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The problem of maximizing a non-negative generalized polynomial of degree at most p on the [,-sphere
is shown to be equivalent to a concave one. Arguments where the mazimum is attained are characterized
in connection with the irreducible decomposition of the polynomial, and an application to the labelling
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1. Introduction

The main purpose of this paper is to analyse when the argument of the mazimum on
the [)-sphere of a non-negative polynomial is unique, in the special case where the total
degree of the polynomial does not exceed p. The author’s original incentive to study
this question lies with pattern recognition and image processing, where it turns out that
maximizing a polynomial under suitable constraints is an effective way to approach certain
combinatorial optimization problems that would hardly be tractable otherwise. This
motivation is highlighted in Section 2 where the classical labelling problem is sketched,
as well as the rationale for replacing it by a continuous optimization scheme.

The issue just raised may be embodied into the more general problem of maximizing
a non-negative generalized polynomial on the [,-sphere. After some preliminaries on
subhomegeneous functions and concavity in Sections 3 and 4, we give in Section 5 a
systematic account of the solution when the degree is less than or equal to p. The approach
is extremely elementary and consists in a simple change of variables that reduces the
problem to concave maximization under linear constraints; determining strictly concave
situations, however, involves a thorough discussion of the irreducible decomposition of
polynomials which is linked to a non-linear eigenvalue problem of the Perron-Frobenius
type. The results are partly carried over to [,-constraints in product form in Section 6.

We finally report in Section 7 on an application to finding the Maximum a Posteriori Mode
in a Markov Random Field, for which numerical algorithms are also discussed briefly.

2. Some motivations: a deterministic approach to the labelling problem

The labelling problem arises quite naturally in pattern recognition and image processing.
Actually, many image-interpretation tasks can be cast that way and the literature on
this topic is plethoric. One of the first and best known instance of this phenomenon is
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the Relaxation Labelling approach that was celebrated in the computer vision community
and for which we refer the reader to the seminal papers [10, 9] and [11]. A natural
sequel to these developments was to rationalize the somewhat heuristic algorithms initially
proposed, by defining merit functions to be optimized either locally [5] or globally [1]. An
important step was taken when a well-founded probabilistic model was introduced by
[7], which relied on the Hammersley-Clifford theorem [3]. As a matter of fact, all these
references share a common framework that we illustrate here by describing the Mazimum a
Posteriori Mode problem (abbreviated as MAP) for a Markov Random Field (abbreviated
as MRF).

We are given a set of units (or sites) S = S;, 1 < i < N, each of which may receive any
label from 1 to M. A MRF on these units is defined as usual by a graph G, and the
so-called clique potentials [7]. An edge of G connecting S; and S; is denoted by E;; and
V; is the set of vertices (or sites) connected to a given vertex S;. Let C designate the set
of all cliques of G, and define also C; = {c € C; S; € c¢}. The number of sites in the clique
c is its degree deg(c), and we set deg(G) = max ¢ deg(c).

A global discrete labelling L assigns one label L; such that 1 < L; < M to each site S; in
S. The restriction of L to the sites of a given clique ¢ is denoted by L.. The definition of
the MRF is completed by the knowledge of the clique potentials V., (shorthand for V,r)
for every ¢ in C and every L in £, where £ is the set of the M” discrete labelings.

In the MAP problem, the clique potentials stem from two sources of information: a
priori knowledge about the restrictions that are imposed on the simultaneous labeling
of connected neighboring units, and observations that were made on these units for a
given occurence of the problem. The goal is to find the labeling which maximizes the a
posteriori probability given the observations.

Following Hammersley-Clifford, the probability of a given labeling L is given by:
P(L) x Hexp(—VcL). (2.1)
ceC

We assume here that the sufficient positivity condition for MRF is met i.e. that P(L) > 0
for each L. It follows that solving the MAP problem amounts to find

max » W, (2.2)

where W, = —V,r.

Deterministic Pseudo Annealing (in short: DPA) has been proposed in [2] to tackle this
maximization. The idea is to first replace the combinatorial question by an equivalent
continuous optimization problem, and then try to solve this continuous problem by de-
forming it into a convex one.

RNM

More precisely, let us define f : — R whose effect on

X = ($i,k)1§i§N, 1<k<M
is given by

deg(c)

f(X) = Z Z Wclc H xcj,lcj, (23)

ceC l. €L,
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where c; denotes the 4t site of the clique ¢ and le; is the label assigned to it by [.. It is
clear from (2.3) that f is a polynomial in the N M variables x; ;’s whose degree is deg(G).
Moreover, f is linear in each variable separately. DPA in this case works as follows.

We define a compact subset K of RNM™ by:

M
Vi,k:x;p >0 Vi in’k =1.
k=1

The map f may have plenty of relative mazima on K. However, there is always an absolute
mazimum attained on the boundary i.e. at some point X* of the form:

Vi, 3k :af, =1, l #k,= z}; =0, (2.4)

yielding naturally a discrete labelling. The difficulty is of course that standard search
algorithms may typically lead to a local mazimum and not to the absolute one. It is
therefore of particular importance to find a good initial guess before applying the tech-
nique. This is precisely what DPA is designed for: we temporarily change the subset on
which f is maximized so as to make the problem easy to solve, and then we track the
mazimum while gradually restoring the original constraints. At each step, the projection
of the former point onto the new set of contraints is used as an initial guess for the next
optimization.

To be specific, we trade K for the set K, defined by

M
Vi,k:zip >0 Vi:Zxﬁk:L
k=1

There has been numerical evidence for a while that the mazimum is attained at a single
point when p > deg(G), and further that this point lies interior to /C, [1]. The same
holds true if deg(G) = p, except for some degenerate zero-patterns of the coefficients for
which the arguments of the mazimum form a connected continuum intersecting certain
coordinate axes. These facts are proved in Section 5, making the case p > deg(G) an
easy problem. To achieve the DPA, it remains to decrease p down to 1, initializing the
algorithm at each step from the projection onto the new set of constraints of the solution
found at the preceding step. This is the heuristic part of the procedure, as we hope to
track the right solution when bifurcations do occur.

As we now see, the labelling problem raises the issue of maximizing a non-negative poly-
nomial on the positive face of a simplex, and our contribution to the DPA approach will
consist in solving the analogous problem when the simplex is replaced by an [,-sphere
with p greater than or equal to the degree of the considered polynomial. The authors
believe such a question posseses enough structure to make it worth studying, and other
motivations like determining the dominant modes of certain nonlinear systems would also
warrant such a study.

3. Preliminaries and notations.

We gather in this section a few pieces of notation and terminology which are of frequent
use hereafter.
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Let R} be the non-negative cone in R", that is the subset of vectors with non-negative
coordinates. The interior of R’} , consisting of vectors with positive coordinates, will be
denoted by P,. For z = (z; ---z,,) € R* and p > 0, we denote by ||z||, = (3, |z:[")'/? the
[P “norm” of x. This, actually, is a norm in the usual sense when p > 1 only (otherwise

triangular inequality will fail).

Given f : Q — R™, where Q C R" is open, we denote by df/0i (x) the partial derivative of
f at x with respect to the i argument, and by 9% f/0i0j (x) the second partial derivative
with respect to the i** and j** arguments. If M is a differentiable manifoldand f : M — R
a differentiable function, we say that x € M is a critical point of f if the derivative D f(x)
(which is defined on the tangent space 7,M to M at z) vanishes identically. When M
is embedded in R* and f extends to a differentiable function f in a neighborhood of z in
R", then z is critical if and only if the gradient vector of f at x is normal to 7T, M.

A function f : 2 — R, where {2 C R" is open, is called subhomogeneous of degree h € R
at x € Q if there exists e(x) > 0 such that

VAE[L1+ex), fAz) <A f(2). (3.1)

We say simply that f is subhomogeneous of degree A in € if it is so at each point of ).
Here, a few comments are in order. Firstly, we restrict ourselves to A > 1 in the definition
because if we allowed A €]1 — €(z),1 + €(x)[, f would automatically be homogeneous.
Secondly, the degree h in the definition is by no means unique: if f, for instance, is
positive, any A’ > h works.

Now, in the same manner as homogeneity translates into Euler’s identity, subhomogeneity
translates into Euler’s inequality for differentiable functions: we say that a differentiable
function f : Q@ — R satisfies Fuler’s inequality in degree h at x = (xy---x,), for some
h € R, if

"0

> —f(x) z; < hf(z). (3.2)
— 01

If (3.2) holds at every x, we simply say that f satisfies Euler’s inequality. The link between

subhomogeneity and Euler’s inequality is given in the following lemma.

Lemma 3.1. If Q s open in R*, and f : Q2 — R is a differentiable function which is
subhomogeneous of degree h at x = (x1---x,), then Euler’s inequality in degree h holds
for f at x. Conversely, if f satisfy Euler’s inequality in degree h at every point Ax with
1 <A< 1+e€(x) for some e(x) > 0, then, f is subhomogeneous of degree h at .

Proof. Suppose f is subhomogeneous, and put g,(A\) = M f(x) — f(Az) for z € Q. The
function g, : [1,1 + €(x)) — R is non-negative, and vanishes at 1, hence g.(1) > 0.
Expanding the derivative yields (3.2). Conversely, assume that f satisfies (3.2) at each
Az with 1 < X\ < e(x). For such \’s, we have

hgs(N)
-

d gy et ~Of b
= hAM () - 2_) 5 (Aa)zi > 1 [\ (@) = fOa)] =
This means g, > hg,, or equivalently (g,/A\*)’ > 0. Now, since the function g,/\"
vanishes at 1 and has non-negative derivative on [1,1+€(x)), it is non-negative there and

SO 1S g. O
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For p # 0, we define throughout ¢, : P, — P, by putting

1 1
Op(T1,y ey xn) = (27, ..., 28). (3.3)

Clearly, ¢, is a diffeomorphism.

Let A = (a;;) be a real n x n matrix. It is called irreducible if two distinct indices ¢ and
J can always be linked by a chain 4 = 4;,--- ,4 = j in such a way that a;, ;. , # 0.

Let I = {1---n} be the set of indices, and e; be the i vector of the canonical basis of
R*. If J C I, we shall denote by E; the subspace of R” spanned by the e;’s for j € J.
Obviously, E; consists of those vectors v = (vy - --v,,) withv; = 0if j ¢ J. We call E; the
coordinate subspace of R" associated with J. If I --- I} is a partition of I, there is an
orthogonal decomposition R* = )" ; E1;, and we write accordingly v = > ;vur; for v € R,

It is a simple observation [6] that the irreducibility of a matrix A is equivalent to the
non-existence of a non-trivial A-invariant coordinate subspace (that is, distinct from {0}
and R" itself).

Suppose now that S = (s;;) is a n X n symmetric matrix. It is not difficult to check
that the set I = {1---n} of indices can be partitioned into classes I - - - I such that the
submatrices S;, = (8;,;)ie1,,je1, are irreducible and also s; ; = 0 if 4 and j belong to distinct
I;’s. This partition, which we call the irreducible partition of S, is well-defined since it
corresponds to the decomposition of R" into minimal S-invariant coordinate subspaces.
It follows from the definition that Sy, is the matrix of the restriction of S to E, when the
latter is endowed with the canonical basis.

4. A concavity property

This section is instrumental for the remaining of the paper. The main result is that a
C? map f : P, — R whose first partial derivatives satisfy Euler’s inequality in degree
p — 1 for some p # 0, and whose second partial derivatives are non-negative, is such that
f oy is concave. This is essentially the content of Theorem 4.2 below. We begin with a
computational lemma.

Let f : P, — R be C? map, and put
&, =fop,: P, =R

for p a nonzero real number. Denote the second derivative of @, at = by D*®,(z); it is a
bilinear form on R" that we identify with the n X n symmetric matrix whose entry (i, j)
is 9®,/0i0j(x). We also introduce another n x n matrix M;,(x) whose entries at the
point = (21 ---2,) € P, are defined by the formulae

Myl = o [ @) - 0~ D) (4.)

1-2; 62 . .
[Mf,p(x)]i’j = I; p{fbjﬁ({x)}’ fori#j . (4_2)
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Lemma 4.1. With the above notations, D*®,(z) is conjugate to M;,(p,(z))/p?* at any
point x € P,. More precisely, we have:

B (2)D?®,(2) B(z) = ﬂfﬂ%g?ggl, (4.3)

where B(x) is the diagonal matriz diag{x;}.

Proof. This is a simple computation. First, we write

0P, of

1
il 4 = 24 ZxP 4.4
5@ = Srepla)) ol (1.4
whence
0% 0% f 1 11\* af 1.1 Lo
8181( z) = %(%(ﬁ)) (Z—?fvz ) +E(@P(x))5(];_1)xz : (4.5)
This can be rearranged as
1 1 2[0*f 1 of
et | S et - - D ele)]. (4.6)
If 7 # j, we get similarly
0*®, 1 11 0%f 11

Now, compute B~!(z) D?>®,(z)B(z). Since the i row of D?®,(x) gets divided by x; while
the j* column gets multiplied by z;, the result is M, (¢, ())/p?. O

We are now in position to state:

Theorem 4.2. Let f : P, — R be a C? map. For p # 0, define ¢, and ®, as before,
and let © = (z1---x,) be a point in P, such that each partial derivative Of /01 satisfies
Euler’s inequality in degree p — 1 at @,(x), while each second partial derivative 8% f /0i0j
is non-negative at o,(x). Let finally I - - - I, denote the irreducible partition of D?*®,(z).
Then D?*®,(z) defines a non-positive quadratic form. It is negative definite unless there
ezxists an £ such that Euler’s inequality for 0f /01 at v,(x) is in fact an equality for every
i € Ip. Ifwelet I' C {1---k} be the set of such £’s, the kernel of D*®,(z) is the subspace
spanned by the x1,’s for j € I'.

Proof. From Lemma 4.1, we see that the eigenvectors of D?®,(z) are the images under
B(z) of those of M;,(p,(z))/p? and that the eigenvalues of the two matrices differ only
by a factor 1/p®. In particular, since D*®,(z) is a symmetric matrix hence has real
eigenvalues, so does My ,(¢,(z)). Let us denote by (m; ;) the entries of M;,(¢,(x)). By
assumption, we have Euler’s inequality for 0f/0i at ¢,(z):

Z S @)l < - D (o). ws)
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1 o
Upon multiplying by the positive quantity z; , we get by the very definition of (m, ):
n
> mi; <0, Vie{l---n}. (4.9)
7j=1

By hypothesis, all partial second derivatives of f are non-negative at ¢,(z), so we see
from the definition that m;; > 0 if 4 # j. Now, a well-known theorem of Gerschgorin
(see e.g. [6]) tells us that every eigenvalue of My ,(¢,(z)) belongs to a disc centered at
some m;; of radius Y., [mi;| = 3., mi;. By (4.9), all these eigenvalues lie in the left
half-plane, and since they are real, they are non-positive. This shows that the eigenvalues
of D?*®,(z) are also non-positive, and so is the associated quadratic form.

We now compute the kernel of D*®,(z). Since the latter is symmetric and Ey; is D*®,(x)-
stable by definition, we first observe that (D*®,(z)v);, = D*®,(x) vy, for any v € R".
Therefore, v belongs to the kernel of D*®,(z) if and only if v;, belongs to the kernel of
the restriction of D*®,(z) to Ey, for all j € {1,...,k}. Hence, it is enough to prove that
the kernel of D?®,(x);;, if non-trivial, is generated by x;, and that Euler’s inequality,
when applied to 0f /04, is then an equality for every i € I;. Let n; denote the cardinality
of I;. Because of the relationship between D*®,(x) and M;,(¢,(z)) asserted in Lemma
4.1, it is equivalent to show that the kernel of (M, (¢,(7)))s;, if nontrivial, is generated
by the vector (1---1) of size n;, and still Euler’s inequality is an equality for i € I;.

Suppose now that the kernel of (My,(¢,()))r, does not consist of zero alone, and let
w = (w;---wy;) be a non-zero vector in this kernel. Choose and index iy € I; such
that w;, is of maximum modulus. Replacing w by —w if necessary, we may assume that
w;, > 0. Define K C I; to be the subset of indices 7 such that w; = w;,. Pick any 4, € K.
If we write that the %" component of (M, (¢,(x)))1, w is zero, we get:

Upon multiplying (4.9) by w;,, and taking into account the fact that m;, ; = 0ifi & I;
(since the same holds true for the matrix D*®,(z)), we also have that

i€l

Substracting (4.10) from (4.11) yields

Z mil,i(wil —wi) S 0. (412)

i€y, i

But each term in the sum is non-negative, so they all vanish, and equality holds in (4.12),
hence in (4.11), and in Euler’s inequality for 0f/0i, as well. If i ¢ K, then w;, > w; in
(4.12) and therefore m;,; = 0 whence also m;;, = 0 (because they are proportional).
Since i; was arbitrary in K, it follows that Ex C Ej is invariant under (M, (pp(2)))1;.
But this matrix is irreducible since D*®, (), is, by definition of I;. Thus, we have K = I,
and w; = w;, for every ¢ € I;. This is precisely what we wanted to show. Conversely, it
is clear that if Euler’s inequality is an equality for every ¢ € I;, the vector (1---1) lies in
the kernel of (M, (pp(x)))1;- O
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To recap, Theorem 4.2 asserts that a C? function f : P, — R is such that fo, is concave
as soon as

(i) the second partial derivatives are non-negative at every x € Pp; this is equivalent to
saying that the gradient of f is non-decreasing for the usual partial ordering of P,
ie.x<yiffy—x € P,.

(ii) the partial derivatives satisfy Euler’s inequality in degree p — 1 on P,; by Lemma
3.1, this is equivalent to the seemingly more natural property that the derivatives of
f are subhomogeneous of degree p — 1 on P,.

5. l,-constrained maximization of positive generalized polynomials of degree
at most p

In this section, we apply the preceding results to the problem of maximizing a general-
ized polynomial with non-negative coefficients (see the definition below) on the [P-sphere
when p is not less than the degree. This allows us to describe uniqueness and positivity
properties of the solution. The approach is completely elementary and simply consists
in composing the polynomial with ¢, so as to be back to standard optimization of a
concave function under linear constraints. Since we want to give complete answers on
uniqueness, however, we need to analyse cases when strict concavity prevails and this
requires a slightly lengthier discussion of the irreducible decomposition which makes this
section somewhat reminiscent of the Perron-Frobenius theory for nonnegative matrices.
In effect, at the end of the section, we use the critical point equation to derive some kind
of nonlinear generalization for symmetric matrices of the Perron-Frobenius theorem.

Strictly speaking, the facts that we shall use about non-negative generalized polynomials
are subhomogeneity of the derivatives and nonnegativity of the second derivatives when
the exponents involved are not less than 1. In fact, the results and the proofs can be
adapted to any function sharing these properties. In particular, everything in this section
extends to infinite sums Y coz® where @ € R" is bounded by p in !'-norm and the
coefficients ¢, € R, decrease fast enough to ensure that the series converges absolutely
when, say, ||z||, < 1+ € for some positive e. Nevertheless, we shall stick to the case of
generalized polynomials an application of which was described in the introduction.

A generalized polynomial is a function P : P, — R of the form:
P(z) = anx”‘, (5.1)

where o ranges over a finite set of R?, and 2 stands for 27" - - - 23" with oo = (a1 - - - o).
By definition, the degree of P is h = max, hq, where hy = . ;. If hy = h, Vo, we call P
a homogeneous generalized polynomial of degree h. By convention, the zero polynomial
is homogeneous of any degree. We say that P has non-negative coefficients if ¢, > 0 for
all a.

Now, we need to extend the notion of irreducibility, already introduced for matrices, to
generalized polynomials. If P = ) ¢,2® is such a polynomial, we can associate to P
a graph whose vertices are the variables, and an edge connects two variables z; and x;
iff there exists a term ¢, # 0 with a; # 0 and «; # 0. The adjacency matrix of this
graph is symmetric and its irreducible partition is also called the irreducible partition of
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P. Another way to look at things is to observe that any generalized polynomial P in n
variables can be written (in possibly many ways) as

k

P(z) =Y P (ar), (5.2)

J=1

where the I,’s, for j € {1---k}, partition the set I = {1---n}; it is easy to check
that there is a unique minimal such decomposition (i.e. one that cannot be refined),
where the PI;'s are defined up to a constant term and where the I;’s are nothing but the
irreducible partition of P already defined. If, in addition, P has nonnegative coefficients,
this irreducible partition is that of the second derivative D?P at any (and thus every)
point of P,. The additive decomposition (5.2) associated to the irreducible partition is
called the irreducible decomposition of P, and the polynomials P, in this decomposition
are called the irreducible components. Such a component may well be zero; in this case,
the polynomial depends on fewer variables. Note also that irreducible components are
defined only up to constant terms so that any qualification concerning them should be
understood modulo a constant term. An irreducible component which is not P itself is
said to be proper, and we say that P is irreducible if and only if it has no proper irreducible
component. Equivalently, this means that the irreducible partition has only one element,
namely I itself.

A family of functions to which Theorem 4.2 applies naturally is the family of generalized
polynomials with non-negative coefficients; this is due to the following result.

Proposition 5.1. A generalized polynomial P of degree h in n variables with non-nega-
tive coefficients is subhomogeneous of degree h in the positive cone P,. If P is not ho-
mogeneous, it is in fact subhomogeneous of degree strictly less than h at any point of

P

Proof. Write P = Zg Pg, where each Py is homogeneous of degree 3. For any v € R
and A € R, we have

P(z) = Y NPs(x). (5.3)

g

Now for z € P, each Ps(z) is obviously non-negative, and it is clear if A > 1 that A% < A
therefore, P(A\z) < A*P(z), showing that P is subhomogeneous of degree h in P,.

Assume now that P is not homogeneous, and let 3y be largest among those 3’s such that
Pg # 0 and 8 < h. Pick pp > 0 so small that h — By — pp > 0; for x € P, A > 1 and
0 < p < po, put

Gou(N) = N*HP(z) — P(\x). (5.4)

We compute

Gau(A) = DN = NPy (2), (5-5)
E
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so that

Yo (1) = S lh— - 1Ps(x) (5.6)
g

which is, by the definition of y, bounded from below by

(h = Bo — u) Ppo(@) — pbu(). (5.7)

Since each component of z is positive, it follows that Pg,(z) > 0, hence the above ex-
pression can be made positive by choosing p sufficiently small. Then g, ,()\) vanishes
with positive derivative at A = 1. Therefore, it remains non-negative on some interval
[1,1+ €(x)), so that P is subhomogeneous of degree h — p < h at z. O

As an application of Proposition 5.1 and Theorem 4.2, we study for later use the concavity
properties of non-negative generalized polynomials when the degree does not exceed 1.

Theorem 5.2. A generalized polynomial P with non negative coefficients of degree at
most 1 is concave on R . If P(x) = 21,;1 Py, is the irreducible decomposition, the kernel
of D?*P(z) at x € Py, is the linear span of those x1,’s such that Py, is homogeneous of degree
1. In particular, P is strictly concave on Py, if, and only if, it has no wrreducible component
which is homogeneous of degree 1, in which case the second derivative is negative definite
at each point of P,.

Proof. Since P is continuous on R%; (for the exponents are non-negative), it is enough to
show that P is concave on P,. Let «,, be the smallest non-zero exponent for a variable
appearing in P. Set p = o, and define f = Pocpzjl = Poyp, so that f is obtained from
P by changing each variable into its p"* power. Then, f is again a generalized polynomial
with non-negative coefficients, of degree h < p (this is where we use deg P < 1), each
variable of which appears at every occurence with exponent at least 1. Thus, every partial
derivative df /i of f is a generalized polynomial with non-negative coefficients, of degree
at most h — 1. By Proposition 5.1 and Lemma 3.1, 0f/0i satisfies Euler’s inequality in
degree h—1 and so a fortiori in degree p—1 on P,. Since the second partial derivatives of
f are clearly non-negative on P,, Theorem 4.2 implies that P = f o ¢, has a non-positive
second derivative at every point of P,,, hence is concave there.

Let us now determine the kernel of the second derivative. Since P is nonnegative, its
irreducible partition is also that of D?P(z) at any x € P, and we deduce from Theorem
4.2 again that the kernel of this matrix is generated by those x;,’s such that 0f/0i satisfies
Euler’s equality in degree p — 1 at ¢, (z) for each ¢ € I,. By construction, the irreducible
partitions of P and f are identical, so we can write

k
f = Zflp
=1

and it is clear that f;, is homogeneous of degree p if, and only if, P, is homogeneous
of degree 1. Hence, it remains for us to show that 0f;,/0i satisfies Euler’s identity in
degree p — 1 at @,(x) for each ¢ € I, if, and only if, f;, is homogeneous of degree p.
Sufficiency is obvious. By Proposition 5.1, necessity amounts to prove that a generalized
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polynomial which is not homogeneous of degree p (up to a constant term) cannot have
partial derivatives each of which is homogeneous of degree p — 1. This is easy: argueing
by contradiction, suppose that Q(y1,--- ,¥ys) is such a polynomial and consider the ho-
mogeneous generalized polynomial 0Q)/01 of degree p — 1. By elementary integration, we
get

QY1 -+, ¥s) = @1y, -+, ¥s) + Qa(y2, - -+, ¥s),

where ()1 is homogeneous of degree p and (), does not depend on y;. Now, for 2 < i < s,

9Q: _9Q 0

8 9 i
is homogeneous of degree p — 1, so we can iterate the process and write @y = Q] + Q.

where Q1 is homogeneous of degree p, and Q3 depends on y3, - - - , y, only, while still having
homogeneous derivatives of degree p — 1. By induction, we conclude that

Q=Q1+Q1+ -+ Q5"+ constant

is homogeneous of degree p up to a constant, contradicting the hypothesis.

Thus, if P has no homogeneous irreducible component of degree 1, we conclude that D?P
is negative definite on P,, so that P is strictly concave there; on the contrary, if it has
some irreducible homogeneous component of degree 1, say, P;,, observe that if we fix all
the other variables and if we evaluate P;, on the diagonal, we get an affine function. This
achieves the proof. O

Now, we turn to optimization. For p > 0, let Sp = {z € R";}_, [z;|? = 1} denote the I
unit sphere in R and set 57 . =R} N.S7. Our goal is to study the following problem:

Given p > 0 and a non-constant generalized polynomial with non-negative coefficients P,
of degree h with h < p, characterize the argument(s) of

max P(z). (5.8)

T€Sp 4

It should be observed in the first place, since a generalized polynomial is continuous on
R” , that the max in Problem (5.8) is indeed attained by compactness. We shall further
investigate uniqueness and positivity properties of the argument of the max. In the second
place, it is perhaps appropriate to take a look at the limiting case p = oo which was tacitly
excluded in the statement of the problem. Then, it is clear that the maximum is attained
by setting to 1 each variable which actually appears in P so that the problem is, in some
sense, totally decoupled. For finite p, our first result concerns positivity:

Proposition 5.3. Assume a solution z* = (27 ---x}) to Problem (5.8) satisfies z} = 0
fori € I, and x7 > 0 for 1 € Iy, where I, and I partition the set of indices. Then one
can decompose P as

P(z) = Pi(zn,) + P2 (21,), (5.9)

where Py is some (possibly zero) homogeneous generalized polynomial with non-negative
coefficients of degree p.
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Proof. Assume without loss of generality that I; = {1---k} and I, = {k+1---n}. Then
k < n for z* # 0. If a decomposition of the form (5.9) is impossible, this means that there
exists a non-zero monomial in P whose degree with respect to the variables zy,--- , xj is
positive but less than p. Define ®, = Po,. This is a nonnegative generalized polynomial
of degree h/p < 1 deduced from P by dividing each exponent by p, say

y) =Y csy’, (5.10)

and it attains its maximum on ST at

y* — @;1(x*) — (0’ ... ,0’ yZ—Fl’ . ,y:;)
By a previous observation, one of the monomials, say, c¢,4” has non-zero degree less than
1 in the variables y; - - - y,. Thus, if we write
Y =yltyl
we have 0 < lezl ve < 1. In particular, there is an index ¢ < k such that 0 < ~; and

def ¢
> Y G.11)
1<0<k, b4

Select any j > k so that y; > 0 by definition of k. For 0 < <y < y;-‘/k, the point
Vi= Ui Yin Y — kLY, 0n)
belongs to ST, and we can define G : [0,%9] — R by the formula
G(t) = ¢,(V2).

This function is C'*° for 0 < t < ty. Since every quantity involved is nonnegative, we have
09,/00(Y;) > 0 for 1 < ¢ <n, and for £ = i the stronger inequality:

0o, 10 . e .
i (Y;) > CyYi T P (yk+1)’m+1 .. (yjil)’h—l(yj _ kt)’YJ (yj+1)71+1 - (yn)%- (5_12)

Now, we evaluate

dG k iy 0%,

=1

and we observe that the only negative contribution comes from the last term wich is
bounded for 0 < ¢ < t; (since the only quantities appearing in the denominators of
09,/0j(Y;) are of the form (y; — kt)'~%), whereas the term corresponding to £ = i is
arbitrarily large when ¢ is small enough by (5.12) and (5.11). Therefore, if ¢, is small
enough, we have dG/dt > 0 hence (notice that the integral converges by continuity)

G(to) — G(0) :/00 ‘Zf( B dt >0,

contradicting the fact that y* is a maximum. O
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With the aid of Proposition 5.3, we can now treat uniqueness of the solution to (5.8) in
an important special case.

Theorem 5.4. If P has no proper homogeneous irreducible component of degree p (in
particular if P is irreducible), then Problem (5.8) has a unique solution z*. Moreover,
x* € Py in this case, and is the unique critical point of P on Sy, NP,

Proof. By Proposition 5.3, any solution z* belongs to P,,. Define again ®, = P o ¢,, so
that the mazima of ®, on ST, are the images under ¢ L of those of P on Sy 4+ Similarly,
the critical points of @, on ST, NP, are the images under Dy, ! of those of P on Sp+ NPy,
Since ®, is a generalized polynomial of degree at most 1, it is concave on R’} by Theorem
5.2 and so is its restriction to the linear manifold ST . Consequently its mazima on the
latter form a convex set. Also, by concavity, these mazima coincide with the critical points
of ®, on S7', NPy, and the second derivative at such a point y* is just the restriction of
D?®,(y*) to the tangent space

Ty Sty = {z € RY; inz(]}.

If P is reducible or if P is not homogeneous of degree p, the hypothesis strengthens to: “P
has no irreducible homogeneous component of degree p” so that ®, has then no irreducible
homogeneous component of degree 1; otherwise, P is irreducible homogeneous in degree
p and so is ®, in degree 1. According to each possibility, Theorem 5.2 tells us that the
kernel of D?®,(y*) is either zero or one dimensional generated by y*. In any case, this
kernel intersects 7, ST | at zero only. Therefore, the critical points of ®, on ST NP, are
isolated, while at the same time forming a connected set since it is convex. Hence, there
is a unique such point. O

To complete our study of Problem (5.8), we still have to examine what happens if P does
have homogeneous irreducible components of degree p. To this effect, it will be convenient
to generalize Problem (5.8) slightly and to consider

max P(x) (5.13)

z€R™
llzllp=r

for r a non-negative real number. When r = 1, this is just Problem (5.8). Conversely,
(5.13) reduces to (5.8) upon scaling each variable by r, so that the results established so far
transpose immediately to Problem (5.13). In particular, if P has no proper homogeneous
component of degree p, there is a unique argument for the max in (5.13) that we denote
by z*(r). We have of course z*(0) = 0. If » > 0, we know from Theorem 5.4 that z*(r) is
the unique critical point of P on P, N{||z||, = r}; this means that there exists a Lagrange
multiplier A*(r) such that

(zi(r))"t _opP

7

)\*(T‘) 7-1—1/1) = E

(33*(7‘)) Vi e {15 e an}:

as this equation merely expresses that the gradient of P is proportional to the gradient of
|||, at *(r). Clearly, \*(r) is positive for z*(r) € P, and P is not constant. Introducing
the Lagrangian function

Ly(z, A) = P(x) + Ar — |lzllp),
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this may be capsulized by saying that for r > 0, then (z*(r), \*(r)) is the unique critical
point of L, (z, A) on P, x R. We shall need a few differential properties of z*(r) and A*(r)
as functions of r:

Lemma 5.5. If P has no proper homogeneous component of degree p, then, with the
above notations, x*(r) and X*(r) are C* functions of r on (0,00). If, in addition, P is
not homogeneous of degree p, then

d [r/P=2ax(r)]

— £0 (5.14)

at every point of (0,00).

Proof. Put ®, = P o ¢, and note that

rl/pl/\*(r)>

p

) = (60
is the unique critical point over P, x R of the modified Lagrangian

L}y, 1) = @p(y) + p(r? — Zy)

As in the proof of Theorem 5.4, we are now back to the elementary problem of maximizing
a concave functional under some linear constraint, and the lemma is a standard application
of the implicit function theorem granted Theorem 5.2 which guarantees nondegeneracy of
the second derivative on the tangent space to the constraint. This computation we redo
for the ease of the reader; by the implicit function theorem, we will obtain the desired
smoothness if we show that the second derivative DL} is nonsingular at (y*(r), u*(r))
because y* and p* will then be smooth functions of  and the same will obviously be true
of z* and A\*. Compute this second derivative as

D&y (y*(r)) -1

DLy (y*(r), w*(r)) = : (5.15)
-17 0

where —1 stands for the vector in R™ all components of which are -1’s and where the
superscript “7” means “transpose”. Assume (v,v) € R® x R is in the kernel of this
matrix. From the last row, we get > v; = 0 so that v belongs to the tangent space of

', N Pyp. Then, multiplying (5.15) on the right by (v,v) and on the left by (v, )", we
deduce that v* D*®,(y*(r)) v = 0. But since ®,, has no proper irreducible homogeneous
component of degree 1, we deduce from Theorem 5.2 (as in the proof of Theorem 5.4)
that its second derivative restricted to the tangent space of ST, NP, is negative definite.
Therefore, we have v = 0 hence v = 0 so that D2L}(y*(r), u*(r)) is non-singular. Now,
equation (5.14) is equivalent to du*/dr # 0. Still from the implicit function theorem, and
denoting by 0 the zero vector in R*, we have that

0
-1

Z_ﬁ(y*(r), pi(r) = (0" 1) [D*Ly(y(r), w(r))] !
pre~!
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and this quantity cannot vanish if P has no homogeneous component of degree p, because
it would mean that D2L!(y*(r), u*(r)) applied to some vector of the form (v,0) yields
(0, prr= 1T so that D?®,(y*(r)) v should in turn vanish and v itself should vanish since
D?®, is non-singular by Theorem 5.4. This is absurd for r > 0. O

For our purposes, we need to know a bit more about the behaviour of the objective
function in Problem (5.13), that we define as
Mp,(r) = max P(z). (5.16)

z€RT
llzllp=r

For instance, when P is homogeneous of degree h, then Mp,(r) is just 7" Mp,(1). When
P is not homogeneous, things get more complicated but the properties of Mp, that we
will use are gathered in the following lemma.

Lemma 5.6. If P has no homogeneous component of degree p, then Mp, is a continuous
function on R, which is C*° on (0,00). Moreover, Mp,(t'/?) is a strictly concave function
on (0,00) whose first derivative is positive and whose second derivative is negative there.
When p < 1, the same is therefore true of the function Mp,(r) itself.

Proof. Smoothness of Mp, follows from Lemma 5.5 and from the relation
Mpy = L. (x*(r), \*(r)). (5.17)
Continuity of Mp, at 0" is obvious. Note also that

dMpy, .,

which is an ultraclassical result in optimization asserting that the Lagrange multiplier can
be interpreted as the sensitivity of the optimal value to the constraint level; (5.18) drops
out immediately from (5.17) and from the fact that (z*(r), \*(r)) is critical for L,. From
(5.18), we see that dMp,/dr > 0 on (0,00), hence also dMp,(t*/?)/dt > 0 by the chain
rule. Setting as usual ®, = P o ¢,, we readily observe that

Mpy(t'/7) = Ma, 1 (t), (5.19)

and it follows then from (5.18) and (5.14) that d*?Msg, 1/dr? is never zero. It will in fact
be negative for the function is concave; indeed, let z* and y* have [* norm r; and 7y
respectively, and be such that ®,(z*) = Mg, 1(r1) and ®,(y*) = Ms,,1(r2). Since ®, has
degree at most 1, it is concave on R} by Theorem 5.2. Hence, we get for 41 > 0 and
po > 0 satisfying p1g + po = 1:

piMs,1(r1) + paMs, 1(r2) = p1®p(2*) + 2@y (y*) < Cp(12™ + p2y”™).
As ||prx* + poy*||1 < pir1 + pare, it follows that
®p(pz” + poy”) < Ms, 1 (a1 + pora),

for Mg, is an increasing function. Finally, when p < 1, it is immediate from the chain
rule that dMp,,(t'/?)/dt > 0 and d>Mp,(t'/?)/dt* < 0 together imply d?>Mp,(t)/dt> < 0.
This achieves the proof. O
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We can now assess positivity and uniqueness in the general case for Problem (5.8). For
definiteness, we shall assume that P has no constant coefficient. This does not change
the arguments of the mazimum in Problem (5.8) and consequently does not affect our
results. But it is to the effect that the irreducible components of P will in turn be free
of constant coefficients, hence homogeneous components will really be homogeneous, and
not only up to an additive constant. So, assume that

37) = Z PI[ (xll) (520)
=1

is the irreducible decomposition of P, each I, being of cardinality n,, and, say Py, ,---, Py,
are homogeneous of degree p. Define H = Uj_,I;, K = U}_, +11e- Reordering the indices
is necessary, we may suppose that {1,---,m} are those indices ¢ < s for which M Py, »(1)

is mazimum, and we denote this mazimum common value by M. This gives rise to a
partition H = H U Hy of H, with

Hl = U;nzlfg and H2 = UZ:m+1I£'

We set accordingly

PH1 $H1 ZPI{ wfl PH2($H2) = Z sz(xfe)a

and PK SEK E sz ﬂijl
{=s+1

which depend on

m s k
= E Nng, Ny, = E ng, and ng = E 7y,
=1

f=m+1 I=s+1

variables respectively. These are generalized polynomial with non-negative coefficients,
the first two being homogeneous of degree p while the third is of degree at most p and
has no homogeneous irreducible component of degree p. For 1 < ¢ < m, we shall denote
by zj, € Pn, N Sy the maximizing vector such that P, (z],) = My, whose existence and
uniqueness i 1s asserted in Theorem 5.4. If s < k, that is, if P is not homogeneous of degree
p, we further define z5.(r) € Pn, N {|z]l, = r} to be the solution to Problem (5.13) for
Py, whose existence and uniqueness again follows from Theorem 5.4, and by

Nielr) =7 (1) T i)

the associated Lagrange multiplier as introduced in Lemma 5.5 (whose value does not
depend on i € {1,---,nk}). We simply set zj, = 2z} (1) and X} = A*(1) for the pair
associated with Problem (5.8). When s = k, then K is of course empty so we should
forget about Pk, x%, 2}, and A} in the statement of the next theorem.



L. Baratchart, M. Berthod, L. Pottier / Optimization of positive generalized polynomials 369

Theorem 5.7. With the above notations, the set of solutions to Problem (5.8) consists
of those x* satisfying

m
xy, = pez], for1<L<m andp, € R" subject to Z,uf =1-rg,
=1

(5.21)

vy, =0, Tk = 2k(ro),
where 1q is the unique mazimum on [0, 1] of the function
g(r) = (L = r?) My + Mp, p(r).

We have 0 < 1o < 1 unless s =k, in which case ro = 0, or else s < k and X\ > pMy, in
which case ry = 1 and x3;, = 0. In particular, the solution x* is unique if, and only if,
either m =1 or s < k and X}, > pM,, (these two cases are not exclusive). There exists a
solution in P, if and only if m = s (i. e. Hy is void). Every solution lies in P, if, and
only if, m = s = 1 (hence the solution is unique) and \* < pMy, in case s < k; then, the
solution x* is the unique critical point of P on Sy, N Py.

Proof. Let z* be a solution; then the optimal value is equal to

MP,p(l) = MPHl,P(”‘r);Il”P) + MPyz,p(”x*me) + MPK,I’(”:L‘;(HP)’
so, by homogeneity of Py, and Py,,
Mpy(1) = Myllzg B+ Y Mey p(V)l|25, 12+ +Mey (|25 ,)- (5.22)
l=m—+1

As My, > M Pll,p(l) for m +1 < ¢ < s, and since we are maximizing under the constraint

k
D llzgllh =1,
=1

it is clear that z7;, must be zero and that xj, = 2, for 1 < £ < m, where the y,’s should
satisfy > ;- y = 1 — ||z ||} but otherwise produce the same value for Mp,(1). If s = £,
then K is void, Mp, , is not present in (5.22), and ||z} ||, should be interpreted as zero.
Since also ry = 0 in this case, (5.21) then holds true. If s < k, (5.22) reads now:

Mpp(1) = My (1 = (|2 [[5) + Mpe p([2%]lp) = (2% lp)-

Setting t = ||z} |5, we get

9(lz5cllp) = Ma(L = 1) + Mpy p(£77),

and, since Pk has no homogeneous components of degree h, we deduce from Lemma 5.6
that the above is a smooth strictly concave function of ¢ on [0,00). Therefore, it has a
unique mazimum on [0, 1], which is necessarily attained at ¢y = ||z%||} by the optimality
of z*. From Proposition 5.3, we also see that t; # 0 for otherwise P would reach a
mazimum on S, at the point z* satisfying 3 = 0, whereas Py is a sum of components,
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none of which is homogeneous of degree p. This shows in particular that z3 = 23 (r¢),

where ry = t(l)/ P is indeed the mazimum of g(r) on (0,1). Now, this mazimum is attained
on (0,1], and x g, will be zero if, and only if, it is attained at 1, that is, if, and only if,

9(7;/”) 1) > 0.

Expanding the derivative using (5.18) yields then A} > pM;. The remaining assertions
are now obvious. 0

Remark 5.8. 1) In principle, Theorem 5.7 reduces the general case of Problem (5.8) to
a sequence of situations covered by Theorem 5.4 where the optimum can be computed by
almost any method in optimization since, composing with ¢,, we are back to maximizing
a smooth strictly concave function over a convex open subset of a linear space and we
know the mazimum is attained. In particular, the problem of deciding which variables are
zero at an optimum is equivalent to determining the homogeneous irreducible components
of degree p —a combinatorial step— and then comparing the optimal values they achieve
on Problem (5.8) —an analytical step— while these values can be computed rather easily
as we just mentioned.

2) As we noticed already, a point z¢ € Sy + NPy is critical for P if and only if there exists
a Lagrange multiplier A such that

_op

c\p—1 _ 77
A i) di

; (z°) Vie{l,---,n}. (5.23)
Now, as in the proof of Theorem 5.2, let «,, be the smallest non-zero exponent for a
variable appearing in P; changing P into P oy, if necessary, we may assume in Problem
(5.8) that oy, > 1 implying p > 1 also. In this case, equation (5.23) makes sense for
any point in S; , that is even if some components of z¢ are equal to zero, so that we
could define a critical point of P on S in this way . If o, = p = 1, then P is a
linear polynomial and the mazima of P are generally not critical points. But if p > 1,
they are critical because if x* is such a point and I, I, partition the set of indices in
such a way that 27, = 0 while 27 > 0 for 7 € I, then we know from Proposition 6.1
that P decomposes as P (z,) + Ps(z,) where P; is homogeneous of degree p and those
equations in (5.23) that correspond to null components of z* can be read 0 = 0 so that
they are automatically satisfied. It is natural to ask for the converse, namely is a critical
point necessarily a mazimum? The answer is no: for p > 3, if we denote by (z§, z§) the
mazimum of x1z5 on S§,+, the point (x5, z$,0,0) is critical for P(z) = z129 + 22324 On
S;f, + but is not a mazimum for it does not belong to P, though P is irreducible.

To recap, assuming o, > 1, we have in Problem (5.8) that a critical point lying in P, is
necessarily a solution whereas a critical point with some zero components may not be a
solution.

As a byproduct of the preceding discussion, we may also point out a kind of non-linear
generalization of the Perron-Frobenius theorem [6] in case A is symmetric.

Corollary 5.9. Let A be a real symmetric n X n matriz with non-negative entries. For
any o > 1, there exists a nonzero x* € R} such that

Az" = XNpy/a(2”),  for some A* > 0. (5.24)
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If A is irreducible, then x* is unique up to a multiplicative constant and belongs to P,. If
A is reducible, the solution is no longer unique. If o is an integer (so that equation (5.24)
makes sense for negative x’s as well), the largest possible value for \* is also the largest
value of |\| for which

Az = Apy)o(2) (5.25)

is solvable with respect to x € R* — {0} for some (possibly negative) X\. When o« > 1 (the
non-linear case), the vector x* associated with this largest value belongs to Py,.

Proof. If A = 0, there is nothing to prove. Otherwise, set P(z) = zT Az, which is
homogeneous of degree 2. Consider Problem (5.8) with p = a+1. Let I - - - I denote the
irreducible partition of A, so that equation (5.24) splits into k subequations in the z 'S
(because A is symmetric). Now, the irreducible decomposition of P writes

P(z) = ZPIe(xfz)’ (5.26)

each Py, being again homogeneous of degree 2. Let z* be a solution to (5.8). By Propo-
sition 5.3, the indices of the null coordinates of z* range over a union Ujc;I;, for some
proper subset J of {1---k}, and this union can be nonempty only when p = 2, that is,
when o = 1. In this case, the subequations of (5.24) corresponding to the x,’s for j € J
read 0 = 0 and are automatically satisfied; the problem then reduces to a similar one in
fewer variables. Altogether, we may assume z* € P,. Then, writing that z* is a critical
point of P on S}, NP, and observing that the vector ¢1/_1) (z*) is normal to Sp . at %,
we get Ax* = X\*p1p—1)(2*) for some X\* which is obviously nonnegative, that is, (5.24) is
satisfied. If A is irreducible, every non-zero solution to (5.24) belongs to P,, (easy check-
ing) and Theorem 5.4 tells us that there is a unique critical point. This means that a
solution of unit {” norm to (5.24) is unique in this case. If A is reducible, a solution is no
longer unique as it is clear from what precedes that we may set xj, to zero for ¢ ranging
over a strict subset {1,---, k}, and still find a nonzero solution in terms of the remaining
variables (of course this will not, in general, lead to a solution of (5.24) which is at the
same time a mazimum of P on S +)- Finally, if o is an integer and z € R* any non-zero
solution to (5.25) of unit /” norm, we have 7 Az = )\ and, since A is non-negative, this
number cannot exceed the mazimum of P on S . 0

Remark 5.10. (i) Extending a remark of [8] concerning this theorem, we may notice that
existence of a solution to (5.24) would also follow from Brouwer’s fixed-point theorem as
applied to the map x — ¢, (Az)/||¢a(Az)|, from S3 , into itself.

(ii) Corollary 5.9 would remain valid for matrices depending on z, provided Ax is the
gradient of some non-negative generalized polynomial. This entails algebraic conditions
that we shall not analyse here.

6. A generalization to product-type constraints

Some of the previous results extend easily to the case where the set of indices I =
{1,--- ,n} is partitioned into d blocks Ji,- -, J; of respective sizes vy, - -- , vy, that is

im1 i
Ji = {xx; Zl/e <k< Zl/e}
=1 =1
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(the empty sum occuring if 7 = 1 has of course to be interpreted as zero), with > . v; =n
and the constraint is now ||z,||, = 1 for each ¢ € {1,---,d}. We shall not analyse the
solution to this generalized problem as completely as we did for Problem (5.8). However,
since this generalization is relevant to the applications presented in the introduction, we
shall proceed in this section with those results that can be stated in a fairly general
manner and at the same time warrant the search for critical points in practice. Letting v
stand for the d-tuple (v1,--- ,14), the set over which we optimize becomes

v dif V1 Vo Vg
‘Spﬂr - Sp,+ X Sp,+ X "'Sp,+7

and we state the problem formally as:
Given p > 0 and a non-constant generalized polynomial P with non-negative coefficients
of degree h with h < p, characterize the argument(s) of

max P(x). (6.1)

v
TES, 4

Proposition 5.3 carries over mutatis mutandis to Problem (6.1):

Proposition 6.1. Assume a solution z* to Problem (6.1) satisfies xf =0 fori € I, and
xf > 0 for i € I, where I, and I partition the set of indices. Then one can decompose
P as

P($)=P1($]l)+P2(ZE[2), (62)

where Py is some (possibly zero) homogeneous generalized polynomial with non-negative
coefficients of degree p.

Proof. The proof is similar to that of Proposition 5.3 except for two facts:

1) we cannot assume that Iy = {1,--- ,k}, because this time the indices have been fixed
by the way we formulated the constraints. This creates only notational inconvenience.

2) the variable y; such that y; > 0 has to be replaced by a collection y, with a € A,
where y* > 0 and A contains exactly one element in each intersection J; N I3, for which
J; NIy # 0 as i ranges over {1,--- ,d}. For a € J; N I, we then define n, > 0 to be the
cardinality of J; N 1.

Letting now Y; be the vector such that each component of (Y;), is t and (Y;)a = ¥y — nat
while all other components of Y; are equal to those of y*, we leave it to the reader to check
that the proof of Proposition 5.3 carries over with obvious changes. O

We now obtain a straightforward generalization of Theorem 5.4:

Theorem 6.2. The solutions to Problem (6.1) form a nonempty, connected, and closed
subset of S, .. The set of critical points and the set of mazima of P coincide on S, , N'Py.
If P has no proper irreducible homogeneous components of degree p (in particular if P
is irreducible), then there is a unique solution to Problem (6.1) and it lies on Sy, N
P, where it is thus the unique critical point of P. More generally, if x* denotes any
solution to Problem (6.1), the components of x* that are not involved in a proper irreducible
homogeneous component of degree p are uniquely determined.
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Proof. We mimic the proof of Theorem 5.4. The set of solutions is nonempty and closed
by the compactness of S;, and the continuity of P. Put ®, = P o ¢,. Since @, has
degree at most 1, it is concave on R} by Theorem 5.2 and so is its restriction to the
convex subset &7, of the affine subspace

{y e RY; Zyjzlforlgigd};

JE€J;

consequently, the mazima of @, on &7, form a convex set which is therefore connected
an since they are the images under ¢, L of the mazima of P on S, 1, the latter must form
a connected set as well. Further, we get by concavity that any critical point of ®, on the
linear manifold Sy, NP, is a marimum of ®, with respect to Sy, and conversely any
mazimum lying in P, is a critical point. Since the critical points of ®, on &7, NP, are
the images under Dy, ! of those of P on S, . NPy, we see that critical points and mazima
of P coincide on S, , N P,,.

If P has no proper irreducible component which is homogeneous of degree p, Proposition
6.1 tells us that the solutions to Problem (6.1) belong to P,, and the same then holds for
any mazimum, say y*, of ®, on S . We get, as in the proof of Theorem 5.4, that that
the kernel of D?®,(y*) is either zero or one dimensional generated by y*, and therefore
intersects

Ty S ={y € R Zyjzoforlgigd} (6.3)

JEJi

at zero only. Therefore, the critical points of ®, on &7 | NP, are isolated, and the same is
true of those of P on S; , N'P,. Because we just proved they form a connected set, there
is only one such point. More generally, if we assume that ®, assumes a mazimum both at
y* and z*, then @, (ty* + (1 —t)z*) is also mazimum for 0 < ¢ < 1 so the vector y* — 2* lies
in the kernel of D*®,,(y*), and this implies by Theorem 5.2 that the coordinates of y* — z*
whose index is not involved in some homogeneous component of degree 1 do vanish. [

Remark 6.3. The second remark we made after Theorem 5.7 remains of course valid: if
the smallest exponent for a variable in P is not less than 1, we can define critical points
on §; . However, such a point need not be a mazimum if it does not belong to Py.

At this point, it would be possible to derive an analog of Theorem 5.7 for Problem (6.1) by
comparing the optimal values of the homogeneous and the remaining parts of P. However,
it seems hardly worthwhile to build such a general statement because it would be rather
intricated. Indeed, the function Mp,(r) defined in (5.16) should be replaced by some
Mpy(r1,- -+ ,7q) whose behaviour is more complex even if P is homogeneous because it
need not be homogeneous with respect to each x;, separately. Leaving it to the interested
reader to analyse further specific cases, we shall rather illustrate how multiple constraints
may interact with the irreducible decomposition by giving a simple triangular criterion
for uniqueness.

Proposition 6.4. Let P have s > 1 homogeneous irreducible components of degree p and
let Ii,---, 1, be the corresponding elements of the irreducible partition. If the ordering
1,---,s can be arranged so that for each I; there is a i(j) € {1,--- ,d} with the property
that JijyN1; # 0 but JyyN Iy =0 for k < j, then the solution to Problem (6.1) is unique.
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Remark 6.5. When P is irreducible, this is nothing new in view of Theorem 6.2. We
can even assert in this case that the solution is the unique critical point on Sy | NP,

Proof. Let 2* be a solution and assume first that 2* € P,. Define as usual ®, = P o ¢,
so that y* = ¢, (z*) is a critical point of ®, on 87 . It follows from Theorem 5.2 that
the kernel of D?®,(y*) consists of vectors of the form > Hyy, with p; € R By (6.3),
such a vector belongs to the tangent space of &7, if, and only if,

ZS:M Z y; =0 for 1 <i < d}.

j=1 LeJ;NI;

This means that the vector p = (u1,-- -, is)" lies in the kernel of the d x s matrix whose
(4,7) entry is D, sint; Y- By our hypothesis, this matrix has a nonsingular triangular

submatrix of size s so that y = 0 and D?®,(y*) restricted to 7,- St is nonsingular.
Consequently, y* is isolated and so is z*. The latter is therefore unique by Theorem 6.2.

Assume now that z*, hence also y*, has some zero components whose indices then range
over a union UI, by Proposition 6.1. If 2* # y* is another point at which ®, attains
a mazimum on Sy, the zero components of z* also have indices ranging over a union
Ulg. By concavity, ®, attains a mazimum at every point of the form ty* + (1 — t)z*
with0 < ¢ < 1, and the zero components of these points have indices ranging over Ul,NUIg
which is again a union, say, UL,. Setting y;, = 0 for each v, we get from ®,(y) a new
generalized polynomial in fewer variables which still meets the assumptions (because we
have merely suppressed a few homogeneous components) but attains a mazimum at
infinitely many points with positive components. This contradicts the first part of the
proof and establishes the proposition. O

7. Finding the maximal mode of a Potts model

In this section, we study in more details the behaviour of DPA on the optimization of
randomly weighted square Markov Random Fields. The idea is to generate reasonably
large graphs, so that it is possible to make an exhaustive search of the optimal solution,
and so perform a more objective evaluation of the results of DPA.

We build such an MRF in the following way. The sites are the pixels on an image, and
the cliques are determined by the maximum distance of neighbouring pixels. This way,
we successively study cliques of order 2, generated by 4-connectivity, then cliques of order
4, generated by 8-connectivity. We also vary the number of labels, or states, for each site,
from 2 (corresponding to the Ising model), to 4 (an instance of a Potts model). Once the
type of connectivity, the number of labels and the size of the graph (i.e. the image) have
been selected, then the values of the clique potentials are generated randomly (typically
with uniform distribution between 0 and 1, but the results do not change much if another
distribution is used). In each case, 10 and 20 such random MRF’s are generated. The
value of the optimal configuration can be determined exactly by dynamic programming,
following Derin & Elliott [4]. If the image has width w and height h, then the complexity
of the search is hw™. Images of width up to 10, and height up to 20 can thus easily be
searched on a workstation. The experiments related here were made on 5 x5 to 16 * 32
images.
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Applying DPA to this problem is straightforward. The maximization of f on K, can
be performed by any method as long as p > deg(G), for we know that the maximum is
unique in this case. As suggested in [1], we used a heuristic generalization of the iterative
power method for finding an eigenvector corresponding to a maximum eigenvalue: we
select some X(® and subsequently compute

Vi s XD = ot <DXi f(Xi("))) e (7.1)

7

where X; denotes the vector (z;1---z;n) and Dy, f the partial gradient with respect to

these variables, while the aE"H)’s are adjusted so that each X; has unit /P-norm. This

simply means that we select at each iteration the point on the pseudo-sphere of degree p
where the normal is parallel to the gradient of f, and the unique fixed point is necessarily
the mazimum we are looking for. Though this attractive procedure performed very well
in our practice, the sequence of values for the criterion that are generated in this way
need not be monotonically increasing, so one may have to fall back on a classical descent
algorithm. Here are example of non-monotonicity:

Example 7.1 (polynomial with integer exponents). Let n = 3, a be a positive real
parameter, f be the polynomial zy + az?, and p a real number strictly greater than 2.

Let 2o be the point on S3 , with coordinates ((1 —§)"/?,0,7), where 0 < 7o < 1. The

gradient gy of f at z is the vector (0, (1 — ~5)'/?,2a7,). The unique point z; of 55’,+
where the normal is parallel to gy is

(0’ (1 - 7{))1/1}: 71)7

where

1
1N\ S
= (14 0
(2a70) 77

We get f(zo) = ay? and f(x1) = ay?. As 7, vanishes when a vanishes, we have that
f(z1) < f(zo) for a small enough. That one coordinate is zero is unimportant: by
perturbation we get an example with positive coordinates as well. The fact that f has
two irreducible components is not relevant either: just perturb by adding a monomial zyz
with a small coefficient to obtain, by continuity, an irreducible polynomial.

The example even shows that the sequence of values can be monotonically decreasing:
since the polynomial f is symmetric in £ and y, then we can obtain points zs, ... through
the formula for 7;; taking p = 3,7, = 0.5, and a = 10~* generates a strictly decreasing
sequence f(z,). In this case the sequence z, has two alternating points of accumulation
yielding the same value for f:
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1/3
13 81/3 a6
. a’ / 8a3+1
o= I\"Psmr1) Y

and

1/3
1/3 81/3 a6
0<1_ a* )/ 8a3+1

8
8a3+1 a

Example 7.2 (monomial with rational exponents). This example shows that mo-
notonicity may fail even for a monomial. Let n = 2, p = 3, and f = z'/?y3/2. Let z, be
the point of 5% with coordinates (a, (1 — a®)!/?), where 0 < a < 1.

Then the point z; of Si + where the normal is parallel to the gradient of f at x¢ has
coordinates:

VoA Al

1 va
T = 5 — 3/2 1/3 7
(12 (M25) " 43 v ity
1 V3VEYa(I=a)
2 1/3

— a3\ 2 2/
(1ve (V25) "+ dvava vt - o)

When a vanishes, the limit of f(z1)/f(xo) is zero because it is easily checked that
f(z1)/f(zo) = ka'’* + o(a'/*) for some constant k. Thus, for sufficiently small a, f(z;) <

f(zo).

In order to account for the experimental monotonicity that was observed in practice by
the authors, it would be interesting to know whether there always exist a neighbourhood
of the maximum each point of which generates an increasing sequence of iterates.

Back to the labelling issue, and having initialized our continuation method using what
precedes, we continue to lower the value of p so that a bifurcation typically occurs for some
unknown p, < deg(C), and the maximum is no longer unique. Here comes the heuristic
part of the procedure: we simply ignored the bifurcation, and we did carry on with the
iterative power algorithm even when p < p,. More precisely, the complete heuristic goes
as follows:

(1) set X© = [1,... 1],k = 1,
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(2) while p>1do
o Y® + the projection of XY on K,
find X*) = maxy, f(X) using the iterative power method, starting from y ),
k<—k+1,p<—p—0
od

Here, projecting a non-negative Y on K, is performed by scaling separately for each site,
i.e. X; = o;Y;, Vi, just as shown above.

For p < py, it may theoretically, happen that Y is a critical point, possibly a local
minimum, or a saddle-point, in which case the iterative power method gets stuck. This
never occurred in our practice.

We have run comparisons with a Gibbs sampler, setting the number of iterations for it to
the total number of iterations (summed over the 3’s) set for DPA. The results are displayed
on Tables 7.3 (for 4-connectivity and cliques of order 2) and 7.4 (for 8-connectivity and
cliques of order 4). Here, Eg is the average number of errors for Gibbs, and Vi the average
value of the criterion. The last column (DPA/Gibbs) displays the percentage of trials for
which the value reached by DPA was better than the value reached by Gibbs.

The results on Table 7.3 show that, for 2 labels and cliques of order 2 (4-connectivity),
DPA is definitely better, and quite close to optimal. For 3 or more labels, DPA is still
better than Gibbs, but farther from optimal. For higher-order cliques (Table 7.4), DPA
degrades faster than Gibbs.

We have also applied on larger graphs a search by dynamic programming with pruning
of the current hypotheses, thus implementing a variation of the Viterbi algorithm. On
an image 8-pixel wide, and 2 labels, an exhaustive search implies to maintain 2° current
hypotheses. We have found, as shown on Table 7.5, that the results are quite poor as
soon as pruning (by discarding the worst hypothese) excedes 50%. This makes this last
method just as intractable as optimal search.

| Ns | Eppa | Vora| Vop |
2 2.2 | 128.40 | 128.74
3 2.6 | 128.43 | 128.74
5 2.6 | 128.45 | 128.74

Table 7.1: Size 8 x 8, 2 labels, 4-connectivity, N;; = 50, Th = 1075

| Th | Eppa| Vora| Vop |
10~ 3.6 | 128.25 | 128.74
0.3 3.6 | 128.19 | 128.74

Table 7.2: Size 8 x 8, 2 labels, 4-connectivity, N3y =3, N;;y =5

8. Conclusion

Having analysed in detail the /,-constrained maximization problem for generalized poly-
nomials of degree at most p, it is natural to ask about the best algorithmic approach to it.
In the first place, our experimental success with the power iteration method, as mentioned
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| N | Eppa | Eg|Vora| V| Vou | DPA/Gibbs |

2| 121|294 211 206 | 214.2 100%
3| 20.0|27.7|131.3 | 128.5 | 136.3 90%
4 13.71203| 732 | 709 | 717 100%

Table 7.3: Size 10 x 10, 4—connectivity, Nit = 2, Ng =3 NitGibbs =6

| N | Eppa | Ec | Vora| Vo | Vep | DPA/Gibbs |
2 14.6 | 15.9 | 288.9 | 292.6 | 298.0 30%
3 15.2 | 18.2 | 155.5 | 158.1 | 164.3 20%

Table 7.4: Size 8 x 8 or 6 X 6, 8-connectivity, N; = 3, Ng = 4 Nuygiwss = 12

‘ Nhyp ‘ Eprun ‘ VZorun ‘ V;)pt ‘
256 | 11.2 | 128 | 129.3
16 | 22.7 | 1231|1293

Table 7.5: Size 8 x 8, 2 labels = 512 running hypotheses.

in the previous section, is somewhat intriguing. Secondly, the results we proved are an
invitation to interior point methods, as one may hope that such methods can be provided
by perturbing the polynomial to be maximized so as to make it irreducible.

Finally, in connection with the original motivation presented in Section 2, more ambitious
questions arise about what happens if the constraint on the degree is relaxed. Determin-
istic Pseudo-Annealing has been used for a variety of applications, and proven to be an
efficient parallel and deterministic substitute to stochastic methods like Simulated An-
nealing. While uniqueness of the solution to the deformed problem was experimentally
conjectured a while ago, the present paper contributes the establishment of the method
by making sure that no pathological situation may arise at this early stage. However,
when performing subsequent steps, the rate of decreasing of the degree while restoring
the original constraints may change the solution we reach, and no theoretical foundations
are presently available about such continuation methods.
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