Journal of Convex Analysis
Volume 5 (1998), No. 2, 397-403

Homogeneous Functions and Conjugacy

Jean B. Lasserre

LAAS-CNRS, 7 Av. du Colonel Roche,
31077 Toulouse Cédex, France.
e-mail: lasserre@laas.fr

Received January 9, 1997
Revised manuscript received December 24, 1997

(Positively) homogeneous functions play a special role in the Legendre-Fenchel duality. The Legendre-
Fenchel conjugate of a p-homogeneous function is a g-homogeneous function with 1/p+1/q = 1. Further
properties of the function, its conjugate, and of the maximizers are also derived. The same result also
holds in the Max-Prod and Min-Max algebra for the analogue of the Legendre-Fenchel transform.
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1. Introduction

The Legendre-Fenchel transform is a fundamental tool in Convex Analysis (the analogue
in the MIN-PLUS algebra of the Laplace transform in the PLUS-PROD algebra (cf. e.g.
[2]))- For the interested reader, various properties of f*, the Legendre-Fenchel transform
of f, also called the conjugate of f, are presented in [1] and more recently in [9] (see also
the use of an appropriate “scalar product” for the Min-Plus Analysis, in the recent work
of Gondran [7]). For instance it is known that quadratic functions are transformed into
quadratic functions. However, not only quadratic, but in fact (positively) homogeneous
functions play a special role.

In this note, the class of (positively) homogeneous functions is shown to be globally
invariant. More precisely, the p-homogeneous functions are Legendre-Fenchel dual to
the g-homogeneous functions and vice-versa (with 1/p 4+ 1/¢ = 1). In other words, the
exponent of the conjugate is the conjugate of the exponent.

Under additional assumptions, other properties are also derived for the function, its con-
jugate as well as for the “maximizers”.

In addition, the same result also holds in other algebras such as the Max-Prod and the Min-
Max algebra, for the analogue of the Legendre-Fenchel transform. This duality property
of homogeneous functions is specific to the “sup” (or “inf”) operator.

2. Legendre-Fenchel transform of homogeneous functions

With 0 # p € R, let f : R"— R be a (positively) homogeneous function of degree p (in
short, p-homogeneous), i.e., for every A > 0 and z € R™, f(Az) = A f(z). One assumes
that f(z) # —oo for all z € R™ and that f is strict (or proper, or non improper), i.e.
0 # Dom(f) := {z € R"|f(x) < +o0}.
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2.1. The class of homogeneous functions is invariant

The Legendre-Fenchel transform f* : R*— R of the function f is given by:
[ly) =sup[(y,z) — f(z)], yeR" (2.1)

Theorem 2.1. Let f be strict and p-homogeneous. Then, the Legendre-Fenchel transform
f* of f, is g-homogeneous with 1/p+1/q = 1.

Proof. Let y € Dom(f*) and let 1/p+1/g = 1.
X f*(y) = sup[(Ay, A7 'z) — X f (2)] = sup[(Ay, AT 'z) — f(AT712))],

since f(A7tz) = \P@=V f(z) = A9 f(x). Therefore, with the change of variable z := M\~ 'z
we finally get

Mf*(y) = sup[{Ay, 2) — f(2)] = f*(\y),
the desired result. O

Note that p and ¢ need not be nonnegative. Theorem 2.1 could also be proved using
standard calculus rules for the conjugates of f().) and Af(.), as found in e.g. [9] and [10].

Example 2.2. Let f : R— R with f(z) := 1/z for x > 0, +oc otherwise; one may easily
check that f is (—1)-homogeneous (on (—oo,0] we also have f(Ar) = 400 = A7! X +00
since A > 0).

It is easily shown that f*(y) = 400 on (0,+00) and f*(y) = —2v/—y on (—o0,0], i.e. f*
is (1/2)-homogeneous, and —1 + 2 = 1.

Another example of homogeneous functions is f(z) := inf,{g(z)|Az = z, z > 0} where
A: R~ R™ is a linear mapping and g is p-homogeneous.

Then f is p-homogeneous since f(Az) = inf,/\{Ng(z/N)|Az/A =z, z > 0} = N f(z).
Therefore, from Theorem 2.1, f* is g-homogeneous.

Remark 2.3. One is often interested in the transform of z — f(z — zy) (translation).
If f is p-homogeneous the conjugate of x — f(z — o) is y — (y,zo) + f*(y) with f*
g-homogeneous.

2.2. Further properties

We now investigate some properties of f, its conjugate f*, and the maximizers in (2.1)
when f is p-homogeneous. Let z(y) denote a maximizer in (2.1) when it exists.

Lemma 2.4. Let f be p-homogeneous and for y € Dom(f*) (resp. z € Dom(f**)), let
z(y) (resp. y(z)) be a mazimizer (when it exists) in the definition of f*(y) (resp. f**(x)).
Then:

@) ) =@-1f(=@); @) =(—-1)f ().

(b) Ifx(y) is a mazimizer for y € Dom(f*), then x(\y) := XN x(y) is a mazimizer for
\y. Similarly, if y(x) is a mazimizer for x € int(Dom(f**)), then y(Az) := AP~ 'y(x)
is a mazimizer for \x, i.e. the mazimizers are (¢ — 1)-homogeneous and (p — 1)-
homogeneous respectively.
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Proof. (a) Let y € Dom(f*) and assume that z(y) is a maximizer in (2.1). Let df (x;u)
denote the directional derivative of f at = in the direction u, when it exists. As f is
p-homogeneous, for u := z(y) we immediately have

df (z(y); 2(y)) = lim [A " f(2(y) (L + X)) — fz(y))] = pf((y)). (2.2)

AL0
This property is a weak version of the famous Euler’s identity for continuously differen-
tiable functions (pf(z) = (Vf(z),z)).

Hence, as z(y) is a maximizer, the directional derivatives of (y,.) — f(.) at z(y) in the
directions v := z(y) and v := —z(y) must be nonpositive, i.e.

(y,2(y)) — pfz(y)) < 0and (y, —z(y)) + pf(z(y)) <O,
ie. (y,z(y)) = pf(z(y). But from f*(y) = (y,z(y)) — f(z(y)) we immediately deduce
) = (p =1 f(z(y))-
Using similar arguments with now f* g-homogeneous, it follows that f**(z) = (¢ —
1) f*(y(z))-

Note that if f is proper, convex and lower semi-continuous, then f** = f (see e.g. [9]).
Hence, from (a)

[ @) = flz) = (p—1)(g — 1) f(z(y(2))) = f(z(y(z))),

since if 1/p+1/¢=1 then (p—1)(¢—1) = 1.

To get (b) observe that if z(y) is a maximizer, then

Q) =211 (y) = O, M7 a(y) = F(AT a(y)),

so that A%z (y) is a maximizer for \y, or in other words, z(\y) := A9"'z(y) is a maximizer
for \y. With a similar argument, y(Az) := \?~!y(z) is a maximizer for \z. O

+ +
Finally, let fi V fo denote the inf-convolution of f; and fy, ie. fi V fo(x) := inf,, ,,
{fi(z1) + fo(z2)| 1 + 2o = z} (see for instance [9]). An interesting property of the
Legendre-Fenchel transform is to replace an inf-convolution by a sum. We also get

Corollary 2.5. Let fi, fo : R"— R (not identically +00) be p-homogeneous and satisfy
Dom(f;) N Dom(fs) # 0. Then, fi v fa is p-homogeneous. In addition, (f v f2)* =
i+ f5 is g-homogeneous, with 1/p+1/q = 1.

Proof. We have

AV Ra) = il V(R /A) + Fa/ V)] @+ 22) /A=)

z1/A, T2

= MN(fi \7 f2)(z),

ie. fi \7 f2 is p-homogeneous. That (f; \7 fo)* = ff + f5 is immediate from Corollary
2.1.3 in e.g. [9], and the result follows from Theorem 2.1. O
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Now, as in [7], [9], consider the “scalar product” of two functions f, g : R"— R, given by

(f,9) = inf{f(z) + g(x)} (2.3)

and consider the case where f(z) := f(z — a), g(z) := §(z — b) and both f and § are
(positively) homogeneous.

Lemma 2.6. Let [ (resp. g) be p-homogeneous (resp. g-homogeneous) conver lower-
semicontinuous. Let f(x):= f(x — a) and g(x) := g(x — b) be such that:

(a)  Dom(f) N Dom(g) # @ and 0 € ri(Dom(f) — Dom(g))

(b)  (f,g) is finite.

Then:
—(f,9) =min{f*(y) + 5" (=)} = F*(9) + ¢"(=7) (2.4)
and
F@+9 =)+ -0 +(@-1)5"(-9) =0 (2.5)
or equivalently,
(g a) +pf* () = =(( = 9.b) + 43" (-9)) (2.6)

for every minimizer i where both f* and g* have directional derivatives.

In addition, if p = q then
(f,9)=(—-D(f @ +37 () (2.7)

Proof. The first equality in (2.4) is the Fenchel’s duality Theorem (cf. [9] p. 63). Now,
let 7 be a minimizer and assume that both f* and ¢* have directional derivatives at ¢ and

—7, denoted by df*(g;u) (resp. dg*(—g;u)).

From the necessary conditions of optimality we must have
df*(y;y) + dg*(-y; —y) = 0 and df"(y; —y) + dg"(—y; +y) > 0. (2.8)

In addition, f*(y) = (y, a)+f*(y) Yy and ¢*(y) = (y, b)+§*(y) Vy. As f is p-homogeneous,
from (2.2) we get

(F,a—b) +pf* () +qg"(—=7) > 0
and
(@, —a+b) — pf(7) — ¢i"(—7) > 0,

which yields (7,a — b) + pf*(7) + ¢§*(—7) = 0, i.e. (2.5).
From (2.5) and —(f, g) = f*(9) + ¢*(=9), if p = ¢ we immediately get (2.7). O

Thus, computing (f, g) reduces to solving the equation (2.5) or (2.6).



J. B. Lasserre / Homogeneous functions and conjugacy 401

3. Extension to other algebras

It has been known for some time that many problems that are non-linear when formulated
in the standard (R, +, x) (or PLUS-PROD) algebra, become linear when formulated
in some appropriate algebra. In some optimization problems, the semi-ring algebraic
structures (R, min, +), (R, min, x), or (R, min, max), are particularly useful and the
interested reader is referred to e.g. [2], [5], [6], [11] and [7] for recent results along these
lines.

For instance, the change of algebra (PLUS-PROD) — (MIN-PLUS) permits to establish
an interesting correspondence between some results in Probability and Optimal control
as shown in [2] and [5], [6]. The Legendre-Fenchel transform is the analogue in the MIN-
PLUS algebra of the Laplace Transform in the PLUS-PROD algebra. If we formally
replace [ r Dy infg, ie. using min(a,b) instead of a + b, one recognizes the exponential
of the Legendre-Fenchel transform of log f. Note in passing that as Legendre-Fenchel
transform changes the quadratics into quadratics, Laplace transform changes exponentials
of a quadratic into exponentials of a quadratic. However, the Laplace conjugate of a p-
homogeneous function (of a real variable) is —(p + 1)-homogeneous since

L) = / e 10 NP f(Ar) A Ld(Ax) = A PHL(F) ().

Thus, although the class of homogeneous functions is globally invariant under the Laplace
transform, ¢g-homogeneous functions are not Laplace-dual of the p-homogeneous functions
when 1/p+1/g=1.

Perhaps less known is the Bellman-Karush, or Mazimum transform (cf. [3], [4]). It is
particularly useful in dynamic optimization problems with multiplicative (positive) costs.
For a function f : R—R, let

fe=fy) = sup [e ¥ f(x)] (3.1)

be its Bellman-Karush conjugate. Again, formally, this transform can be seen as the
analogue of the Laplace Transform, but now in the MAX-PROD algebra (i.e. the “+” is
now replaced by the “max” so that |  becomes sup,). As for the Laplace transform, the
Bellman-Karush transform replaces an inf-convolution by a product, i.e.

h(z) == Sgp{f(Z)-g(w —2)} = b (y) = f*(y).9" ()

Another algebra of interest is the MIN-MAX algebra (e.g., for worst-case performance
analysis). The reader is referred to [8] for various results concerning the Min-Max analysis
of s.c.i and quasiconvex s.c.i. functions. In particular, the inf-maz-affine transform is
introduced in [8].

3.1. The MAX-PROD algebra

From the definition (3.1) of the Bellman-Karush transform of f, it suffices to make the
change f' =log f (f > 0), and since the exponential preserves order, one applies Theorem
2.1 to f".

Thus, if log f(2) is p-homogeneous, then log f*(y) is also g-homogeneous (provided every-
thing is well-defined).
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3.2. The MIN-MAX algebra

Formally, the equivalent of the Legendre-Fenchel transform is:
f e F(v) = inf max{{y,2), f(2)} = nf{{y,) V f(x)} (32)

Lemma 3.1. Let f : R"—R and fy) := inf {(y,2) V f(x)} be its Min-Maz conjugate.
If f is p-homogeneous then f is g-homogeneous with 1/p+1/q = 1.

Proof. The proof is similar to the proof of Theorem 2.1. For y € Dom(f), we have (with
A >0)

N F(y) = inf{ (g, A7) v FO0 )} = inf{y, 2) v ()} = FOw),

which is the desired result. O

Example 3.2. On the real line, consider the function f(z) = 1/z*, Vz € (0,00) and
f(z) = +oc otherwise, i.e. f is (—2)-homogeneous. f(z) = 2% on [0,00) and 0 otherwise,
i.e. fisg-homogeneous with ¢ = 2/3 and one may check that 1/p+1/qg=—-1/2+3/2 = 1.

A similar conclusion hold with f(z) = 27!, # # 0 and f(0) := +o0. f(z) = —z'/% on
[0,00) and 0 otherwise. Hence, f is 1/2-homogeneous and 1/p+1/¢g=—-1+2=1.

Consider now the inf-maz-affine transform introduced in [8], i.e.

Fw,2) = inf[f(2) V ({9 2) + 2)].
Then, if f is p-homogeneous, one has
FOw, Xiz) = X1 f(y, 2).

4. Conclusion

We have shown that homogeneous functions play a special role in Legendre-Fenchel-like
transforms. Indeed, the p-homogeneous and g-homogeneous functions are in duality when
1/p+1/q =1, i.e. when their exponents are also in duality. This strong property holds
for transforms involving a “sup” (or “inf”) operator (e.g. the Legendre-Fenchel, Bellman-
Karush and MIN-MAX ..).
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