(C) denotes the set of those points £ € A such that ®(£) meets C. Then we say
that the multifunction ¢ — D(t) is upper semicontinuous from the left if, for every closed
subset C' of X, the set D71(C) is closed in (I,77), where 7~ is the “left” topology on I.
We say that F' is measurable with respect to L ® B if, for every open set C' C X, it is
F71(C) € L ® B. Finally, let t € I be given: the multifunction z — F(t,z) is said to be
weakly upper semicontinuous if, whenever C is weakly closed in X, the set F(¢,-) (CO)
is closed in X.

Definition 2.2. Let ' be the graph of the multifunction D(-), i.e. the set of those pairs
(t,xz) € E such that z € D(t). Then the Bouligand tangent cone of I at a point z € T
(see, for instance, [15, §4]) is the set of all vectors w € E such that, for a suitable sequence
of positive numbers h,, it is h, — 0 and §(z + h,w;T")/h, — 0, as n — +o00. Then we
denote by Qr(z) the set of all points y € X such that (1,y) € Tr(2).

Roughly speaking, if z = (a,z), Qr(z) is the set of “admissible speeds” at the time t = a
for a trajectory v = wu(t) € D(t) such that u(a) = z, and can be easily characterized
as follows: y € Qr(a,z) if and only if there exist positive numbers k, and points z,, €
D(a + k), with n € N, such that, as n — +o0,

(a) kn =0, (0) |

Ty, — T
n

_ . 2.1
p yl| =0 (2.1)

From now on, we suppose that D and F' fulfil the following conditions:

i) for every t € I, r > 0, the set D(¢t) NrB is strongly compact;

ii) for every (¢,z) € T the set F'(¢,z) is convex and weakly compact;

iii) D is upper semicontinuous from the left;

iv) F is measurable with respect to £ ® B;

v) for every t € I, F(t,-) is weakly u.s.c. on D(t);

vi) there exist a function § € L'(I) and a set N € £, with |[N| = 0, such that, for every
(t,z) e T with t ¢ N it is ||F(¢,z)|| < 0(¢)(1 + ||z|]);

(vii) if (t,#) € [ and t ¢ N, then F(t,z) N Qr(t,z) # 0; otherwise, Qr(t, z) # 0.

Theorem 2.3. Let X be a separable Banach space, D and F satisfy conditions (i)—(vii),
zo € D(0). Then problem (P) admits a solution.

(
(
(
(
(
(

The proof of Theorem 2.3 relies, as usual, on the existence of suitable approximate solu-
tions. In order to define this notion, we recall that a family V C L(I; X) is uniformly
integrable if, for every € > 0, we can find o > 0 such that, for every v € V, A € L, with
|A| < o,itis [,]|v(t)||dt < e. Furthermore, for every r > 0, we consider the set I'" of
those pairs (¢, x) such that ¢t € I, z € D(t) + rB, and put

F.(t,z) = U{F(t,y); y € D), |ly—z|| <r}, (t,x)eI". (2.2)
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Definition 2.4. We say that (u,), in AC([; X) is a sequence of approximate solutions
for problem (P) if the functions u/, are uniformly integrable, and there exist numbers
€n €]0,1] such that ) e, < 400 , and, for every n € N:

(a)  un(0) = @o;

(b) for every t € I, d(u,(t); D(t)) < €n;

(c) there exists a set E, € L such that [I\E,| < €,, and, for every t € E,, it is
up () € O, (t,un(t)), where, for every (t,z) € I'**, we put ®,(t,z) = F,, (t,z) + €, B.

In §3 we shall show the existence of approximate solutions. In this section, on the ground
of that result (Theorem 3.4), we are going to prove Theorem 2.3. We put forward some
measurability results: first of all, we remark that I' € £ ® B. Indeed, let A C X be open,
and write A as U,C,, where the sets C,, are closed. Then D '(A) = U,D }(C,) € L,
since the sets D~*(C,,) are closed in (I,7), thanks to (iii). Then the multifunction D is
measurable, and Theorem II1.13 of [10] shows that ' € L ® B.

Lemma 2.5. Let A C T, A € L ® B, and suppose that, for everyt € I, the set C(t) =
{z € X : (t,x) € A} is closed (possibly empty). Let r > 0, and A" be the graph of the
multifunction t — C(t) + rB: then A" € L® B.

Proof. Since C(t) is a closed subset of D(t), and (i) holds, it is easy to see that y €
C(t) + rB if and only if d(y; C(t)) < r. Now, if (z;); is a dense sequence in X, this
happens if and only if, for every j € Z*, we can find an index 7 such that the ball
B;; :=z; + j7'B meets C(t), and y € Uj; := z; + (r + j~')B. Now, thanks to Theorem
I11.23 of [10], the subset E;; of I where B;;NC(t) # () is measurable, since £ is a complete
o-field, and E;; is the image of the set (I x B;;) NT' € £ ® B through the projection
(t,z) — t. Now it is enough to point out that A" = N; U; (E;; x Uy;). O

Proposition 2.6. Let r > 0: then I'" € L ® B. Furthermore, the multifunction F,. takes
weakly compact values, and s measurable with respect to L ® B.

Proof. We already checked that ' € £ ® B: thanks to the previous Lemma (in which
we put A = T'), we also get I € £L ® B. The set F,.(t,z) is nothing but the image of
the compact set (z + rB) N D(t) through the multifunction F(¢,-): hence, by virtue of
(v) and well-known results about upper semicontinuous multifunctions (see [3], Prop. 3,
p. 42), F,.(t,z) is weakly compact. Now, let A C X be open: since X is separable,
it is easy to express A as the union of a countable family of closed balls B,,, which are
also weakly closed. For every n, the set T', = F~'(B,) can be seen as the graph of the
multifunction ¢ — U, (¢) = F(t,)"'(B,): now, from (iv) and (v) we argue respectively
that ', € L ® B, and the sets U,,(¢) are closed. Then Lemma 2.5 entails that the graph
[ of the multifunction ¢ — W, (¢) + 7B lies in L ® B as well. But ['" = F"!(B,), so that
F 1 (A) =U,I7 € LR B. O

T

Definition 2.7. Let C' C X, and X* be the dual space of X: then the support function
of C is defined, for every p € X*, by 6*(p; C) = sup{(p,v); v € C}. If t € I is given,
the multifunction x — F(¢, ) is said to be scalarly upper semicontinuous if, for every
p € X*, the function z — 6*(p; F(t,)) is upper semicontinuous.

In our context, the condition given in Def. 2.7 is actually equivalent to (v) [10, Theorem
I1.20]. We also point out that, through simple arguments, (2.2) allows to express the
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upper semicontinuity of the function z — 6*(p; F'(¢, x)) as follows:

lim 6" (p; F(t,z)) < §*(p; F(t,x)). (2.3)

r—0t

Proof of Theorem 2.3. Let us consider the approximate solutions u, of problem (P),
whose existence will be shown in Theorem 3.4 of the next section. Since the sequence
(ul,)n is uniformly integrable on the bounded interval I, it is easy to see that it is bounded
in L'(I; X) by some constant M > 0. Now, let R = M +1, recall (2.2) and, for every t € I,
put W(t) = Fgr(t,zo). Then, for every t € I, ||u,(t) — zo|| < M, so that u,(t) + €,B C
zo + RB. Hence ®,(t,u,(t)) € W(t) + ¢,B, and condition (c) implies that, for every
t € E,, d(ul(t);W(t)) < €,. Now we can apply Proposition 4.2 to v, = u],, and infer
that the sequence (v,), admits a limit function v in the weak topology of L!(I; X). More
precisely v, — v weakly in L'(I; X) as k — +o0, where (ny) is an increasing sequence
of positive integers. Now let © € AC([; X) be the function such that u(0) = =z, and
v’ = v almost everywhere, and put, for every k € N, z = u,,: we are going to show that
u solves problem (P). First of all, we notice that, as k — 400,

t t
zk(t) = 2o + / Un,, (T)dT — T +/ v(T)dT = u(t) weaklyin X, tel. (2.4)
0 0

Now it is easy to check that actually x; — w uniformly on I as k& — +oco. Indeed,
the functions x; are equicontinuous, because their derivatives are uniformly integrable.
Furthermore, for every t € I, k € N, x(t) € 29 + RB. On the other hand, ¢, <1,
so that condition (b) of Def. 2.4 entails that the distance of x(t) from the compact set
D(t)N(zo+(R+1)B) does not exceed the number oy, := €, , which tends to 0 as k — +o0.
Then, obviously, for every ¢ € I the sequence (zx(t))x lies in a strongly compact set, and
Prop. 7.3b of [14] ensures that, in the space C(I; X) of continuous functions z : I — X,
the sequence (xy) is relatively compact with respect to || - ||oo. Now, let us argue by
contradiction and suppose that there exist 7 > 0 and an infinite set H C N such that, for
every i € H, ||z; — u||ooc > 1. Thanks to the previous compactness arguments, we should
find an infinite subset L of H and a continuous function z such that ||z; — z|[ec — 0 as
j — o0, with j € L. But (2.4) entails x = u, then it should be ||z; — u||c < 75 for
infinitely many 7 € H, in contrast with the previous inequality. Hence z; — u uniformly
as k — +oo. In particular, from condition (b) of Def. 2.4 (with n = ny), we get, as
k — oo, d(u(t); D(t)) = 0: since D(t) is closed, we get actually that u(t) € D(t).
Finally, let us put I, = E,,, and n = n; in condition (c) of Def. (2.4), so as to get

h(t) € B, (t,24(t)), € I (2.5)

Let us also put pp = |[zx — Ul|leo, Tk = pr + 0: then z4(t) € u(t) + prB, so that
zk(t) + ox B C u(t) + r B, and

O, (t,24(t)) C Fy, (, u(t)) + 04 B. (2.6)

Now we are going to apply a result of Section 4, Prop. 4.2. To this end, let p be a function
in the space L ([; X*), which is defined before Prop. 4.1: then, from (2.5) and (2.6),

(p(1), 7, (1)) < 6" (p(1); Fr, (£, u()) + orllp@", T € I, (2.7)
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where || - ||* is the norm of X*. Now, let J = liminfy I}, be the set of those points t € I
which lie definitively in Ij: since Def. 2.4 entails that ), [I\Ix| < 400, we get |[I\J| = 0.
Furthermore, for every ¢t € J, we can take the upper limit in (2.7) as k¥ — 400, so as to
get, thanks to (2.3),

limsup (p(t), z; (¢)) < 6*(p(t); F(t,u(t))) a.e. on I. (2.8)

k—400

Now, let us put ®(¢) = F(¢,u(t)) and recall condition (vi) of Theorem 2.3, so as to get
|2(2)]] < CO(t), with C' = 1 + ||zo]| + R: then we can apply Prop. 4.2 with v, = z},
v = v/, and conclude that v'(t) € F(t,u(t)) for almost every ¢ € I. O

Remark 2.8. As we can easily check, condition (iii) implies that, for every z € X, the
function ¢ — d(z; D(t)) is lower semicontinuous from the left. Furthermore, we recall
that an upper semicontinuous multifunction with closed values has a closed graph [15,
Prop. 1.2b]: then condition (iii) also entails that I' is closed from the left, that is to say,
closed with respect to the product of 7= with the strong topology of X. When X = RP,
this property (which is used also in [6, §3]) could replace (iii): indeed, as we are going to
see in the next sections, what we actually need in the proof of Theorem 2.3 is the lower
semicontinuity from the left of the functions t — d(z; D(t)), z € X, which in this case
holds as soon as I' is closed from the left.

Remark 2.9. If N = (), condition (vii) is a standard assumption: this particular, slight-
ened formulation is also given in [5]. We point out that in [18] a weaker condition is
considered, which replaces Tr(z) with its closed, convex hull. Thanks to the character-
ization of Qr given in (2.1), the condition F(t,x) N Qr(t,x) # () entails the following
property: there exist numbers k, > 0 and points z, € D(t + k), with n € N, such that
k, and the distance of (x, —x)/k, from F(t,z) tend to 0 as n — +oo. In the case N = ),
this condition looks less restrictive than (vii) (see [4] for a comparison between the two
conditions).

Remark 2.10. As we point out in the introduction, when the dimension of X is finite,
Theorem 2.3 is actually equivalent to Theorem 1 of [5]. Indeed, in this case, (v) simply
says that F'(t,-) is upper semicontinuous. Then (iv) and (v), thanks to Theorem 2 of [23],
entail that F' is almost upper semicontinuous, as in [5].

3. The approximate solutions

Throughout this section we fix a number € €]0, 1] and build an approximate solution of
problem (P) in correspondence with it (Lemma 3.3). Then Theorem 3.4 will follow easily.
Let (x;); be a dense sequence in X and, for every i € N, t € I, put ¢;(t) = d(z;; D(t)),
B;(t) = z; + ¢:i(t)B, D;(t) = D(t) N B;(t). Thanks to conditions (i), (iii) of Theorem
2.3 the multifunctions D; have non-empty values and are measurable: hence they admit
measurable selections u; [10, Thm. III-6]. Now let us put, for every i € N, ¢t € I,
®5(t) = Feja(t, ui(t)). Since we already saw that F,/, is measurable with respect to £L® B,
and takes weakly compact values (Prop. 2.6), we argue that ®§ is measurable on I, and
its values are strongly closed: then it admits a Castaing representation [10, Thm. ITI-7],
that is a countable family Vi of measurable selections such that, for every ¢ € I, the
set {v(t); v € Vf} is dense in ®§(¢). Let L be the set of those points ¢ € I which are
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Lebesgue points for all the functions v of the family V¢ = U;V5: since V¢ is countable as
well, |[I\L¢| = 0. Furthermore, for every i € N, v € V£, a € LN [0, T it is

1 a+h
lim — = . 1
Jim, h/a v(t)dt = v(a) (3.1)
Given an initial datum (a,z) € I', we are going to build, on a “small” interval I* = [a, a*|,
an approximate solution w of problem (P). To this end, we need a control a priori on
the moving set D(t): so we exploit a result of §4 (Theorem 4.5), and take the constant
¢ > 0 which appears in (4.6). Then we put § = max(c#,260 + 1), consider the function
r € AC(I;R) such that r(0) = ||zo||, 7 = B(1 +r) a. e., and put ¢ = (1 + r(7T"))3. Now
we should like to get on I* the following conditions:

) ==, w(a*) € D(a"), (b) d(w(t); D(t)) <e,
(c) w'(t) € F(t,w(t)) + eB a. e., (d) ||w(a®)|| < r(a*), (3.2)
lw' ()| < ¥(t) a. e.

—
[¢*]
~—

Unfortunately, we are not able to satisfy all previous conditions for any initial datum, but
only when a lies outside the set N, = (I\L¢) U N, where N is the set which appears in
conditions (vi), (vii) of Theorem 2.3. Then we proceed in two different ways, according
to whether @ ¢ N, (Lemma 3.1) or @ € N, (Lemma 3.2). We put forward the following
inequality, which follows easily from the definition of r:

r(t) —r(a) > (1 +r(a)) /tﬂ(T)dT, 0<a<t<T. (3.3)

Lemma 3.1. Let € €]0,1], z = (a,z) € ', witha < T, a ¢ N, ||z|| < r(a). Then there
exist a* €la,T| and a function w € AC(I*) (where I* = [a,a*]|) such that conditions (3.2)
hold on I*.

Proof. Let o €]0,¢/8]. Then we can find 7 € N such that
@) llzi—zll <o, (b) ¢i(a) = d(zi; D(a)) <o, (3.4)

so that ||ui(a) — z|| < ||lui(a) — z4|| + ||z; — z|| < ¢i(a) + 0 < 20 < €/2. Since a ¢ N,
thanks to condition (vii) of Theorem 2.3 we can find y € F(a,z) NQr(a,x), and from the
previous inequality we get y € ®¢(a). Since Vf is a Castaing representation of ®¢, there
must be a function v; € Vj such that

ly —vi(a)ll <o (3-5)

We recall that the function r of (3.3) is continuous, and that (3.1) holds, with v = v;.
Furthermore, thanks to Theorem 4.5, ¢; is upper semicontinuous from the right. Then
we can find h €]0, o] such that, for every k£ €]0, h] the following inequalities hold:

(a) r(a+ k) —r(a) <o, (b) ||v(a)— %/a vi(T)dr|| < o,

(c) #i(t) < ¢i(a) + 0, tE€la,a+kl

(3.6)
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In particular we get, whenever a <t <a+k,
(a) lui(t) —zll <30, (b) [lui(B)]] < O(2)(2 + []]). (3.7)

Indeed, since ||u;(t) — z;]| < ¢:(t), (3.7a) follows from (3.4a), (3.6¢) and (3.4b). On the
other hand, since v;(t) € Fi/o(t,u;(t)), from (3.7a) and the inequality /2 + 30 < 1, we
get v;(t) € Fi(t,z): then condition (vi) of Theorem 2.3 implies (3.7b). Now, let us recall
Remark 2.1, and take n so large as to ensure that &, in (2.1a) and the norm which appears
in (2.1b) do not exceed respectively h and o. Then let us put k = ky,, 2* = x,, a* = a+k,

= [a,a*], ¢ = (z* —z)/k. In particular, k£ = ¢* — a fulfils conditions (3.6). On the other
hand, if we put y; = %faﬁk vi(T)dT, ¢; = ¢—y;, from (3.5) and (3.6b) we get ||y —v;|| < 20,
so that

lall <llg—yll+lly—wll <o+20 <e (3.8)

We claim that the function w : I* — X defined by w(t) =z + f vi(T)dT + (t — a)qZ fulﬁls
conditions (3.2). First of all, (3.2a) holds obviously, since w(a) = and w(a*) = z*. In
order to prove (3.2d), we recall (3.7b), the inequalities ||z|| < r(a), 20 +1 < and (3.3)
so as to get:

a+k atk
w) ol < [ lu(olldr+Klall < @+ ol) [ 60de+ k<

§(1+||x||)/a (20(t)+1)dt§(1+r(a))/a B(t)dt < r(a+ k) — r(a).

In particular, for t = a* = a + k, (3.2d) follows. Furthermore, thanks to (3.6a), we get
|lw(t) — z|| < o. (3.9)

In order to prove (3.2b) we deduce from (3.9) and (3.4a) that ||w(¢)
d(w(t); D(t)) < 20 + ¢;(t) and, thanks to (3.6¢), (3.4b) d(w(t); D(t))
argue easily (3.2e) on I*, since it is, almost everywhere on I*, w'(t) =
from (3.8)

— z;|| < 20. Then
<40 <e. We also
v;(t) + ¢;, so that,

|w'(t) —vi(t)]| <e. (3.10)
Then ||w'(t)|| < ||vi(t)|| + €, and from (3.7b) and the inequalities € < 1, 20 +1 < 3 we get

|w' ()| < B(t)(1+ ||z||). Since ||z|| < r(a) < 7(T), (3.2¢) holds as well. Now let us prove
(3.2c) on I*: from (3.9) and (3.7a) we get ||w(t) — u;(t)]| < 4o < €/2, so that

wi(t) + %B C w(t) + €B. (3.11)

On the other hand v;(t) € ®5(t) C F(¢, (ui(t) + 5¢B) N D(t)), and we get actually from
(3.11), almost everywhere on I*, v;(t) € F.(t,w(t)). Then (3.2c) follows from (3.10). O

Now we are going to deal with the case a € N,. Since |N.| = 0, and the function v of
(3. 2e) 1s mtegrable we can find an open subset N, of I such that N, D N,, [N < ¢,

Js 9
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Lemma 3.2. Let € €]0,1], z = (a,z) € T, witha < T, a € N, ||z|| < r(a). Then
there exist a* €]a,T] and a function w € AC(I*) (where I'* = [a, a*]) such that conditions
(3.2a,b,d) hold on I*. Furthermore I* C N, and [,. [|[w'(t)||dt < [,. ¢ (t)dt.

Proof. Let 0 < 0 < ¢/2. We recall that the set N, is open, and r is continuous. Fur-
thermore, thanks to Theorem 4.5 (which will be proved in the next section), the func-
tion ¢(t,z) = d(x; D(t)) is upper semicontinuous from the right with respect to ¢, and
¢(a,z) = 0: then we can find k €]0,0] such that [a,a + k] C N,, (3.6a) holds and, for
every t € [a,a + k], ¢(t,x) < 0. Let us put a* = a+ k, I* = [a,a*] and take 2* € D(a*)
such that ||z* — z|| = ¢(a*, z). Then, from (4.6) and the inequalities cf < 3, ||z|| < r(a),

we get ||[z* — z|| < (1 +r(a)) faa+k B(t)dt. Then, from (3.3) and the definition of v,

(a) |lz*—z|| <r(a+k)—r(a), (b) |z5—=z| < /a Y (t)dt. (3.12)

Now let us put ¢ = (z* — x)/k, and define w : I* — X by w(t) = z + (t — a)q. Then
w(a) = z and w(a*) = z*, so that (3.2a) holds obviously. In order to prove (3.2b), we
point out that |w(¢) — z|| < ||[z* — z||. Then, from (3.12a) and (3.6a), ||w(t) — z|| < o, so
that d(w(t); D(t)) < ¢(t,x) + 0. On the other hand, ¢(¢,z) < o, and 20 < e: then (3.2b)
holds as well, and, again from (3.12a), we easily get (3.2d). Finally, I* C N,, and, from
(3.12b), [, [[w'@®)||dt = ||z* — «|| < [,. ¥(t)dt. O

Now we are going to deduce, from the two previous lemmas, the existence of approximate
solutions of problem (P ) on the whole interval I, through a suitable use of Zorn’s Lemma.

Lemma 3.3. Let € > 0, zog € D(0). Then there exist a function w € AC(I) and a set
Ac € L such that w(0) = xg, (3.2b) holds on I, |A| < € and

@)Amwmwg[ywﬁ+g Ac L.
(b) w'(t) € F.(t,w(t)) + eB, teI\A..

(3.13)

Proof. For every a € I, let \(a) be the integral of ¢ on the set N, N[0, a], and define
W, as the space of those functions w € AC([0,a]) such that w(0) = zo, w(a) € D(a),

||w(a)|| < r(a), (3.2b) holds on [0, a], (3.2¢c) holds a. e. on [0, a]\N,, and, for every A € L,
with A C [0, a],

AWMMWg/F@ﬁ+&@. (3.14)

Let Q be the family of all pairs (a,w) such that 0 < a < T and w € W,: we define on
Q the usual partial order < according to which (a1, w;) < (ag, we) if and only if a; < a9
and wy agrees with w; on [0, a;]. Thanks to the previous Lemmas, in which we put a = 0,
Q is non-empty. Furthermore, we can easily check that every non-empty family 7 C Q
which is totally ordered with respect to < admits an upper bound in Q: indeed, let J be
the set of those points « € I such that W, # 0, and, for some w € W,, (o, w) € F. If
a = sup J, we can certainly find in F a monotone sequence (a;, w;); such that a = sup, a;:
then let us define w on [0, a[ as the only function which agrees with w; on each interval
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[0, a;]. Of course, w is absolutely continuous on these intervals, and admits a. e. on [0, a|
a derivative which agrees a. e. with w] on each interval [0, a;]. Then, for every ¢t € [0, a],
it is w(t) = zo + fo t)dt. On the ‘other hand, let us put A = [0 a;] in (3.14), and
take the limit as 1 — +oo then the function ||w’|| turns out to be integrable on [0, al.
Hence w(t) converges in X as t — a~, and w can be extended to ¢ = a in such a way
that w € AC([0,a]; X). Now we are going to check that w € W,: of course, w(0) = z;
furthermore, the points (a;, w(a;)) lie in T', and I' is closed from the left, according to
Remark 2.8; then the point (a,w(a)) = lim;(a;, w(a;)) lies in ' as well, that is to say,
w(a) € D(a). Since w and r are continuous, it is also ||w(a)|| < r(a). Furthermore, (3.2b)
holds on [0, a], while (3.2¢) holds a.e. on [0,a]\N.. In order to get (3.14) in [0, a], we
notice that, for every measurable subset A of [0, a], that inequality holds for A N [0, a,]:
then it is enough to let i — +00. Now we can conclude that (a,w) € Q, so that (a,w) is
an upper bound for the pairs (a;, w;), then, actually, for the whole family F.

Now we can apply Zorn’s Lemma, and deduce that Q admits a maximal element (a,w):
we claim that a = T. Indeed, let us suppose, by contradiction, that a < 7. Then we
can put z = (a,w(a)) and apply Lemma 3.1 or Lemma 3.2 according to whether a lies
outside N, or not. In both cases we can extend w to an interval [0,a*] in such a way
that w(a*) € D(a*), ||lw(a*)|| < r(a*) and (3.2b) holds on [0, a*], while (3.2¢) holds a.e.
on [0,a*]\N.. As regards (3.14), let us take A € £, A C [0,a*], and call \* the integral
of |[w'|| on AN I*: then, according to whether a ¢ N, or a € N, from (3.2e) or the last
statement of Lemma 3.2 we argue that

(a) A< pOde or () X< [ wlt) = Afa") = \(w) (3.15)

Anr
On the other hand, since A\I* C [0, a] and (3.14) holds in [0, a],

/ |w'(t)]|dt = / ||w'(¢)]|dt + / ||w'(#)]|dt < Y(t)dt + Ae(a) + N*.
A A\T* AN A\I*

Now is is easy to check that (3.15a) or (3.15b), together with the last inequality, implies
(3.14) (with a* instead of a) whenever A € £, A C [0,a*]. Then w € W,- and (a,w) <
(a*,w), in contrast with our assumption. Then actually a = T, and (3.2b) holds on I,
while (3.2¢) holds a. e. on I\N,. In particular, if Z is the subset of I\ N, where (3. 2(:)
does not hold, let us put A, = N, U Z and recall that |N| < e. Since |Z| = 0, we get
|Acl < ¢, and (3.13b) holds. Finally, since A(T') = [ 1(t)dt < ¢, we get also (3.13a).
Hence w is the function we looked for. O

Theorem 3.4. Let X be a separable Banach space, D and F satisfy conditions (i)—(vii),
xo € D(0). Then problem (P) admits a sequence of approzimate solutions, according to
Def. 2.4.

Proof. For every n € N, let us apply the previous lemma with ¢ = ¢, and put u, = w,
E, = I\A,,. Then conditions (a), (b) and (c) follow at once. Finally, if we put in (3.13a)
w = u, and € = ¢,, we also argue easily that (u!,), is uniformly integrable. O

4. Some auxiliary results

In the first part of this section, we give two results (Prop. 4.1 and 4.2) which are useful
in the proof of Theorem 2.3: the first one exploits a compactness result by Castaing [8],



A. Gavioli / A viability result in the upper semicontinuous case 391

while the second one can be related to [10, Thm. VI-4]. First of all we recall the definition
of uniformly integrable family in L!(I; X), given after Theorem 2.3, and other well-known
notions: a multifunction ¢ — C(t) from I to X is said to be measurable if, for every open
subset @ of X, C~}(Q) € L; X* is the dual space of X, with norm || - ||* and closed unit
ball B*, while B* denotes its Borel o-field with respect to the strong topology. If C C X,
||C|| was defined at the beginning of §2, while the support function p — 6*(p;C) was
introduced in Def. 2.7. We also denote by L°(1; X*) the space of all essentially bounded
functions p : I — X* which are weakly or scalarly measurable [16, p. 41]. As is known,
L®(I; X*) is the dual space of L'(I; X) [21, p.301].

Proposition 4.1. Foreveryt € I, let W(t) be a weakly compact subset of X, and suppose
that the multifunction W (-) is measurable. For every n € N, let v, € L*(I; X), ¢, > 0,
E, € L be such that

d(vn(t); W(t)) < en for every t € Ey, (4.1)

and, as n — 400, €, — 0, [I\E,| — 0. Suppose that the sequence (v,), is uniformly
integrable: then (vy), is relatively weakly compact in L'(I; X).

Proof. For every n € N, t € E,, let us put W, (t) = W(t) N (v, (t) + €, B). Since W (¢) is
weakly compact and (4.1) holds, W, (t) is non-empty on E,. Let 9, : I — X agree with
vy, on I\E,, and be a measurable selection of Wn on FE,; it is easy to see that, for every
A € L, the integral on A of ||0,|| — ||vs|| cannot exceed €,|A|. Then the functions ¢, are
uniformly integrable as well. On the other hand, it is easy to check that the sequence
(Tn)n is Ry-tight, according to the definition given in [1, p.38]: then it is relatively weakly
compact in L'(I; X), thanks to a result given in [8, Thm.1, p. 2-14] and also reported
in [1, Thm.4], so that it admits a limit function v € L*(I; X). More precisely: o,, — v
weakly in L*(I; X) as kK — 400, where (ny)x is an increasing sequence of integers. Since,
obviously, limy, [|9,, — vs, || = 0, we actually proved that v,, — v weakly in L'(I; X) as
k — +o0. O

Proposition 4.2. For everyt € I, let ®(t) be a closed, conver subset of X, suppose that
the multifunction ®(-) is measurable and that the function t — ||®(t)|| is integrable. Let
(vk)x be a sequence in L*(I; X) which converges weakly to a function v, and assume that,
for every p € L(I; X*),

limsup (p(t), vk(t)) < 6" (p(t); ®(t)) a.e. on I. (4.2)

k—400

Then v(t) € ®(t) a. e. on I.

Proof. If we take a Castaing representation of the multifunction ®(-) [10, Thm. III-7],
we can easily check that the mapping (¢,p) — §*(p; ®(¢)) is measurable with respect to
L ® B*: in particular, the right-hand side of (4.2), say ~(t), is measurable with respect
to t. Furthermore, (t) < n(t) = ||p(¢)||*||®(t)||, where n is obviously integrable. Now, let
p € L¥(I; X*), and, for every k € ZT, t € I, put ¢y(t) = (p(t), vi(t)). Let Jp C I be the
set where ¢, < 14, and put ¢, = ¢, A (1 +): from (4.2) we easily argue that, a. e. on
I, the equality ¢; = @y holds definitively, so that |I \ Jx| = 0 as & — +o00. On the other
hand, since the sequence (v )y is weakly convergent, it is also uniformly integrable: then,
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as k — +oo, the integrals of ||vg|| and 1+~ on I\ Ji tend to 0, so that

/wmumﬁ:nm[hmwh:malw@mg

I k——+o00 k—+00

(4.3)
g[mmww@a:[mmwmmﬁg/ymmymw

k—+o00 k——+o00 I

We remark that in the first inequality of (4.3) it is right to apply Fatou’s lemma, since
¥, < 147, and + is integrable. Hence (4.3) holds for every p € L°(I; X*). Now, let us
argue by contradiction, and suppose that there exist » > 0, E, € £ such that |E,| > 0
and, for every t € E,, d(v(t); ®(t)) > r. In particular, by virtue of the Hahn-Banach
theorem, for every ¢t € E, the sets ®(¢) and v(t) + rB° can be separated by a functional
p € X*, with ||p||* < 1: then, for every z € ®(t), u € B°, it is (p,z) < (p,v(t) + ru),
that is to say, 0*(p; ®(¢)) < (p,v(t)) — r. Let Q.(t) # () be the set of such p’s: thanks to
the previous remarks about the mapping (¢, p) — §*(p; ®(t)), the multifunction ¢ — Q,(t)
from E, to (B*, || -||*) is measurable, since its graph lies in £ x B*. Now, let us consider
the space (B*,d), where d is a distance which gives rise to the o(X*, X) topology on
B*: since (B*,d) is compact, it is complete and separable. Furthermore, the open sets of
(B*,d) are open in (B*,|| - ||*), and the values of @), are certainly closed with respect to
o(X*, X). Hence, if we regard @), as a multifunction from E, to (B*, d), we can conclude
as well that (), is measurable and takes non-empty, closed values, so that Theorem III.6
in [10] ensures the existence of a selection p of @, which is the pointwise limit, with
respect to the o(X*, X) topology, of simple, measurable functions on E,.. Now, let p be
the extension of p which vanishes outside E,, and put ¥(t) = (p(t),v(t)) — 6*(p(t); (¢)):
then we get 1 > r on E, and ¢ = 0 outside E,, so that [, ¢(t)dt > r|E,| > 0. On
the other hand, p € L°(I; X*), so that (4.3) entails [, v (t)dt < 0, in contrast with the
previous inequality. Then v(t) € ®(¢) a. e. on I, as claimed. O

Now we are going to state two results about Dini’s derivatives of a real function. To this
end, given a function p : I — R and a point ¢ € [0,T[, we denote by D, p(t), as usual, the
lower limit, as 7 — ¢*, of (p(7) — p(t))/(7 —t). In Lemma 4.3 we give a particular version
of the “chain rule”, which involves D, p; in Lemma 4.4 we give a generalized version of
Gronwall’s Lemma: both results are exploited in Theorem 4.5, which provides with useful
properties of the functions ¢ — d(z; D(t)).

Lemma 4.3. Let p: I — R be bounded from below, J D p(I) an interval, a = inf p(I) €
J, f € CHJ;R) such that f' >0 on J, p= fop. Then, for everyt € [0,T[, Dyu(t) =
f'(p(t))Dip(t), where, for every o > 0, o - (£00) is to be understood as +oo.

Proof. Given t € [0,T7], let us prove that D u(t) < f'(p(t))Dip(t): if Dip(t) = +o0
the inequality is obvious, since f' > 0. If D, p(t) = | < 400, let us consider, for every
T €]t, T, the ratio between p(7) — p(t) and 7 — ¢, and call it A(¢,7): then there exist
points t, €]t,T] such that ¢, — t* and A(¢,t,) — [ as n — +oo. Furthermore, the mean
value theorem ensures that, for every n, the segment S, with endpoints p(t) and p(t,)
contains a point ¢, such that f(p(t,)) — f(p(t)) = f'(cn)(p(tn) — p(t)). Now, let v be the
lower limit of the numbers ¢, as n — +o00: then vy = limy v, where 7, = ¢, and the
indexes ny strictly increase with k. Furthermore, since [ < +o00 and v, > a € J, we easily
argue that v € J. Now, for every k € N, let us put 7, = t,,, 7, = p(7%), 7 = p(t), and
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let Ay be the ratio between f(ry) — f(r) and 7, — ¢: then Ay = f'(vx)A(t, 7%). Now we
consider two cases: if | = —o0, we get limy Ay, = —o0, because f'(y) > 0; if | € R, it
must be r, — 7, so that v = r: then limy Ay = f'(r)l. In both cases, we conclude that
Ar = f'(p(t))Dyp(t) as k — +oo. Since D, pu(t) < limg Ay we actually get the required
inequality. In order to get the reverse inequality, it is enough to consider g = f~! in place
of f and exchange the roles of p and p. O

Lemma 4.4. Let p : I — [0,400[ be lower semicontinuous from the left, M > 0, 0 €
LY(I), and suppose that, for every t € [0, T[, D, p(t) < 0(t)(M + p(t)). Then:

o(t) < (M + pla)) exp (/te(T)dT) M, 0<a<t<T (4.4)

Proof. Let us apply Lemma 4.3 with J = [0, 400[, and, for every r € J, f(r) = log(M +
r): if = fop, then Dypu(t) = Dyp(t)/(M + p(t)), so that D, pu(t) < 0(t). Furthermore,
1 is lower semicontinuous from the left, like p. Now, for every € > 0 let 6, > 0 be a lower
semicontinuous function such that [, 0.(t)dt < [,0(t)dt + € (see, for instance, [17]). Let
0 <a<t<T: then we can find a sequence of points ¢, €]t,T| such that t, — ¢ as
n — +o00o, and

AM@-M&S[nMﬂM+dm—ﬁ (4.5)

Indeed, let o > 0 be such that, for every s €]0, 0], 0.(t) < 6.(t + s) + ¢, and, consequently,
0.(t)s < tt+s 0.(7)dT + es. Thanks to the strict inequality D, u(t) < 6.(t), we can find
numbers h,, €]0, o] such that h, — 0 as n — +o00 and, for every n € N, p(t+h,) — pu(t) <
0c(t)h,. By virtue of the previous inequality, the points ¢, = ¢ + h,, fulfil (4.5). Now, let
I.(a) be the set of all points ¢ € [a, T] such that

u@—mws/amw+¢—@. (4.6)

Since p is lower semicontinuous from the left, I.(a) is closed from the left. Furthermore,
every point ¢t € I.(a) N[0,7T] is a cluster point for I.(a)N]t,T]: in order to check this
property, it is enough to choose points t,, as in (4.5) and take the sum of (4.6) and (4.5)
so as to prove that, for every n € N, ¢, € I.(a). Now we argue easily that actually
I.(a) = [a,T], so that (4.6) holds on [a,T]: so, if ¢ = 0, we get u(t) < u(a) + fat 0(7)dr,
and, in order to prove (4.4), it is enough to take the exponential of both sides in the last
inequality. O

Theorem 4.5. Under the assumptions of Theorem 2.3, for every & € X the function t —
d(&;, D(t)) is upper semicontinuous from the right. Furthermore, there ezists a constant
¢ > 0 such that, whenever € € D(a) and t > a,

(& D(w) < c(1+¢]) [ o(r)ar (@.7)

Proof. Let £ € X, put p = d(& D(-)) and take ¢ € [0,T[. Let x € D(t) such that
|€ — z|| = p(t) and, according to condition (vii) of Theorem 2.3, take y = y; € Qr(t, x).
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Let us choose k, and z, as in (2.1): then

plt+ k) = p(t) _ ln =€l = llz = €l| _ llza = 2l
K - kn =k

(4.8)

Now, let [ be the lower limit of the left hand side of (4.8): from (2.1b) we get easily
D.ip(1) <1 < ||lys]|- Now let us recall the set N of conditions (vi), (vii). Since |[N| =0,
it is right to change 6 on N: then we put, if t € N, 0(¢t) = ||y||/(1 + ||z|]). If t ¢ N, we
can suppose that y; € F(t,z) as well, so as to get Dyp(t) < ||[F(¢,z)||. Then, thanks to
(vi), we get, in both cases, D, p(t) < 6(t)(1+ ||z||). On the other hand, ||z|| < ||£]| + p(2):
hence Dy p(t) < 0(t)(M+p(t)), where M = 1+||£||. Thanks to the previous Lemma, (4.4)
holds, so that p, that is the function ¢ — d(&; D(t)), is actually upper semicontinuous from
the right at the point a. Finally, let £ € D(a), so as to get p(a) = 0 in (4.4). Let ¢ > 0
be such that e* < 1 4 ¢\ whenever 0 < X < f[ 0(7)dr, let us consider that inequality

for A\ = ['0(r)dr and combine it with (4.4): then we get p(t) < Mc [ (r)dr. Since
M =1+ ||&||, the proof is complete. O
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rem 4.5.
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