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In this work we study the structure of “approximate” solutions for an infinite dimensional discrete-time
optimal control problem determined by a convex function v : K x K — R!, where K is a convex closed
bounded subset of a Banach space. We show that for a generic function v there exists y, € K such that
each “approximate” optimal solution {z;}?, C K is a contained in a small neighborhood of y, for all
i € {N,...,n — N}, where N is a constant which depends on the neighborhood and does not depend
on n.
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1. Introduction

Let X be a Banach space, || - || be the norm on X, and let K C X be a closed convex
bounded set. Denote by 2 the set of all bounded convex functions v : K x K — R! which
satisfy the following assumption:

Assumption 1.1 (uniform continuity). For each ¢ > 0 there exists 6 > 0 such that for
each x1, s, y1,y2 € K satistying ||z; —y;|| <, 1 = 1,2 the relation |v(z1,z2) —v(y1,y2)| <
€ holds.

We consider the metric space 2l with the metric
p(u,v) =sup{|v(z,y) — u(z,y)| : z,y € K}, u,v e

Evidently the metric space 2 is complete.

In this paper we investigate the structure of “approximate” solutions of optimization
problems

n—1
Zv(xi, Tiy1) — min, (P)
=0

{z:}io CK, mo=y, zp=2
where v € 2, y,z € K and an integer n > 1.
The interest in these discrete-time optimal problems stems from the study of various opti-

mization problems which can be reduced to this framework, e.g., continuous-time control
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systems which are represented by ordinary differential equations whose cost integrand
contains a discounting factor (see Leizarowitz [5]), the infinite-horizon control problem of

minimizing fOT L(z,2")dt as T — oo (see Leizarowitz [6]) and the analysis of a long slender
bar of a polymeric material under tension in Leizarowitz and Mizel [7] and Zaslavski [16-
18]. Similar optimization problems are also considered in mathematical economics (see
Makarov and Rubinov [8], Rubinov [11] and survey [12]).

In this paper we establish the existence of a set § C 2 which is a countable intersection
of open everywhere dense sets in 2 and such that for each v € § the following property
holds:

There is y, € K such that for all large enough n and each y,z € K an “approximate”
solution {z;}!, of problem (P) is contained in a small neighborhood of y, for all i €
{N,...,n— N} where N is a constant which depends on the neighborhood and does not
depend on n.

This phenomenon which is called the turnpike property is well known in mathematical
economics. The term was first coined by Samuelson in 1958 (see [13]) where he showed
that an efficient expanding economy would spend most of the time in the vicinity of a
balanced equilibrium path (also called a von Neumann path). This property was fur-
ther investigated by Radner [10], McKenzie [9], Makarov and Rubinov [8] and others
for optimal trajectories of a von Neumann-Gale model and for optimal trajectories of
continuous-time convex autonomous systems (see Carlson, Haurie and Leizarowitz |3,
Chap. 4,6]). Asymptotic turnpike property for optimal control problems with infinite
time horizon were studied by Carlson [1], Carlson, Haurie and Jabrane [2] and Zaslavski
[14]. A related weak version of the turnpike property was studied in Zaslavski [15] with a
nonconvex function v : K x K — R! and a compact metric space K.

In almost all studies of discrete time control systems the turnpike property was considered
for a single cost function v and a space of states K which was a compact convex set in a
finite dimensional space. In these studies the compactness of K playes an important role.
Perhaps the methods use there can be extended but only to obtain the turnpike property
for a weakly compact set K in an infinite dimensional Banach space. Specifically for the
optimization problems considered in this paper if a function v has the turnpike property
then as we will see later, its “turnpike” y, is a unique solution of the following optimization
problem

v(z,z) - min, z € K.

The existence of solution of this problem is guaranteed only if K satisfies some compact-
ness assumptions. To obtain the uniqueness of the solution we need additional assump-
tions on v such as its strict convexity.

In the present paper, instead of considering the turnpike property for a single cost func-
tion v, we investigate it for the space of all such functions equipped with some natural
metric, and show that this property holds for most of these functions. This allows us to
establish the turnpike property without compactness assumption on the space of states
and assumptions on functions themselves.
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For each v € A, each integers m;, my > m; and each y;,ys € K we define

ma—1
o(v,my,my) = inf{ Z v(2i, zip1) * {Ziiem, C K}
i=mi
ma—1
o(v,mi, my,y1,y2) = inf{ Z V(i zit1) {2} 00, C Ky 2my = Y1, 2m, = Y2},
i=m1
and the minimal growth rate
N-1
p(v) = inf{liminf N ™' Z v(ziy ziv1) 1 {zi}2e C K}
N—oo 0

In this paper we will establish the existence of a set § C 2 which is a countable intersection
of open everywhere dense subsets of 2 and such that the following theorems are valid.

Theorem 1.2. Let v € §. Then there exists a unique y, € K such that v(yy, y») = p(v)
and the following assertion holds:

for each € > 0 there exist a neighborhood 4 of v in A and 6 > 0 such that for each u € U
and each y € K satisfying u(y,y) < p(u) + 9§ the relation ||y — y,|| < € holds.

Theorem 1.3. Let w € § and € > 0. Then there exist 6 € (0,¢), a neighborhood 4 of
w i A and an integer N > 1 such that for each u € i, each integer n > 2N and each
sequence {x;}7_, C K satisfying

[ay

n—

(s, Ti1) < o(u,0,n, T, Tn) + 0

Il
)

i
there exist 7, € {0,...N} and o € {n — N,...n} such that
|lz: — ywl| <€, t=11,...7.
Moreover, if ||zo — Yu|| < 0 then 7 =0, and if ||y — u|| < then 5 = n.
2. Preliminary results
Set
Dy = sup{||z|| : z € K}. (2.1)
For each bounded function u : K x K — R' we set
||lull = sup{lu(z,y)| : 2,y € K} (2.2)
Proposition 2.1. Let v € A. Then

p(v) =inf{v(z,2) : z € K}.
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Proof. Clearly

inf{v(z,z):x € K} > u(v) (2.3)
and for each integer m > 1

o(v,0,m) < mpu(v). (2.4)

Let € > 0. Then there exists § € (0,¢) such that for each z1,z2,91,y2 € K satisfying
llz; — yil| < 6, i = 1,2 the following relation holds

[v(z1,22) — v(y1,52)| <€ (2.5)
Fix an integer m > 1 for which
8m ™' (Dy +1) < 6. (2.6)

There exists {y;}~, C K such that

3

v(Yi, Yiy1) < o(v,0,m) + 6.

<.
Il
o

Define
m—1 m
-1 -1
Zo0 =1Mm Yy, Z21=MmM Yi.-
i=0 i=1

It is easy to see that

HZO — Zl|| < 2m_1D0 < 5, (27)

v(20,21) <M Z v(Yi, Yir1) < m o (v,0,m) + 6). (2.8)

i=0
By (2.7) and the definition of ¢ (see (2.5))
|v(20, 20) — v(20,21)| < €.
Together with (2.8) and (2.4) this implies that
v(20,20) < 26 +m o (v,0,m) < p(v) + 2e.

Since € is an arbitrary positive number we conclude that inf{v(z,2) : z € K} < p(v).
This completes the proof of the proposition. O

Proposition 2.2. Let v € A, € € (0,1). Then there exist § € (0,¢), u € A and 2y € K
such that

0 <u(z,y) —v(z,y) <e, z,y€ K, pv)+9d>v(z020) (2.9)

and for each y € K satisfying u(y,y) < p(u) + § the relation ||y — zo|| < € holds.
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Proof. Choose numbers §,v > 0 such that
Y(8Dy+4) <€, &< 8 e (2.10)

By Proposition 2.1 there exists zp € K such that v(zg, z0) < p(v)+0. Defineu : K x K —
R! as

u(@,y) = v(z,y) +1(llz = 2/l +[ly = 2l)), =,y €K (2.11)
It is easy to see that u € 2 and (2.9) is valid.
Assume that y € K and
u(y,y) < p(u) +6. (2.12)

It follows from Proposition 2.1, (2.11), (2.12), (2.10) and the definition of 2z, that
p(v) < plu) < ulz, 20) = v(20,20) < p(v) +96,

291y — 2ol + v(y, y) = u(y,y) < p(u) +6
SM(U)+25§U(yay)+25a ||y_20||S57_1<€
This completes the proof of the proposition. O

Proposition 2.3. There exists a set §, which is a countable intersection of open every-
where dense subsets of A and such that for each v € Fy the following assertions hold:

(i)  there erists a unique y, € K such that v(y,, y,) = u(v).
(ii)  for each € > 0 there exist a neighborhood L of v in A and § > 0 such that for each
u € U and each y € K satisfying u(y,y) < u(u) + 9 the relation ||y — y,|| < € holds.

Proof. Let w € 2 and ¢ > 1 be an integer. By Proposition 2.2 there exist §(w,:) €
(0,47%), u™?% € A and z(w,i) € K such that

0 < u®(z,y) —w(z,y) <47, z,y€K, (2.13)

w(z(w,1), 2(w, 7)) < p(w) + 6(w, )
and for each z € K satisfying

u(“”i)(z, z) < ,u(u(w’i)) + 6(w, 1)

the relation ||z — z(w, i)|| < 47 holds.
Set

U(w,i) = {u e A: plu,u™?) < 876(w,q)}. (2.14)

It is easy to verify that the following property holds:
(a) for each u € U(w,7) and for each z € K satisfying

u(z,2) < p(u) +87'6(w,q)

the relation ||z — z(w,7)|| < 47" is valid.
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Define
To=Ngoy U{h(w,7) cw e A, i=gq,q+1,...}.

Evidently §, is a countable intersection of open everywhere dense subsets of 2.

Assume that v € Fo. We will show that assertions (i) and (ii) are valid. There exists a
sequence {z;}%2, C K such that

lim v(z;,z;) = p(v). (2.15)

j—o00

It follows from the definition of §, and property (a) that {x;}32, is a Cauchy sequence.
Therefore there exists lim;_,,, ; and

v(lim z;, lim z;) = p(v).
j—o0 j—o0

Since any sequence {z;}52, C K satisfying (2.15), converges in K, we conclude that there
exists a unique y, € K such that v(y,, y») = p(v).

Let € > 0. Choose an integer ¢ > 1 such that
477 < 87 e, (2.16)

By the definition of §, there exists w € 2 and an integer i > ¢ such that v € U(w,7).
Property (a) implies that

[y — 2(w, i)|] <47 (2.17)

It follows from (2.17), property (a) and (2.16) that for each u € {U(w,7) and each y € K
satisfying

u(y,y) < p(u) +876(w,1)

the relation ||y — y,|| < € holds. This completes the proof of the proposition. O

Remark 2.4. The statement (i) of Proposition 2.3 is similar to a result in [4].

3. Proof of Theorems 1.2 and 1.3

Let the set §y be as guaranteed in Proposition 2.3. For each w € §, there exists a unique
Yw € K such that

W(Yu Yuw) = (W) (3.1)
Let v € §o, v € (0,1). Define

vy(z,y) = v(@,y) +(lz —wll + lly —wll), zyekK. (3.2)

Clearly v, € 2.
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Lemma 3.1. Let ¢ € (0,1). Then there exists an integer n > 1 such that for each
sequence {x;}?_, C K which satisfies

n—1

Zvy(aji,xiﬂ) < o(vy,0,n, 9, 2,) + 4 (3.3)
i=0

there is j € {0,...n — 1} such that

lz; = woll, [z — w0l < e (3.4)
Proof. Choose an integer
> (€9)7 (5 + 4(/ vy || + [[w]1))- (3.5)
It is easy to verify that
nu(v) < o(v,0,n) + 2||v||. (3.6)

Assume that {z;} , C K satisfies (3.3). Define {y;}?, C K as
vi=x;, t=0,n, Y=1Y, 1=1,...n—1. (3.7)

It follows from (3.2), (3.3), (3.7), (3.1), (3.6) and (3.5) that

n—1 n—1
o(v,0,n) +’YZ(||33z' = Yol + [[Tig1 — wl]) < Z%(%JHI)
i=0 i=0

-1

Z yz,szrl + 4 < 4||U’YH + 4 + nv(yvayv)
=0

= 4 +df[oy|[ + np(v) <4+ 4jvy|[ + (v, 0,7) +2[[v]],
inf{||z; — yo|| + ||Tix1 — w0l| ;4 =0,...n — 1}
< ()7 (A + 4y || + 2[vl]) < e

This completes the proof of the lemma. O

Lemma 3.1 implies

Lemma 3.2. Let € € (0,1). Then there exist a neighborhood 1 of v, in 2 and an integer
n > 1 such that for each v € 4 and each sequence {x;}?_, C K which satisfies

[y

n—

u(zs, ziv1) < o(u,0,m, 29, T,) + 3

Il
)

i

there is j € {0,...n — 1} such that ||z; — yul|, ||zj11 — wl| <e.
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Lemma 3.3. Let € € (0,1). Then there exists § € (0,¢€) such that for each integer n > 1
and each sequence {x;}7_, C K which satisfies

n—1
l|lz; —yol| <6, ©=0,n, Zv7(mi,xi+1) < o(vy,0,n, g, 2,) + 0, (3.8)
=0
the following relation holds
llz: — yol| <€, 1=0,...n. (3.9)

Proof. It is easy to see that for each integer m > 1
o (v,0,m, Yy, yo) = mu(v). (3.10)
Fix
8o € (0,8 'ye). (3.11)

There exists § € (0,271dp) such that for each 1, z9,y1,y2 € K satisfying ||z; — y;|| < 6,
1 = 1,2 the following relation holds

lv(x1,22) — v(y1, y2)| < 64 16,. (3.12)

Assume that an integer n > 1 and a sequence {z;}"_, C K satisfies (3.8). We will show
that (3.9) is valid.

Let us assume the converse. Then n > 2 and there exists j € {1,...,n — 1} such that
lzj — ol > €. (3.13)
Define
zi=x;, 1=0,n, z=1vy, i=1,...n—1, (3.14)

hi=vyy,i=0,n, hy =x;, 1=1,...,n—1.

It follows from (3.2), (3.13), (3.8), (3.14) and (3.1) that

[y

n—

n—1 -1
e + Z (T4, xz+1 S Z -'L'za mz+1 S (Zia Zi+1) + d (315)
=0 =0

i

I
=)

=0+ U’y(mm yv) + U’y(yva zn) + (7'1, - 2):”(1))'
By (3.8), (3.1) and the definition of ¢ (see (3.12))

0(@i,y0) = p(©)], vy, z:) — p(v)| <6476, i=0,n, (3.16)

(Yo, T1) — v(T0, 1) < 64780,  [v(Tn_1,Tn) — V(Tn_1,Yp)| < 6475.
(3.16), (3.8), (3.15), (3.10), (3.14) and (3.2) imply that

7e+z (hiy hiy1) < ’Y€+Z (25, Ti41) + 32716

=0
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S 32_1(50 + 5 + (n - 2)/1'(?)) + U7($0, yv) + U'y(yva 3711)
< 32710 + 0+ p(v)n 4+ 32718 + 2796 < p(v)n + 1614,
+36 = o (v, 0,7, Yy, Yo) + 16789 + 36.

Together with (3.14) this implies that ye < 48,. This is contradictory to (3.11). The
obtained contradiction proves the lemma. O

Lemma 3.4. Let € € (0,1). Then there exist 6 € (0,¢€), a neighborhood 3 of v, in A
and an integer N > 1 such that for each u € U, each integer n > 2N and each sequence

{2}y C K satisfying

i
L

(s, Ti1) < o(u,0,n, o, Tn) + 0 (3.17)

Il
)

i
there exist 7, € {0,...,N}, o € {—N +n,n} such that
sz_va SE: t:Tla"'TQa (318)
and moreover if ||xo — yy|| < then 71 =0, and if ||z, — yo|| < 6 then 70 = n.

Proof. By Lemma 3.3 there exists § € (0,47 %¢) such that for each integer n > 1 and
each sequence {z;}", C K which satisfies

n—1
l|z; — yl| <46, i =0,n, Zv7(xi,xi+1) < o(vy,0,n, g, z,) + 46 (3.19)
i=0
the following relation holds
l|lz: —wl| <€, i=0,...n. (3.20)

By Lemma 3.2 there exist an integer N > 1 and a neighborhood U, of v, in 2 such that
for each u € 4, and each sequence {z;}Y, C K satisfying

=

-1
u(zi, i) < o(u, 0, N, 2o, zn5) + 3 (3.21)

Il
<)

there is j € {0,... N — 1} for which
|25 = woll, g —wll < 6. (3.22)
Define

U={ue:pluv,) < (16N) 5§} (3.23)

Assume that u € Y, an integer n > 2N and a sequence {z;}" , C K satisfies (3.17). By
(3.17) and the definition of ;, N (see (3.21), (3.22)) there exist integers 71, 7o such that:

m €{0,...N}, me{n—N,...n}, |z, —w| <9 i=1,2; (3.24)
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if ||zo — yo|| < 0 then 7 = 05 if ||z, — yo|| < & then 7, = n.

We will show that (3.18) is valid. Let us assume the converse. Then there is an integer
s € (71, 7) for which

l|lzs — yol|| > €. (3.25)

By (3.17), (3.24) and the definition of ,, N (see (3.21), (3.22)) there exist integers ¢, to
such that

sup{71,s — N} <t1 <s, s<ty<inf{m,s+ N}, ||z, —v|| <6, i=1,2. (3.26)
(3.23), (3.26) and (3.17) imply that

to—1
Z Uy (T4, Tig1) < 0(vy, b1, to, 24y, Tp,) + 20. (3.27)

1=t
It follows from (3.26), (3.27) and the definition of ¢ (see (3.19), (3.20)) that
||$t—yt||§6, t:tl,...tg.

This is contradictory to (3.25). The obtained contradiction proves that (3.18) is valid.
This completes the proof of the lemma. O
Clearly the set {v, : v € o, v € (0,1)} is everywhere dense in .

Let v € §o, v € (0,1) and let j > 1 be an integer. There exist an integer N(v,~v,j) > 1,
an open neighborhood Uy(v,7, j) of v, in A and a number §(v,7, j) € (0,277) such that
Lemma 3.4 holds with v,v,e =277, § = 6(v,7,5), U= U(v,v,7), N = N(v,7,9g).

There are an open neighborhood (v, 7, j) of v, in 2 and an integer N;(v,~,7) > 1 such
that U(v,~,7) C Us(v,7,7) and Lemma 3.2 holds with v, y, 4 = U(v,~, j), n = N1 (v, 7, j),
€e=4776(v,,7)-

Define
T =[NgZy U{h(v,7,7) :v € Fo,v € (0,1),5 =¢q, ¢+ 1,... }] N Fo.

Clearly § is a countable intersection of open everywhere dense subsets of 2.

It is easy to see that Theorem 1.2 follows from Proposition 2.3 and the definition of §.

Proof of Theorem 1.3. Let w € §, ¢ > 0. We may assume that ¢ < 1. Choose an
integer ¢ > 1 such that

64277 < €. (3.28)
There exist v € §o, v € (0,1) and an integer j > ¢ such that
w € U(v,7,7)- (3.29)

By (3.29), Lemma 3.2 which holds with & = (v, v, 5), n = Ni(v,7,5), € = 4795(v,, 5),
v, 7, and relation o(w, 0, N1(v,7,7), Yw, Yuw) = N1(v,7, 7)p(w)

Y — Yol | < 4776(v, 7, 5). (3.30)
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Set

U=Uv,7,5), N=N(@77), 6=475(,v,5). (3.31)

Assume that u € 4, an integer n > 2N and a sequence {z;}" , C K satisfies

[y

n—

u(z, 1) < o(u,0,n, g, z,) + 0. (3.32)

Il
)

i

It follows from (3.32), (3.31), the definition of 4(v,, j), N(v,v,7), 6(v,7,7) and Lem-
ma 3.4 that there exist 71 € {0,...N}, 5 € {n — N,...n} such that

||mi_yv||§2_j, t:Tl,...TQ.

Moreover if ||zg — || < d(v,7,j) then 7 =0, and if ||z, — y,|| < I(v,7, j) then 7, = n.
Together with (3.30), (3.28), (3.31) this implies that:

2 =yl <287 <€, i=T...T;

if [|zo — yuwl| < 6 then [|zg—y|| < 6(v,7,7) and 71 = 05 if ||z — yu|| < 6 then |z, —y,|| <
d(v,7,7) and 75 = n. This completes the proof of the theorem. O
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