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Theorems on the separation of convex sets by hyperplanes are among the basic tools of convex analysis
and mathematical programming. The main results of the present paper are new (and in a sense best
possible) separation theorems in the setting of a finite-dimensional vector space X over an archimedean
ordered field F. There is an emphasis on the differences between the case in which F is the real field R
and that in which [F is a proper subfield of R. The rational field Q is of special importance because of its
relevance to computation. A new theorem for R? concerns the free separation of two convex sets, where
this means that there is a separating hyperplane H such that all sufficiently small perturbations of H
still separate the two sets. In a sense that is made precise, this is the unique mazimal theorem for free
separation in R?. A theorem for general X implies that if a proper convex subset C of X is s-closed, then
C is an intersection of open halfspaces. (The condition of s-closedness, defined in the text, is satisfied
by all closed convex subsets of R?. In an arbitrary X, it is satisfied by polyhedra and by many other
convex sets, but when F # R it is stronger than mere closedness.) There is also a study of conditions
under which an F-valued convex function on a convex subset C' of X is the supremum of a collection of
F-valued affine functions on X. (In R?, this leads to the usual subdifferentiability of convex functions.)
The s-closedness of C' is again a relevant condition. In conjunction with the relevance of s-closedness to
line-searches, and the related fact that the standard theorems on extremal structure of convex sets in R?
extend to s-closed subsets of F, this suggests that results on the behavior of s-closed sets may eventually
provide useful tools in the development of genuinely rational optimization algorithms.
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1. Introduction

Throughout this paper, F denotes an arbitrary archimedean ordered field. Recall that
whenever F is an ordered field and G is the smallest subfield of F that contains the
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multiplicative unit 1, there is a unique isomorphism of G (as an ordered field) onto the
rational field Q. It is customary to use members of Q and of the integers Z to denote the
corresponding members of G. An ordered field F is archimedean if for each a € F there
exists an integer n such that a < n; equivalently, F is isomorphic with a subfield of R.
And F is Dedekind-complete if each subset of F that has an upper bound has a least upper
bound; this is equivalent to requiring that F is isomorphic with R. (For these basic facts,
see, e.g. [26].)

We are especially concerned with the case in which F is R and with the case in which
F is the rational field Q. The latter concern is motivated by the fact that all digital
implementations of algorithms are bound in one way or another to the rational numbers.
Of course, algebraic numbers may be encoded by the rational coefficients of their mini-
mal polynomials over QQ, so there are ways of handling, in a rational manner, problems
over certain field extensions of Q. However, these extensions are still quite small proper
subfields of R, and it seems clear that it will never be possible to deal directly with the
complete field R in the binary world of our computers. In practice, this limitation has
severe consequences. If one wants to use, at least conceptually, the power of R, then one
must resort to approximations throughout the computation, and this calls for analyses
of stability and error propagation. It seems desirable, in order to avoid some of these
difficulties, to devise genuinely rational algorithms whenever possible, and this is espe-
cially important in the quest for strongly polynomial algorithms. Forcing oneself to work
entirely with an arbitrary subfield of R rules out the application of various analytic tools
that are available when working over R, and in so doing it helps to clarify the discrete as-
pects of the problems at hand. In particular, the setting of an arbitrary subfield excludes
the rounding procedures that figure so prominently in the design and analysis of many
numerical algorithms for the binary (Turing machine) model of computation. (For com-
ments on this, see especially Megiddo [19, 21].) All of this suggests the need for a better
understanding of the basic processes of analysis in an arbitrary F and in vector spaces
over F. See [1, 2], [4], [6, 7], [11], and [20] for some other papers that were motivated in
part by the fact that the rational field Q and some other small subfields of R are more
directly related to numerical optimization than is R itself.

For many problems in mathematical programming, the geometric notions of separation,
support, extreme points and duality are fundamental. It was shown by Klee [14] that the
standard theorems on extremal structure of closed convex subsets of R¢ extend without
change to s-closed subsets of F¢, even when the ordered field F is not required to be
archimedean. Mardesi¢ [18] showed by dramatic examples that the standard support
properties for closed convex subsets of R? do not extend to s-closed subsets of Q?. Carvalho
and Trotter [4] and Hartmann and Trotter [11] studied abstract linear duality theory,
particularly duality in Q?, and Onn and Trotter [22] focused on separation. The present
paper makes a more detailed study of the separation properties of convex subsets of a
finite-dimensional vector space X over an archimedean ordered field F. In particular, it
delineates the very limited extent to which the separation properties that are so familiar
and so useful in R? can be extended to X. One of our results (Theorem 3.2) is a new
separation theorem for R? that was developed with the aim of applying it to F¢. It is
a maximal separation theorem for what we call free separation, and it is in a sense the
unique such theorem for R? (see 3.3). For the case in which F # R, maximal separation
theorems are established for free and for strong separation (6.2 and 6.5). Another result
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(6.7) shows that in X, a limited but very important separation property is enjoyed by
all s-closed sets. Our final separation result (7.4) deals with F-valued continuous convex
functions on a convex subset C' of X. It gives intrinsic (and sharp) conditions, in terms
of properties of the domain C', for the strong separation of epigraphs of convex functions
from points not in the epigraph. As a corollary, we see when convex functions are suprema
of affine functions.

Here are the section headings:

Preliminaries;

A maximal theorem for free separation in R?;

Successes and failures in Q%;

Limitations on separation when [ # R;

Maximal theorems for free and for strong separation when F # R;
Convex functions on X as suprema of affine functions.

N o w1

2. Preliminaries

In the interest of brevity, we adopt the following
Standing hypotheses:

F is an archimedean ordered field;

X is a finite-dimensional vector space over [F;
d is the dimension of X;

B and C are nonempty convex subsets of X.

Since F is an ordered field, the usual definitions of segment, ray, line, etc., may be used
without change in the space X. In particular, a closed segment in X is a set of the form

[,y ={1=XNz+AXy: AeFAO0<AL1}

for distinct points z and y of X. A subset C of X is convez if [z,y] C C for each pair of
points z,y € C.

The field T is topologized in the usual way, taking its open intervals — sets of the form

Jo,y[={B8:a< B <7}

— as a basis for the open sets. For each line L in X and each choice of two distinct points
x and y of L, the parametrization of L as {(1 — M)z + Ay : A € F} provides an invertible
affine transformation of F onto L. That gives rise in L to a natural interval topology that
is independent, of the choice of z and y. The interval topology on lines in X then leads to
a natural topology for X itself, calling a convex set open if its intersection with each line
is open in the line’s interval topology — and then taking the open convex subsets of X as
a basis for the entire collection of open sets. When the dimension d is finite, this natural
topology for X is the same as the product topology that X inherits by virtue of being
isomorphic with F¢. With respect to this topology, the interior, closure, and boundary
of C' in X are denoted by int(C), cl(C), and bd(C) respectively, and the interior of C
relative to its own affine hull aff(C') is denoted by relint(C').

A subset S of X is bounded if for each neighborhood U of the origin there exists y € F
such that S C pU. When d is finite, this is equivalent to the condition that for some (and
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hence, in fact, for every) vector basis by, ..., by of X, there exists a € F such that S is
contained in the parallelotope

{zd:aibi fag, ..., 04 € [—a, a]}.
i=1

The following are well-known elementary properties of convex subsets of R?, and the usual
proofs show that they are valid in X as well. We use these properties freely, often without
specific reference. (In 2.2, [p,¢[ denotes the segment that is “closed at p, open at ¢.”)

Lemma 2.1. relint(C) is nonempty.
Lemma 2.2. Ifp € int(C) and q € cl(C), then [p,q| C int(C).

Lemma 2.3. If p € int(C), R is a ray issuing from the origin, and the closure cl(C)
contains a translate of R, then the ray p+ R is contained in int(C).

We note in passing that the results 2.1-2.3 hold even when the field F is nonarchimedean,
and only 2.1 requires finite dimensionality. Similar comments apply to several later results.
However, we do not discuss this matter further, because we want to focus on finite-
dimensional vector spaces over archimedean ordered fields.

If p is a point of a convex subset C' of X, and L,(C) is the set of all points ¢ € X such
that the set p + Fg is contained in C, then L,(C) is a linear subspace of X. It follows
from 2.3 that when C is fixed, the subspace L,(C) is the same for all p € relint(C); this
subspace is called the lineality space of C' and is denoted by 1s(C). (When the convex set
C is closed or open, L,(C) is the same for all p € C'.)

A subset C of X is called segmentally closed (hereafter, s-closed) if, for each closed segment,
[z, y], the intersection C'N[z, y] is empty or a singleton or a closed segment. This condition
implies that C is convex and (with the aid of 2.1 and 2.2) closed. Every closed convex
subset of R¢ is s-closed, but this is not true for a general X. For example, if « € R\ F
and « > 0, then the set {7 € F: —a <y < a} is both open and closed in F but it is not
s-closed. For a more interesting example, suppose that d > 2, let aq, ..., a4 be d distinct
members of R\ F such that the set {1,a, ..., a4} is linearly independent over F, and set

01 = {(717 s a’Yd) € le : |Z;i:1aﬂ/z| S 1}

Then the convex set C; is both closed and open in F¢. Though C, is itself unbounded,
the intersection C; N L is bounded for each line L in F¢. However, C; N L is never a
closed segment [z, y] nor an open segment |z,y[ (with z,y € F¢), for in F the “ends are
missing.” The condition of s-closedness avoids the difficulties associated with “missing
ends” and thus facilitates searches over lines that intersect the set.

A hyperplane in X is a flat (affine subspace) of dimension d — 1. Equivalently, it is a
translate of a (d — 1)-dimensional vector subspace of X and hence is of the form H = {z :
f(z) = ~}, where v € F and the functional f : X — F is linear and not identically zero.
The sets {z : f(z) <~} and {z : f(z) > 7} are the closed halfspaces bounded by H, and
the corresponding open halfspaces are defined by using < and > in place of < and >.

Two sets B and C' are weakly (resp. strictly) separated by a hyperplane H if B lies in
one of the two closed (resp. open) halfspaces bounded by H and C' lies in the other one.
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Note, for the set C; described above, that even though C' is closed and convex, no point
of T\ C] is even weakly separated from C;. By contrast, we show in Section 6 that if C
is a convex subset of F¢ that is bounded and closed, or that is s-closed, then each point
of @ \ C is strictly (in fact, strongly) separated from C.

Two sets B and C are strongly separated by a hyperplane H = {z : f(z) = ~} if there
exists € > 0 such that one of B and C lies in the halfspace {z : f(z) < v — €} and the
other lies in the halfspace {z : f(z) > v+ €}. Let (B, () denote the set of all f € X*
(the conjugate space of X) for which there exist v and € as described. Then X(B,C) is a
convex subset of X*, and B and C are strongly separated if and only if X(B,C) # 0. We
say that B and C are freely separated provided the set ¥(B, C) has nonempty interior in
X*. This is a stronger condition than strong separation. For example, two parallel but
disjoint flats in X are strongly separated but not freely separated.

For surveys of theorems dealing with weak, strict, strong, and some other sorts of separa-
tion, see [16] and [5]. The notion of a mazimal separation theorem was introduced in [15],
and fourteen such theorems (all in R?) were proved there. Here we refine the terminology
of [15] and then prove some new maximal separation theorems for X — one for the case
F = R and two for the case in which F is a proper subfield of R.

Suppose that V' is a vector space over an ordered field, K is the class of all nonempty
convex proper subsets of V', B and C are nonempty subclasses of IC, and “S-” denotes a
type of separation in V. We say that the pair {B,C} is B-mazimal for S-separation in V
provided that the following conditions are satisfied:

1. The sets B and C are S-separated whenever B € B and C € C with BNC = 0.

25. For each B € B there exists C' € C such that BN C = .

3. For each Y € K\ B there exists C € C such that Y NC = () but Y and C are not
S-separated.

Similarly, the pair {B,C} is C-mazimal for S-separation in V provided that condition (1)

holds, and also

2¢. For each C € C there exists B € B such that BN C = 0.
3c. For each Z € K\ C there exists B € B such that BN Z = () but B and Z are not
S-separated.

Finally, we say that the pair {B,C} specifies a mazimal theorem for S-separation in V
provided that {B,C} is both B-maximal and C-maximal for S-separation.

3. A maximal theorem for free separation in R¢
To prepare for the main result of this section, we need the following.

Lemma 3.1 (Line-free convex sets). If B and C are line-free convez subsets of R?,
the vector difference B — C' contains a line if and only if there is a ray R issuing from the
origin such that each of B and C contains a translate of R.

Proof. At several points in the proof, Lemma 2.3 is used without specific reference.

It is obvious that B — C' contains a line if the stated condition is satisfied. Suppose,
conversely, that B — C' contains a line p + Rq, so that for each 7 € R there exist b, € B
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and ¢, € C with p+ 7q¢ = b, — ¢,;. Then for each 7 > 0,
b= B'r —Cr

where B
b =3(b,+b_,) €B and ¢ =3(cr +c_r) €C.

Since the fixed point p is equal to b, — &, for each real 7, the sets {b, : 7 > 0} and
{¢; : 7 > 0} are both bounded or both unbounded.

Now suppose first that the sets {b, : 7 > 0} and {&, : 7 > 0} are both bounded. If the set
{b; : 7 > 0} is also bounded, then so is the set {b_, : 7 > 0}, and since p +7¢ = b, — ¢,
for all 7 it follows that the sets {¢, : 7 > 0} and {c_, : 7 > 0} are both unbounded. A
routine argument then shows (using compactness of the unit sphere) that there is a line
in the set C, contradicting the assumption that C' is line-free. In the remaining case, the
sets {b, : 7> 0} and {b_, : 7 > 0} are both unbounded, and this leads to the conclusion
that B contains a line.

There remains the situation in which the sets {b, : 7 > 0} and {¢, : 7 > 0} are both
unbounded. Then there exists a sequence 7; — oo such that ||b, || — oco. With p; =
|6 || ~*, we may assume (again using compactness of the unit sphere) that the sequence
piby, converges to a vector u of unit norm. It is then true that the sequence j;¢,, also
converges to u, and with by and ¢y denoting relative interior points of B and C' it follows
by routine arguments (similar to those in [8] and [13]) that B and C contain the rays
bo + [0, co[u and ¢q + [0, co[u respectively. O

When C is a convex subset of R? and F is a ray or a flat in R¢, we say that F is an
asymptote of C provided that F Ncl(C) =0 and 0 € cl(C — F). (For an arbitrary norm
| - || on R%, the second condition is equivalent to the assertion that inf{||jz — y|| : = €
C ANyeF}=0.) When F is a flat of dimension k, it is called a k-asymptote, and when
F is a ray it is called a ray-asymptote. A convex set C' is said to be continuous when
C is closed and nonempty, bd(C) does not contain any ray, and C' does not admit any
ray-asymptote. This terminology in [8] was motivated by the fact that the “continuity” of
a closed convex set is equivalent to the condition that its support function (mapping the
unit sphere into [0, oo]) is continuous. It is easily seen that a line L is a 1-asymptote of a
closed convex set C' if and only if L contains a ray-asymptote of C. It was shown in [13]
that a continuous set C' does not admit asymptotes of any dimension, which amounts to
saying that all linear images of C' are closed. An independent proof of this appears in [3].

Theorem 3.2 (A maximal theorem for free separation in R?). With d > 2, sup-
pose that B denotes the class of all continuous convez subsets of R and C denotes the
class of all line-free closed convex subsets of R®. Then for each disjoint pair B € B and
C € C, the sets B and C are freely separated. The pair {B,C} specifies a mazimal theorem
for free separation.

Proof. Theorem 1.3 of [8] implies that if B and C' are disjoint closed convex sets and at
least one of them is continuous, then B and C are strongly separated. That applies here,
and from the fact that B and C are strongly separated it follows that the origin does not
belong to the closure of the vector difference B — C.

We claim also that B — C is line-free. For this it suffices, in view of 3.1 and the fact that
neither B nor C' contains a line, to rule out the existence of a ray R issuing from the
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origin and of points b € B and ¢ € C such that b+ R C B and ¢+ R C C. Suppose that
R, b, and ¢ do exist, and consider the intersection of the set B with the 2-dimensional set

S =conv((b+ R) U (c+ R)).

Since b + R is contained in B while ¢ + R is disjoint from B, it is easy to verify that for
some p € [b, c| the ray p + R either contains a ray in B’s boundary or determines a line
that is an asymptote of B. Each of these possibilities contradicts the assumption that the
set B is continuous.

From the fact that B — C is line-free it follows by a routine argument (using, for example,
2.3) that the same is true of the closed convex cone K = cl([0,00[ (B — C)). Hence
KN —K = {0}. Now let F = {f € (R")* : f(k)>0forall k € K}. The fact that K
is line-free implies, by a standard result on polars of convex cones, that the set F'is not
contained in any hyperplane. Hence, by 2.1, F' has nonempty interior.

The easy constructions that establish maximality are left to the reader. They are similar
to those in [15]. O

Recall that a point g of a closed convex subset C of X is called a support point of C' if
C is contained in a closed halfspace whose bounding hyperplane H passes through ¢; H
itself is then called a supporting hyperplane of C'. Further, ¢ is an exposed point of C' if C
is supported at ¢ by a hyperplane that intersects C' only at ¢, and q is a smooth point of
C' if there is a unique hyperplane supporting C at ¢. In proving the next result, we need
the fact that each line-free closed convex subset of R? has an exposed point. That was
proved in the bounded case by Straszcewicz [25] and extended to unbounded sets in [12].

For each type of separation considered in [15], two or more maximal separation theorems
are established there. In each case, the classes B and C are invariant in the sense that
they are closed under nonsingular affine mappings of the containing space. However, the
following result shows that for free separation in R?, there is only one maximal separation
theorem in which at least one of the classes is invariant.

Theorem 3.3 (Uniqueness of the maximal theorem for free separation in R?).
With d > 2, suppose that R?® is equipped with the usual Euclidean distance, that the pair
{B,C} specifies a mazimal theorem for free separation, and that at least one of the classes
B and C is closed under the proper rigid motions of R¢. Then one of B and C is the class
of all continuous convez subsets of R and the other is the class of all nonempty line-free
closed convex subsets of R%.

Proof. Let B' = {cl(B) : B € B} and C' = {cl(C) : C € C}. Then each member of B'UC’
is line-free, for if a set contains a line no set can be freely separated from it. Now suppose
that some member C of C fails to be closed. Let ¢ € cl(C)\ C, let J be a hyperplane that
supports cl(C) at ¢, let J* be the closed halfspace that is bounded by J and contains C,
and let J~ denote the other closed halfspace that is bounded by J. Let B be an arbitrary
member of B, p an exposed point of cl(B), H a hyperplane that supports cl(B) at p and
has H Ncl(B) = {p}, and H" a closed halfspace that is bounded by H and contains B.
Then produce a pair (B”,C") as follows:

° if B is invariant under proper rigid motions, let B"” denote the image of B under a
motion that carries p onto ¢ and H* onto J~; and let C" = C;
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° if C is invariant under proper rigid motions, let C"” denote the image of C' under a
motion that carries ¢ onto p and J~ onto H™; and let B” = B.

In each case, B" € B, C" € C, B"NC" = (), and B” and C" are not freely separated. It
follows from this contradiction that each member of BUC is a closed set.

Now we claim that at most one of B and C can include a set that is not continuous. For
suppose that both B and C include noncontinuous members. Then there are sets B € B
and C € C, hyperplanes H and J that bound halfspaces H™ and J* containing B and
C respectively, and rays R C H and S C J such that R is an asymptote or boundary
ray of B and S is an asymptote or boundary ray of C. Moving the appropriate one of B
and C by a suitable rigid motion, we can obtain a member of B and a member of C such
that the two members lie in disjoint halfspaces and the bounding hyperplanes of these
halfspaces contain parallel rays, one a boundary ray or asymptote of one of the sets, the
other a boundary ray or asymptote of the other set. Then, even though the two sets are
strongly separated, they are not freely separated.

The above argument shows that at most one of the families B and C can have a member
that is not continuous. Hence at least one — say B — consists exclusively of continuous
sets. It then follows, from the maximality assumption in conjunction with 3.2, that C
includes all line-free closed convex sets. But then, again from maximality and 3.2, B must
consist of all continuous sets. O

4. Successes and failures in Q

In attempting to carry analytic machinery from R¢ to Q?, one naturally hopes for success
but must be prepared for striking failures. In addition to the easy examples in [9], we
mention an impressive example of Korner [17]. He first observes that if f : Q — Q is
a differentiable bijection with nonzero derivative, and if the inverse f ! is continuous,
then f~!is differentiable. However, he then constructs a differentiable bijection whose
derivative is everywhere equal to 1 but whose inverse is everywhere discontinuous.

Another dramatic example is provided by V. Mardesié¢ [18]. Suppose that C' is a bounded
closed convex subset of X and that int(C) # (). For the case in which F = R/ it is
well-known that bd(C) is topologically a (d — 1)-sphere, that each point of bd(C) is a
support point, that the smooth points in bd(C) constitute “almost all” of bd(C) (both in
the measure-theoretic sense and in the sense associated with the Baire category theorem),
and that C' is the closed convex hull of its exposed points. When F is a proper subfield
of R, the set bd(C) may be empty, but of course bd(C) is infinite when d > 2 and C
is bounded and s-closed. Mardesi¢ shows that in Q* (indeed, in F? for any countable
field F C R) there are bounded s-closed convex bodies K1, K5, K3 and K, that behave as
follows:

K has no support points;

each boundary point of K5 is exposed but not smooth;
each boundary point of K3 is smooth but not exposed;
each boundary point of K, is both smooth and exposed.

Although the above examples are discouraging, we may take some encouragement from
the results of [14] on extremal structure. These show that the usual results on extremal
structure (e.g., the fact that a bounded closed convex set is the convex hull of its set
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of extreme points) extend to a finite-dimensional vector space over an arbitrary (even
non-archimedean) ordered field when the condition of closedness is replaced by that of
s-closedness.

The situation for polyhedra is also encouraging. A polyhedron is the intersection of a
finite number of closed halfspaces, and a polytope is a bounded polyhedron. Equivalently,
a polytope is the convex hull of a finite set. It is evident that each polyhedron is s-closed.
With respect to separation properties, polyhedra and polytopes in X behave just as they
do in R%:

e if B is a polytope, C is a line-free polyhedron, and B N C = (), then B and C are
freely separated;

e if B and C are disjoint polyhedra, then B and C are strongly separated;

e if B and (' are polyhedra whose relative interiors are disjoint, then B and C' are
weakly separated.

In fact, the usual proofs of these and many other properties of polyhedra (see [10, 24, 27])
either apply immediately in a finite-dimensional vector space over an arbitrary (even
nonarchimedean) ordered field or they can be easily modified so as to apply in that
setting.

5. Limitations on separation when F # R

We turn now to the separation situation in X when F # R. The goal is to find conditions
on the structure of individual convex subsets B and C of X that assure some sort of hy-
perplane separation when B and C happen to be disjoint. This section contains examples
showing that, by comparison with the situation in R?, only very limited separation results
can be expected when F # R. Section 6 contains maximal theorems for free and for strong
separation when F # R.

Since X, as a vector space over the field I, is isomorphic with F¢, we assume for convenience
that X = F¢ and we work with the natural embedding of F¢ in R?. When C is a convex
subset of X it is essential to distinguish C’s role as a subset of X from its role as a subset
of R?. To do this, we make frequent use of the subscript  and the prefix F- to refer to
operations in X, and of the subscript g and the prefix R- to refer to operations in R?.
For example, C’s closures in X and in R? are denoted by clp(C) and clg(C), respectively,
and they are referred to as the F-closure and the R-closure of C'. Similarly, the lineality
space of C in X is denoted by Isp(C) and the lineality space of clg(C) in R¢ is denoted by
Isg(C). Other uses of F and R as subscripts or prefixes should be clear from context.

The following two properties of C' prove to be relevant:

(LIF)  the set clg(C) is line-free;
(LSD)  clg(Isp(C)) = Isg(clg(C)); i.e., the set lsp(C) is dense in the set lsg(C) (=
Isg (clg(C)).

(Think of “LIF” and “LSD” as standing respectively for “line-free” and “lineality space
dense.”)

For convenience, the properties LIF and LSD are expressed in terms of the natural em-
bedding of X in RY, but they are in fact independent of the embedding. To express this
independence more precisely, suppose that By is a basis for X as a vector space over F,
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that Bg is a basis for R? as a vector space over R, that the mapping 9 : By — By is
a bijection, and that ¢ : X — R? is the injection of X into R? that extends 1 and is
an F-vector-space isomorphism of X into R?. Then each of the properties LIF and LSD
holds for the natural embedding if and only if it holds for the embedding ¢. A similar
independence of the embedding holds for the other properties and conditions, used in this
and the next two sections, that involve subsets of X in their relationship to RY.

Theorem 5.1 (A limitation on weak separation). If C is a convex subset of X such
that each point of X\ clp(C) is weakly separated from C, then C has the property LSD.

Proof. Let S = lsp(C), C' = clg(C), and S’ = 1sg(C"). By 2.1, we may assume without
loss of generality that 0 € intg(C), whence 0 € intg(C’). Note also that if S’ = R¢, then
C' =R? and C = X. Thus it suffices to consider the case in which dimg(S’) < d, whence
dimp(S) < d and there is a nondegenerate subspace 7" of X such that SNT = {0} and
S+ T =X Setting k = dimp(7") and assuming that each point of T\ clp(C) is weakly
separated from C, we will show that dimg(S’) < d — k. Since dimgp(7T) = d — dimg(S5),
this will imply that dimg(S’) < dimg(S), whence S’ = clg(S) and C has the property
LSD.

For each point ¢t € T\ {0}, there is a nonzero y; € F such that the point ¢ = u;t does
not belong to clp(C). By assumption, there is an F-hyperplane H; through the origin
in the space X such that C is contained in the F-closed halfspace J; that consists of all
points of X on the origin’s side of the F-hyperplane H; + ¢. Since 0 € inty(C), it is clear
that t ¢ H;. Note also that the R-closed halfspace clg(J;) contains C’, and hence S’ is
contained in the R-hyperplane H| = clg(H;).

Now set Ly = X and choose t; € (T'N Lg) \ {0}. Then set Ly = H;, = Ly N Hy,, thus
obtaining dimg(L;) = d—1 and S’ C clg(Ly). If k > 2, we may choose t, € (L1 NT)\ {0}
and then set Ly = L; N Hy,, a (d — 2)-dimensional subspace of X that contains S’. At
the start of stage j of this process (where j < k), we have a (d — j + 1)-subspace L,_,
we choose t; € (Lj_; NT) \ {0}, and then we set L; = L;_; N Hy,. At the end of the kth
stage, the subspace Ly of X is of dimension d — k, and since

k
S'c(\Hi = L,
i=1
it follows that dimg(S’) < d — k. That completes the proof. O

The following lemma is used in establishing additional limitations on separation.

Lemma 5.2 (A construction lemma). With d > 2, suppose that G is a Euclidean ball
in RY, that q € bd(G), and that V is a dense subset of int(G). Then G contains a set W
that has the following properties:

o W is a compact conver set with nonempty interior;

) q s an exposed point of W ;
with the exception of q, the extreme points of W all belong to V', and they form a
sequence converging to q;

) the hyperplane H that supports G at q is the unique hyperplane in R that weakly
separates q from W
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Proof. We assume without loss of generality that ¢ =0 and G = {z € R? : ||z —2|| < 1},
where ||z|]| =1 and (2,h) =0 for all h € H.

For each ¢ > 0, define the convex cone
K(e) ={z: (z,2) > el|lz]]}.

Then K (e) increases as € decreases, and

UK(e) ={0}U{z: (z,z2) > 0}.

>0
Note also that for each z € G\ K () it is true that

(r,z) =(z—z,2—z) — (2,2) + 2(2z,2) <1 —1+4 2¢||z|| < 2e.

Now let T be a d-simplex such that z € int(T), ¢ is a vertex of T, and T”’s other vertices
all belong to V. Let 61,02,... and €1,€y,... be sequences of positive numbers, both
converging to 0, and for each positive integer n let V,, be a finite subset of the intersection
VN (G\ K(e,)) such that each point of this intersection is within §,, of some point of V},.
Then let

W = conv(T U U Vi)-
n=1

The first three properties claimed for W are now easily verified, using the final inequality
of the preceding paragraph to see that the extreme points of W form a sequence converging
to q. To complete the proof, we show that the fourth property also holds when the deltas
and epsilons are chosen appropriately.

Let U = {z € H : ||z|| = 1}. Other than H, each hyperplane J through the origin is of
the form

J=J(B,u)={x:{(Bz+u,z) =0}
for some 3 # 0 and u € U, with 8 > 0 if and only if z is interior to the closed halfspace

JH(B,u) ={z: (Bz+u,z) > 0},

It suffices, for our purpose, to show that the deltas and epsilons can be chosen so that
the constructed set W intersects the open halfspace J~(3,u) = {z : {8z + u,z) < 0} for
each >0 and u € U.

We claim that K(1/4/1+ ?) C J* (8, u) for each u € U. To establish this, it suffices to
consider z = z + yv with v € U and v > 0, and to note that if z € K(1/4/1 + 3?) then

Vit?
1+ /3

so 72 < 42 and we have (3z + u, z + yv) = 3+ v{u,v) > 0.
Now for each u € U and 3 > 0, let

(2,2 + vy >

Y

p(B,u) = (z — Bu).

1+ 32
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Then p(8,u) € J(B,u) and

||Z— 2 1_ 1 ﬁ 2_ 1 2 2
1 4 @2 s
- wrr T T

SO
lz —p(B,u)|l = B/vV/1+B2<1

and the ball of center p(8,u) and radius

p(B) =1-(B/v1+p?

is contained in G. From this it follows that the set G N J (8, u) contains an open ball
of radius p(8)/2, and hence, since K(1/4/1+ %) C J(B,u), this same open ball is

contained in the set G\ K(1/4/1 + 2).

Because of the above observations, it is now clear that if we choose ¢, = 1/4/1 + n?, then
K(e,) € JT(n,u) for all w € U and G NJ~(n,u) contains an open ball of radius 1 — ne,.
Setting 0, = (1 —ne,)/2 assures that the constructed set W intersects the set GNJ ™ (n, u)
for each n and u, and hence completes the proof. O

When F # R, a subset P of X is here called a pseudotope if it satisfies the following four
conditions:

P is a subset of X that is bounded, closed, and convex, and has nonempty interior;
P is the F-convex hull of the set ext(P) of all extreme points of P;

the set ext(P) forms a sequence that converges to a point ¢ € R¢ \ X;

q is both an exposed point and a smooth point of the subset clg(P) of RY.

The point ¢ € R \ X will be called the pseudovertez of the pseudotope P.
The following result is an immediate consequence of Theorem 5.2.

Theorem 5.3 (Existence of pseudotopes). With hypotheses as in 5.2, suppose also
that F # R, ¢ ¢ X, and V = XN int(G). Then the set XNW is a pseudotope in X, with
q as its pseudovertex.

Theorem 5.4 (s-closedness of pseudotopes). With F # R, suppose that q is the
pseudoverter of a pseudotope P in X, that L is a line in X, and that L' = clg(L). If
L' misses q, then the intersection L N P is empty, a singleton, or a closed segment in
X. Hence the set P is s-closed if and only if ¢ does not lie on any line in R?® that passes
through two points of P.

Proof. The second statement is an immediate consequence of the first statement and
the relevant definitions. Now, with P’ = clg(P), suppose that L' misses ¢ and yet the
intersection L N P is not as claimed. Then there is a point

y € bdr(P') \ (XU {q})



Gritzmann, Klee / Separation by hyperplanes 291

such that y belongs to the R-closure of L N P. Since y is not an extreme point of P but
must be an R-convex combination of extreme points of P’, it follows that the R-hyperplane
supporting P’ at y must pass through ¢. However, that contradicts the exposedness of
the pseudovertex q. O

Theorem 5.5 (A limitation on strong separation). WithF # R andd > 2, suppose
that B is a proper convez subset of X and is not a singleton. Let B' = clg(B). Then there
ezist w € R? \ X and g € B'\ X such that q is the unique point of B' nearest to w. For
each such pair (w,q), the Euclidean ball G = {z € R¢ : ||z — w|| < ||lw — ¢||} contains a
set P that satisfies the following conditions:

P is a pseudotope in X;
B is disjoint from P;
B is not strongly separated from P;

if no nonzero multiple of w — q belongs to X, then B is not even weakly separated
from P.

Proof. We assume as usual that X = F? C R?. For each point w € R?, let g(w) denote
the unique point of B’ that is nearest to w with respect to the usual Euclidean distance in
R¢. Then the function g : R — bdg(B') is a continuous surjection. Since (with F # R)
the space R? \ X is connected, the same is true of the image g(R¢ \ X). Since the space X
is totally disconnected, the same is true of the intersection X N bdg(B’). It follows, since
bdg(B') is not a singleton, that there exists w € R?\ X such that the point g(w) does not
belong to X. Now set ¢ = g(w), define G as in the statement of 5.2, and let H' denote
the hyperplane in R? that is perpendicular to the segment [w, g] at the point b. Then H'
is the unique hyperplane in R¢ that weakly separates G from B'.

Now let P be the pseudotope whose existence is guaranteed by 5.2-5.3, set H = H' N X,
a flat in X, and consider two cases.

(a) If dim(H) = d — 1, then H is a hyperplane in X and is the only hyperplane in X that
weakly separates B and P. Since dist(B, P) = 0, there is no hyperplane that strongly
separates B and P. It is also clear that some nonzero multiple of w — ¢ belongs to X.

(b) If dim(H) < d — 1, then there is no hyperplane in X that weakly separates B and P.
For if there were such a hyperplane in X its closure would be a hyperplane that weakly
separates B’ and P in R? — that is, its closure would, by the uniqueness of H’', be equal
to H'. However, that implies dim(H) = d — 1. O

To see that the condition in the following result cannot be entirely abandoned, see The-
orem 6.9 at the end of the next section.

Theorem 5.6 (A limitation on weak separation). Let C' be a conver subset of X,
let C" = clg(C), and suppose that the following condition is satisfied:

. there exists a point ¢ € bdg(C") \ X that is contained in a supporting hyperplane of
C" in R¢ normal to a point of N, where

N={y=(m,...,na) ER*:Fi,j € {1,...,d} :m; €F A n; ¢ F}.

Then there is a pseudotope in X\C' (with pseudovertex q) that is not even weakly separated
from C.
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Proof. The proof follows immediately from the last statement in Theorem 5.5 once it
is established that each point y of N has the property that Ry N X = {0}. So, suppose
that y = (m,...,ma) € N —say m € F, no ¢ F — and there exists A € R such that
Ay € X. Then An; € F implies that A € F, whence A, € F leads to the contradiction
that 2 € IF. ]

Corollary 5.7. Let C be a convex subset of X, let C' = clg(C), and suppose that F is
countable. If the set bdr(C) contains uncountably many nonsmooth points, or the set of
normal directions to supporting hyperplanes at smooth points of bdgr(C) is uncountable,
then there is a pseudotope in X\ C that is not even weakly separated from C.

Proof. Since F is countable and X is finite-dimensional, the set X is countable and hence
so is the intersection XNbdg(C"). If the set bdg(C') contains uncountably many nonsmooth
points, it includes a nonsmooth point ¢ that is not in X. Among the hyperplanes that
support C' at ¢, there are uncountably many normal directions and hence there is a
normal that belongs the set N. Thus the conclusion follows from 5.6.

If the set of normal directions to supporting hyperplanes at smooth points of bdg(C") is
uncountable, then the same is true of the directions of normals to supporting hyperplanes
at smooth points that do not belong to X, and among these normals there must be one
that belongs to N. Again, 5.6 is applicable. O

A convex subset S of X will be called a slab if there exists a nonzero linear functional
f : X — F and there exists an s-closed proper subset I of F such that S = {z € X :

f(z) € I}.
Corollary 5.8. Suppose that F # R, d > 3, and C is a polyhedron in X that is neither

a singleton nor a slab. Then there is a pseudotope in X\ C that is not weakly separated
from C.

Proof. Under the hypotheses, C has a t-face G with 1 <t < d — 2. We assume without
loss of generality that 0 € G. Since the orthogonal complement of affg (G) is the R-closure
of a linear subspace of X the set N defined in 5.6 must include a vector that is normal
to G. Further, the set clg(G) \ G is nonempty, and hence the stated conclusion follows
from 5.6. O

At the end of the next section there is a separation result that is valid only when dim(X) <
2. Limitations on improving that result are indicated by the following examples.

Example 5.9. For each of the following statements there are disjoint closed convex sets
B and C of @Q? that have the indicated properties:

B is bounded and C' is a closed segment, but B and C are not weakly separated;

° B is closed and has bounded intersection with each line, and C' is a singleton, but
B and C are not weakly separated;

° B and C are both pseudotopes but they are not weakly separated;

° B is bounded and s-closed, C is a line or a segment, but B and C are not strictly
separated.

Proof. For the first example, let B’ be a circular disk in R? such that the boundary of B’
includes a point p of Q? for which the slope of the tangent to B’ at p does not belong to
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Q. Let g be a point of Q? such that the segment [p, q] misses B'. Finally, set B = B'NQ?
and let C' be the segment in Q* whose ends are p and q.

For the second example let B be the set C'; of Section 2.

For the third example, start with two circular disks B’ and C" in R? such that B’ N (" is
a point p € R? \ @? and the common tangent line L in R? has slope that does not belong
to Q. Approximate B’ and C’ by pseudotopes B and C, using the method of 5.2.

The final example can be constructed as follows. Let C” = {(z,0) : x € R} or C" =
{(x,0) : 0 < z < 1}, choose p € [0,1] \ Q, and let B’ be a circular disk in R? that is
tangent to C" at the point p = (u,0). Then produce B” from B’ in the manner of the
preceding example. Again, set B = B"NQ? and C = C" N Q7. O

6. Maximal theorems for free and for strong separation when F # R

Assuming that F # R, we will obtain a maximal theorem for free separation and a maximal
theorem for strong separation.

Theorem 6.1 (Free separation in X). If B and C are convex subsets of X such that
clg(B) and clg(C) are freely separated in R?, then B and C are freely separated in X.

Proof. Let ey, ...,eq be the standard basis for R? and hence for X as well. Then, of
course, a functional f € X* is uniquely determined by its values on the points e;. It
is therefore clear (since X is a dense subset of R?) that the set of all functionals whose
values on ey, ..., eq4 are in IF is dense in (R%)*. By hypothesis, the set of linear functionals
[ € (R?)* for which sup f(B) < inf f(C) has nonempty interior in (R?)*. Hence (B, C)
has nonempty interior in X*, and that yields the desired conclusion. O

Theorem 6.2 (A maximal theorem for free separation in X). Let B denote the
class of all singletons in X and let C denote the class of all closed convex subsets C' of X
that have property LIF. If F # R then the pair {B,C} is B-mazimal for strong separation
and C-mazimal for free separation. Hence {B,C} specifies a mazimal theorem for free
separation in X.

Proof. Suppose that C € C and b € X\ C, and let C' = clg(C). Then C’ is line-free
and {b} is continuous, so it follows from Theorem 3.2 that the sets {b} and C' are freely
separated in R?. But then Theorem 6.1 implies that {b} and C are freely separated in
X. It is evident that if a convex subset C' of X omits a point b of the closure clg(C), or if
clg(C) is not line-free and b is an arbitrary point of X\ C, then {b} and C are not freely
separated in X. Hence the pair {B,C} is C-maximal for free separation in X. To verify
the B-maximality of the pair for strong separation, use Theorem 5.5. O

The following special cases of Theorem 6.2 were noted by Hartmann and Trotter [11] and
Onn and Trotter [22].

Theorem 6.3 (Separation for bounded sets and cones). Suppose that C is a boun-
ded closed convex subset of X, or that C is a pointed closed convex cone of the form [0, co[D
where D is a bounded closed conver subset of a hyperplane in X\ {0}. Then each point
of X\ C is freely separated from C.
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Proof. In each case, the set C has property LIF, so the stated conclusion follows from 6.2.
O

Note that 6.3 need not hold when C' is merely a line-free closed convex cone in X. For
example, suppose that ' = Q, let ay, ..., ay denote real numbers that are linearly inde-
pendent over Q, and set

Co={(1,...,7a) € F*: Z?Zlam > 0}

Then C, is a line-free closed convex cone in Q¢ and yet no point of Q¢ is weakly separated
from Cs.

Next comes a relative of another observation of Onn and Trotter [22].

Theorem 6.4 (Strong separation of certain pairs of sets). With X embedded in
R¢, suppose that C' is a closed convexr subset of R?, B' is a continuous convexr subset
of R¢ that is disjoint from C', and let L' = 1sg(C"). Suppose also that B' intersects X and
that L' is the closure of a subspace L of X. Then the subsets B=B'NX and C = C'NX
are strongly separated by a hyperplane in X.

Proof. In X, let M denote a subspace complementary to L, and let M’ denote the closure
of M in R?. Then R? is the direct sum of L' and M’, and X is the direct sum of L and
M. Let II denote the projection of RY onto M’ whose nullspace is L'. Then the closed
convex subsets II(B’) and II(C') of M’ are respectively continuous and line-free. (To
verify the former statement, use the fact (from [13]) that a continuous set does not admit
asymptotes of any dimension.) Hence by 3.2 the sets II(B’) and II(C") are freely separated
by a hyperplane in M’'. From Theorem 6.2 it follows that the intersections II(B') N M
and I1(C") N M are freely (and hence strongly) separated by a hyperplane H in M. Then
the set II"'(H) N X is a hyperplane in X, and it strongly separates B and C. O

The set Cy introduced after 6.3 shows that 6.4 may fail when the set L’ is not required
to be the closure of a subspace of X.

Theorem 6.5 (A maximal theorem for strong separation in X). Suppose that
F # R. Let B denote the collection of all singletons in X, and let C denote the col-
lection of all closed convex subsets of X that have property LSD. Then the pair {B,C}
specifies a mazimal theorem for strong separation in X.

Proof. If B € B and C € C, it follows from Theorem 6.4 that B and C are strongly
separated. If Y is a nonempty proper convex subset of X that is not a singleton, then
Theorem 5.5 guarantees the existence of a pseudotope C' C X\ Y that is not strongly
separated from Y. Since C is bounded, so is clg(C), and hence C and clg(C) have the
same lineality space {0}. Hence C has the property LSD and it follows that the pair
{B,C} is B-maximal for strong separation.

To show that the pair {B,C} is C-maximal for weak separation, we must show that if 7
is a nonempty convex subset of X that fails to be closed or that lacks the property LSD,
then there is a singleton in X\ Z that is not strongly separated from Z. That is obvious
when Z is not closed. If Z lacks the property LSD, then Theorem 5.1 guarantees the
existence of a singleton in X\ clp(Z) that is not even weakly separated from C. O
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Theorem 6.6 (Lineality spaces in X and R?). If C is a conver subset of X that is
s-closed or has property LIF, then C has property LSD.

Proof. Let S = 1Isp(C), C' = clg(C), and S’ = Isg(C"). We want to show that clg(S) =
S’. That is obvious if C' has LIF, for then S = {0} = S’. To complete the proof, we derive
a contradiction from the assumption that C is s-closed but clg(S) is a proper subset of
S'. By 2.1 we may assume that C' has nonempty interior in X. It is also clear that S’ is
not the whole space R?, and hence there exists ¢ € bdg(C’). Then ¢’ + S’ C bdg(C’) and
there exists a linear subspace 1" of R? that is a complement of S’ and is F-generated in
the sense that the intersection 7' = 7" N X is a subspace of X whose F-dimension is equal
to dimg (7).

Let U be an open subset of C. Then clg(U + T) meets ¢ + S’ in a set of dimension
dimg(S’). Hence there is a point p € intp(C) such that the set clg(p + 7T') N bdr(C") is
not contained in ¢’ + clg(S), whence the two sets have empty intersection. But then there
exists a point ¢ € X\ C such that the segment [p, g]g meets ¢ + S’ in a point z that does
not belong to ¢+ S. Clearly the point z does not belong to C, but it certainly belongs to
the set clg([p, ¢Jx). This implies that C' is not s-closed, and the contradiction completes
the proof. O

The next result now follows immediately from 6.5 and 6.6.

Theorem 6.7 (s-closed subsets of X as intersections of halfspaces). If C is an s-
closed subset of X, then each point of X\ C is strongly separated from C by a hyperplane.
In particular, C is an intersection of open halfspaces in X.

Theorem 6.8. If d > 3 and C is a polyhedron in X, then the following two conditions
are equivalent:

° C is a singleton or a slab;
° C' is weakly separated from each pseudotope in X\ C.

Proof. If C' is a slab, then C' contains a hyperplane H and it is clear that each convex
subset of X'\ C is weakly separated from C' by some translate of H. If C is a singleton,
then by 6.3 each bounded closed convex subset of X (and hence each pseudotope) in X\ C'
is freely separated from C. Thus, the first condition in 6.8 implies the second. By 5.8,
the second condition implies the first. O

Mardesi¢ [18] treated the special case of the following result in which C'is a singleton and
B is s-closed. Note, in connection with 5.6, that the following condition on B is satisfied
when B is a pseudotope.

Theorem 6.9 (Separation in F?). Suppose that B and C are nonempty disjoint convex
subsets of W2, that C is a polyhedron, and that at most one point of bdr(clg(B) \ B is
collinear with two points of B. Then B and C are weakly separated by a line in F2.

Proof. The proof consists of verifying the following statements, where B’ and C' denote
the closures in R? of B and C respectively.
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If the intersection B’ NC" is nonempty, it consists of a single inner point of an edge of C".
If L denotes the line in R? that contains this edge, then L N2 is a line in F? that weakly
separates B and C.

If the sets B’ and C’ do not intersect but the infimum of the distances from a point of B’
to a point of C' is zero, the reasoning is similar to that in the preceding case.

If bdg(B') or bdg(C’) contains a line L, then the intersection L NF? is a line in F? and
there exists a vector v € F? such that v + L separates B and C. Thus we may assume
that both B’ and C" are line-free.

If a ray in B’ is parallel to a ray in C’ (i.e. one is a translate of the other), then B and
C are separated by a line in F? that is parallel to this ray.

In the remaining case, the sets B’ and C’ are at positive distance from each other, are
both line-free, and no ray in one is parallel to any ray in the other. Hence by 3.1 the
vector difference is line-free and is at positive distance from the origin. But then the
origin is freely separated from the vector difference B’ — C’, and it follows that B and C
are strongly separated by a line in F2. O

Theorem 6.8 shows that 6.9 does not extend to the case d > 3. Limitations on extending
6.9 when d = 2 are indicated by Examples 5.9.

7. Convex functions on X as suprema of affine functions

From both a theoretical and an algorithmic viewpoint, one of the most important prop-
erties of a convex function ¢ on an open convex subset C' of R? is the fact that ¢ is
the supremum of a collection of affine functions on C. (In R¢ this leads to the existence
of a supporting hyperplane at each point of ¢’s graph, and hence to subdifferentiability;
see e.g. [23].) The present section studies the extent to which this result carries over to
general X.

If C is a convex subset of X and ¢ : C' — F is an F-valued function on C', then ¢ is convex
if

(A + (1= Ny) < dp(z) + (1= Ne(y)
for all z,y € C and A € F with 0 < A < 1. The function ¢ is affine if

oAz + (1= N)y) = Xo(z) + (1 — Ne(y)

for all z, y, A as described, and it is then a routine matter to extend ¢ to an affine function
whose domain is the entire space X.

If a convex set C' C X is closed and the function ¢ : C' — F is continuous and convex,
then of course the epigraph

epi(p) ={(z,a) : 2 € C, a €, p(z) > a}

is a closed convex subset of X x F and the set D, = {z € C : p(x) < v} is closed and
convex for each v € F. However, the s-closedness of C' does not imply that of epi(yp)
and D,. To see this, let X = Q, C = [-2,2] and ¢(z) = z* for all x € C. Then the
intersection of epi(¢) with the closed segment [(—2,2), (2, 2)] is not a closed segment, and
the set D, is not s-closed.

The following result is a consequence of Theorems 6.5 and 6.7.
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Theorem 7.1 (Convex functions as suprema of affine functions). Suppose that ¢
s a continuous conver function on a closed conver subset C' of X. Then ¢ is the supremum
of a collection of F-valued affine functions on C if either of the following conditions is
satisfied:

(i)  epi(p) is s-closed;
(ii)  the subset Isg(clg(epi(p))) of R¥*! is the R-closure of a subspace of X x F.

Proof. It follows from 6.7 in case (i), and from 6.5 in case (ii), that for each point y € C
and each 3 < ¢(y), there is a hyperplane H in the space X x F that strongly separates the
point (y, #) and the convex set epi(y). Now let the functional ¢ : X — F be defined by
the condition that (x,¢(x)) € H for each x € X. Then it follows by a routine argument
that 1 is affine, § < 9(y) and ¥(z) < ¢(s) for all z € C. O

Each of the conditions (i) and (ii) is less than satisfactory. The second uses the embedding
space while the first, though intrinsic, makes assumptions on the epigraph of ¢ that cannot
easily be characterized in terms of natural assumptions on C and ¢. A more natural set
than an interval and a more natural convex function than the square p(x) = z? can
hardly be imagined, and yet, as we have seen, (i) does not hold. The rest of this section
is concerned with finding some natural intrinsic conditions on C' and ¢ that still force ¢

to be the supremum of a collection of affine functions.

We begin with two lemmas. The first is very well-known, at least in the case of R?; its
proof is included as a service to the reader.

Lemma 7.2 (Continuity of convex functions). If C' is an open conver subset of X
and ¢ : C'— F is a convex function, then ¢ is continuous.

Proof. The assertion that ¢ is upper semicontinuous is equivalent to the assertion that
the set F' = {(z,a) : x € C AN a > p(z)} is open. Let E = epi(p). Clearly, int(E) is
contained in F. To see that each point of F' belongs to int(£), it suffices (ignoring obvious
cases) to consider an arbitrary pair of points (z,«) and (y, #) in C' x F with x # y and

B—oy) <0<a-—p().

Then with 6 = a — ¢(z) and n = ¢(y) — 3, it is true for all A with 0 < A < % that

(1 =X (z,a)+ Ay, B) € int(E).

(Consider the two segments conv{(z, ¢()), (v, ¢(y))} and conv{(z, a), (y, 3)} and use the
convexity of ¢.) It follows that the set F' = int(epi(y)) is open.

To establish the lower semicontinuity of ¢, consider an arbitrary point ¢ € C and an
arbitrary sequence (p;);en in C N (2¢ — C) converging to ¢q. For each index 4, the point
r; = 2q — p; also belongs to C, and by convexity,

1

1
pla) < Sopi) + 5o(ri).
Since limsup ¢(7;) < ¢(q) by upper semicontinuity, it follows that liminf¢(p;) > ¢(q).

Hence ¢ is also lower semicontinuous at q. 0
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Next we prove an extendability result.

Lemma 7.3 (Unique extensions of convex functions). Suppose that C is an open
conver subset of X, and ¢ : C — F is a convex function. Let C' = intg(clg(C)). Then
there is a unique convex function ¢': C' — R such that ¢'|c = .

Proof. Let E = epi(p) and E' = clg(E) N (C" x R). We show that E' is a convex
subset of R4, Let (r,0),(y,3) € E'. Since C' is open and F¢ is dense in R?, there

are points ag, ..., aq,bg,...,bg € C and positive numbers Ag, ..., Ag, o - - -, g € F with
Zfzo i = Z?:o i; = 1 such that x = Zf:() Aia; and y = Z?:o w;b;. Now, let

K = convF(UfZO{(ai, (P(ai)), (bia (P(bz))})

By the convexity of ¢, K + R C E, where R is the ray {0}¢ x [0, co[p. This implies that
convg{(z,a), (y,3)} C E', and hence E' is a convex subset of RZ*!.

It is now easy to define an extension of ¢ to R?; just set
¢'() =min{a: (d,a) € E'}.

for each ¢ € C'. A routine argument shows that ¢’ has the desired properties. Since, by
7.2, each convex extension of ¢ is continuous, there is at most one such extension. Hence
¢’ is the unique convex extension of ¢ to the set C'. O

When, as in 7.3, the convex domain C of ¢ is open, then ¢ is necessarily continuous.
However, when C' is a closed convex subset of X, the continuity and convexity of ¢ on
C does not guarantee the existence of a convex extension of ¢ to the R-closure clg(C).
For instance, let € R\ Q, p = (0, 1), and let B’ be a circular disk in [0, co[g xR that is
tangent to the y-axis at the point p. Approximate B’ by a suitable pseudotope B” C B’
where the vertices of B" all belong to Q* and converge to p. Then set C = B" N Q?,
C" =clg(C), and let ¢ : C — Q be defined by ¢(&,n) = 1/€. It is clear that C' is s-closed
and ¢ is a continuous convex function on C'; however, there is no convex extension of ¢
to C'.

Let us now reconsider 7.1. If C is s-closed and lsp(C) = {0}, then (with the aid of 6.6)
Isg(clr(epi(¢))) = {0}. Hence condition (ii) of 7.1 is satisfied and ¢ is the supremum of
a collection of affine functions on X. Our final separation results will allow C' to have
a (barely) non-trivial lineality space. However, we first describe some examples that
dampen too-high expectations by showing that even when F = Q, there are continuous
convex functions that are not the supremum of a collection of affine functions on X, and
that this can happen both when C' is s-closed and Isp(C) is 2-dimensional and when C' is
closed but not s-closed and lsp(C) is 0- or 1-dimensional.

Let 5 € R\Q, and let V' denote the vector space over Q with basis 1 and 3. Identifying V'
with a subset of R, we begin with the construction of a certain convex function 7 : V. — Q.
Note that V' is countable, choose a bijection v : N — V' \ Z, and then set v; = (i) for
i € N. Further, let Zy = Z and Z; = ZU {v; : j = 1,...,i}. We will now construct
a sequence (Ti)ieNU{o} of piecewise linear convex functions 7; : R — R with the property
that 7;(u) € Q for all 4 € Z;. The functions are most easily described in terms of their
epigraphs F;, i € NU {0}. The set of all extreme points of E; will be denoted by V;.
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Let Vo = {(u, u?) : p € Z}, and Ey = conv(Vy). Clearly, Vy = ext(Ey), the function 7
corresponding to Ej is piecewise linear and convex, and 7g is rational on Z;. Now suppose
that 7; and hence E; and V; have already been constructed for some i € NU {0}, and let
o, a1, (g, 3 € Z; such that ap < o < g < a3, [, a3]NZ\{e; : j=0,1,2,3} =0, and
a1 < Yi+1 < ag. Further, for j = 0,1,2 let L; denote the line spanned by (¢, 7;(c;)) and
(@jt1, Ti(@j11)), let Hy", Hy and H, denote the corresponding open halfplanes such that
H{ and H; contain intg E;, while H, is disjoint from E;. The set D = Hy N H; N Hy
is an open triangle. Now choose a rational number ¢ such that v = (v;41,() € D, set
Viger = ViU{w}, E;11 = conv(V;41), and let 7,1 denote the function corresponding to E; ;.
Since the set V;y; is convexly independent, Vi, = ext(E;;1), and hence 7;11(p) = 7(p)
for all p € Z;. Also, 7i41(7i41) = C € Q.

Finally, we define the function 7 : V' — Q by setting
T(p) = ‘_Iglin Ti( 1) for peV.

=U,...,

Having constructed the auxiliary function 7, we now define the desired function ¢ : Q —
Q by setting
p&m=1mB-¢),  for (&n) € Q.

Note first that n8 — & € V, whence ¢ is indeed rational on the whole rational plane.
Clearly, ¢ is convex, hence by 7.3 admits a unique convex extension ¢’ to R%2. Note
that the function ¢’ is constant on each line that is parallel to the line L = R(3,1); in
particular, L is mapped to 0. Hence L C lsg(epig(¢')), and since ¢’ is not linear, actually
L = Isg(epig(¢’)). On the other hand, Isg(epig(¢)) = {0}.

Now let H be a hyperplane in Q* that is disjoint from intg(epig(¢)). Then clg(H) is
parallel to L, and it follows easily that H = Q* x {0} with 6 < 0. Hence the set epig(p)
cannot be weakly separated from any point with positive last coordinate. This implies in
particular that ¢ is not the supremum of any collection of affine functions on Q?.

It is evident that C' can be restricted to the rational points of a strip parallel to L
(just like the set C} in Section 2), whence the construction extends to the situation where
Isp(C) = {0} and C'is closed but not s-closed. It is also not hard to generalize the example
to higher dimensions and, in particular, to include an example (in Q¢ with d > 3) with
dim(Isp(C)) = 1.

The next result closes the gap between the examples just given and the trivial conclusions
of 7.1.

Theorem 7.4. If ¢ is a continuous convex function on an s-closed subset C of X, and if
Isp(C) is at most of dimension 1, then each point of (X X ) \ epi(yp) is strongly separated
from C by a nonvertical hyperplane. If d = 2 and dim(Isp(C)) = 1, the conclusion holds
even when the set C' is merely closed.

Proof. Let X be canonically embedded in R?, and suppose without loss of generality
that 0 € C. Let E = epi(p) and E' = clg(F). Note that the orthogonal projection S of
Isp(E) on X is contained in Isp(C), and the orthogonal projection S’ of Isg(E') on R? is
contained in Isg(C").

Since C' is s-closed, Isp(C) is dense in Isg(C’) by 6.6, hence Isg(C") is F-generated. Since
Isp(C) is of dimension at most 1, we have either dimg(S’) = 0 or dimg(S’) = 1. In the
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former case, S = S’ = {0}, while in the latter case, S’ = Isg(C") = clg(Is(C)). Since,
by 7.3, the restriction ¢|is(c) has a unique convex extension ¢’ to S’, and the latter is
linear, so is the former. Hence clg(S) = S'. It follows from 6.5 that each point (p, A) of
(X x F) \ epi(y) is strongly separated from epi(yp) by a nonvertical hyperplane.

For the final assertion, note that when d = 2 and dim(Isg(C)) = 1, Isp(C) is trivially
dense in Isg (C"); then continue as in the general situation. O

As a simple corollary of 7.4 we obtain the following final result.

Corollary 7.5 (Convex functions as suprema of affine functions). If ¢ is a con-
tinuous convex function on an s-closed subset C of X, and if 1sg(C) is of dimension at
most 1, then ¢ is the supremum of a collection of affine functions on X.

Proof. By 7.4 each point (p, \) of the set (X x F) \ epi(y) is strongly separated from
epi(y) by a nonvertical hyperplane. For each p € C' and A < ¢(p), a strongly separating
nonvertical hyperplane generates (in a standard way) an affine function f : X — F such
that f < ¢ and A < f(p). Hence the stated conclusion follows. O

Now suppose, finally, that we have a convex function ¢ on an open convex subset C' of
X (whose lineality space is of dimension at most 1). Then, even though ¢ is necessarily
continuous by 7.2, the examples given before the statement of 7.4 show that unless cl(C)

is s-closed, we still cannot be sure that ¢ is the supremum of a collection of affine functions
on C.
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