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We introduce a new notion of subdifferential, which we call Q-subdifferential, for functions defined on sub-
sets of normed spaces. The Q-subdifferential is a subset of the Greenbeg-Pierskalla quasi-subdifferential
and is therefore useful in quasiconvex analysis.
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1. Introduction

Since the pioneering work of Greenberg and Pierskalla [8], who introduced the notion
of quasi-subdifferential, there have been several attemps to define an appropiate notion
of subdifferential in quasiconvex analysis. Crouzeix [5] introduced the tangential, which
shares with the quasi-subdifferential the drawback of being a too large set; indeed, both
are cones and therefore they give too little information on the function. Smaller sets are
the lower subdifferential of Plastria [18] and its variants, the a-lower subdifferentials [15],
but they are still unbounded. Trying to reproduce the pattern of convex analysis, where
the support function of the subdifferential coincides with the directional derivative, the
weak lower subdifferential was introduced in [14] in such a way that it partially fulfills this
condition. But this set is even bigger than the lower subdifferential of Plastria. Thus, up
to now, the problem of defining an appropriate subdifferential for quasiconvex functions
remains open. By “appropriate” we mean that it should satisfy at least two properties:
its nonemptiness on the domain of a function to imply quasiconvexity and, on the other
hand, to be a small set.

The aim of this paper is to provide a new notion of subdifferential, suitable for quasiconvex
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functions. To this aim, we define what we call the (Q-subdifferntial, whose nonemptiness on
a dense subset of the domin of a lower semicontinuous function implies its quasiconvexity.
So our sufficient condition for the quasiconvexity of f is different from those given in
1, 3,4, 7, 9,10, 11, 12, 16, 17|, where the generalized convexity of f is assured by the
generalized monotonicity of its directional derivatives or subdifferentials.

The @-subdifferential has also the advantage, in comparison with other subdifferentials of
quasiconvex analysis, of being a rather small set, as it is always contained in the Fréchet
subdifferential.

The organization of this paper is as follows. In the second section we give some proper-
ties of the @)-subdifferential, including its relations with the Greenberg-Pierskalla quasi-
subdifferential and the Fréchet subdifferential. In the third one we provide the relationship
between the quasiconvexity of f and its (J-subdifferential.

2. Q-subdifferential: definition and properties

Let X be a normed space with topological dual X*. Denote by (.,.) the canonical bilinear
form between X* and X. Let f: X — R = RU {400} be a given function and zy € X
be such that |f(zy)| < +00. We begin with a new notion of subdifferential.

Definition 2.1. The Q-subdifferential of f at zy, denoted 99 f(z¢), is the set of all
x* € X* such that

f(ﬂ?) > f(xO) + gO((.’l?*,JT - $0>) Vz € X’ (2'1)

where ¢ : R — R is a function depending on z* and having the following properties:

¢ is non-decreasing : t; > to = @(t1) > @(ts), (2.2)
©(0) =0, (2.3)

t) —
#'(0) := lim ®) : °O _ . (2.4)

Definition 2.2. The Greenberg-Pierskalla subdifferential of f at zo, denoted %% f(z),
is defined by

0P flzg) ={z* € X*: (", 2 —x¢) > 0= f(z) > f(zo)}
(in [8], O¢F f(z) is called the quasi-subdifferential of f at ).

A relationship between Def. 2.1 and Def. 2.2 is given in the next proposition, which
shows that the problem of finding a ()-subdifferential in normed spaces reduces to that in
the real line.

Proposition 2.3. The following statements are equivalent:

(i) 2" € 09f(x),
(i) x* € 0P f(xo) and 1 € 0%h(ty),
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where
to = (27, Zo) (2.5)
and
h(t) = inf {f(z) : (z*,z) > t}. (2.6)

Proof. (i) = (ii). By taking t; = (z*,x — o) and t; = 0 we derive from (2.2) and (2.3)
that

(", —20) > 0= ({(z*,2 —z0)) > ¢ (0) =0

= f(x) > f(zo) (see (2.1)).
Therefore, 2* € 0% f(x,); in other words,
f(zo) = h(to). (2.7)

Since, by assumption, |f(zo)| < 400, we get |h(ty)| < +oo. Now let ¢ € R and set
Ay ={z e X : (z*,z) > t}. If A; # () then, for z € A;, by the non-decreasing property of
© we have

¢ ((z%, 2 — 20)) = p(t — o),
which, by (2.1), implies
h(t) = h(to) + ¢(t — to) = h(to) + ¢ (1(t — to))- (2.8)

If A, =0 (i.e., if z* = 0 and ¢ > 0) then (2.8) also holds because in this case h(t) = +oo.
This proves that 1 € 39h(ty), since t € R is arbitrarily chosen.

(ii) = (i). Assume that (2.8) holds for all ¢ € R, where ¢ : R — R is some suitable
function with properties (2.2)—(2.4). Since z* € 9°F f(xy), (2.7) is valid. Obviously, for
any x € X, by taking ¢t = (z*, z) we get x € A;. Thus, combining (2.6) and (2.8) yields

f(z) = ({27, 2)) = f(z0) + ¢((z", z — m0)).
U
Definition 2.4. The Fréchet subdifferential of f at x(, denoted 0" f(x,), is defined by

OF f(xo) = {z* € X*: f(z) > f(x0) + (z*, 2 — 20) + o(x — 70) Vz € X}, (2.9)

where o(.) : X — R is some function such that

lim —— = 0. (2.10)

We now list some properties of Q)-subdifferentials, whose easy proofs are omitted:
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(1) 0f(wo) C 09 f(wo) C 0" f(xo),

where 0f(xy) denotes subdifferential in the sense of convex analysis:
Of (xo) ={z" € X" : f(z) > f(zo) + (=", 2 —zp) V2 € X}.
If f is convex then
0f (x0) = 0% f (x0) = 0" f ().

If 99 f(zy) # 0 then f is l.s.c. at zo.

A point 2y € X is a global minimizer of f if and only if 0 € 9% f(z).

If z* € 09 f (o) and if zp is a local maximizer of f then z* = 0.

If f(z¢) > inf{f(x) : * € X} and = is a local maximizer of f then 99 f(zq) = 0.
The operator 09 f : X = X* is quasimonotone, i.e.,

N N N /N /N
— N e S N

x; € 09 (z;) (i=1,2) = max {{z}, 1, — ), (2}, 25 — 21)} > 0.

The following result gives a chain rule for composition with non-decreasing functions:

Proposition 2.5. Let f : X — R and assume that g : R — R is non-decreasing. If
|f(z0)| < 400 and g is differentiable at f(xo) with ¢'(f(x¢)) > 0 then

9'(f(20))09 f (z0) € 0%(g 0 f)(o); (2.11)

if, moreover, f is convex then equality holds.

Proof. Let 2* € 3% f(z). Then, by Definition 2.1, one has (2.1) for a function ¢ : R — R
satisfying (2.2)-(2.4). By the non-decreasing property of g, (2.1) implies

9(f(2)) > g(f(zo) + ¢ ((z", & — zo)) - (2.12)

For t € R let us define

P(t) = g(f(xo) + — ) = 9(f (o). (2.13)

9'(f(x0))

Obviously, 1z has properties (2.2)-(2.4). Setting ¢ = ¢'(f(20))e({z*, 7 — z¢)) in (2.12),
we get

9(f (o) + o({z", & — 20))) = 9(f (z0)) + (g (f (o)) p((z", = — 20)))-
Combining this with (2.12) yields

9(f(x)) = g(f (w0)) + (g (f (o)) (2", = — x0))-

Hence to show that

g'(f(m0))a* € 0%(g o f)(xo)

it suffices to observe that the function

teR— w(g'(f(ﬂﬁo)))(ﬂ(g,i
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satisfies (2.2)—(2.4). This proves the inclusion in the statement.

It remains to prove that the opposite inclusion holds when f is convex. Let z* € 99(g o
f)(zo). By Property (1) above, z* is a Fréchet subgradient of g o f at xz¢, that is,

(go f)(z) = (g0 f)(xo) + (27,7 — m0) + oz — 2p) V& € X,

for a suitable function o : X — R satisfying (2.10). In particular, for d € X and A > 0
we have

9(f (o + Ad)) — g(f(z0)) = A(z", d) + o(Ad).

Dividing by A and setting A — +0, we obtain

9'(f(z0)) [ (z0;d) = (2, d),

where f'(zo.d) denotes the directional derivative of f at zo in direction d. Since d was
arbitrarily chosen, we get

1 *
FG )y " € o)

as desired. n

Remark 2.6. In view of Property (1), under the assumptions of Proposition 2.5, for a
convex function f one has

0%(g 0 f)(wo) = ¢'(f(0))0f (z0)-

Corollary 2.7. Proposition 2.5 remains true when the hypothesis ¢'(f(x¢)) > 0 is re-
placed by the assumption that xy is a global minimizer of go f.

Proof. We only need to consider the case when ¢'(f(zo)) = 0. Then, by properties (1)
and (3) listed above we have

9'(f(20))0f (o) = {0} € 0%(g o f)(w0) € 0" (g0 f)(20)-

Let us prove that these inclusions are nonstrict. If z* € 87 (g o f)(x¢) then, using the
same argument as in the second part of the proof of Proposition 2.5, we get 0 > (z*, d)
for all d € X, i.e., z* = 0. Thus, 0" (g o f)(x¢) = {0}. O

To conclude this section, we give two results relating ()-subdifferentials with tangent
cones and normal cones. We recall the following well known definitions of the normal
cone N (A, xy) and the Bouligand tangent cone T'(A, zo) of a set A C X at 2y € X:

N(A,jzg) ={z" € X" : (", 2 —x9) <0 Vz € A},

T(A,z9) = {d € X : there are sequences t, \, 0 and d,, — d
such that zo + t,d, € A Vn}.
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Proposition 2.8. Let A C X and o € A, and denote by 54 : X — R the indicator
function of A, defined by

ba(2) = {0 if € A,

+00  otherwise.

Then
8964(z0) = N(A, zo).

Proof. The inclusion D follows from the first inclusion in Property (1) above, since
N(A, x¢) = 064(wo). Conversely, if (2.1) holds for some ¢ : R — R satisfying (2.2)-(2.4)
then 0 > o((z*,z — xo)) for all z € A. Since (2.2)—(2.4) imply that ¢(t) > 0 for ¢ > 0, it
follows that (z*, 2 — xy) < 0 for all x € A. Hence z* € N(A, x). O

The next result relates the Q-subdifferential of f : X — R at 79 € f~!(R) to the normal
cone to epi f = {(z,\) € X x R: f(z) < A}, the epigraph of f, at (z¢, f(x)) and to the
polar to the Bouligand tangent cone of epi f at the same point (recall that the polar K°
to a cone K is the normal cone of K at 0).

Proposition 2.9. Let f: X — R and 2o € f~'(R). Then
{z* € X*/(a*,~1) € N(epi f, (zo, f(20)))} € 09f(x0)
C {a" e X7/(a",—1) € (T(epi f, (w0, f(20)))°} -
Proof. The first inclusion follows from the first inclusion in Property (1), since N(epi f,

(mo, f(x0))) = Of(x). To prove the second onme, let z* € 99 f(xy) and (u,v) € T(epi f,
(2o, f(20)))- There are sequences t, \, 0 and (un,v,) — (u,v) such that

f(xo) + tavn > f(xo + thuy) vn.

Hence

f(o + taun) = f(20)  p(tn (27, Un))

Uy, >
n —_ tn -_ tn bl

with ¢ : R — R being a function satisfying (2.2)—(2.4). We distinguish two cases,
according to whether there exist infinitely many terms u, such that (z*, u,) # 0 or not.
In the first case, for such terms we have

)

whence, as v, — v, we get v > (z*,u). In the second case we have (z*, u,) = 0 for

— (z*,u),

sufficiently large n, and hence, by v, > %?) =0, we get v > 0 = (z*,u). Thus in both
cases we have

((u*,—=1), (u,v)) = (", u) —v < 0.
This shows that
(z*,=1) € (T(epi f, (w0, f(20)))".
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3. Quasiconvexity and Q-subdifferentials

We first recall the well-known notions of quasiconvexity and semistrict quasiconvexity of
a function f: X — R (see [2]).

Definition 3.1. A function f : X — R is called quasiconvex if, for all z; € X (i = 1,2)
and A € (0,1),

flz2) < f(@1) = flzn) < fan), (3.1)

where ) = (1 — M)z + Azy. If the implication (3.1) is replaced by f(z2) < f(z1) =

fzy) < fx1) (vesp. f(za) < f(x1) = f(zy) < f(x1)) for all z; € X (i =1,2) (resp. for
all z; € X (1 =1,2), 1 # x2) and A € (0,1), then f is called semistrictly quasiconvex
(resp. strictly quasiconvex).

We also recall the definition of the upper Dini derivative of f at x(, denoted f;(xo, d):

Theorem 3.2.

(i)  If0 # x* € 0 f(z0) and f : X — R is semistrictly quasiconvezr and u.s.c. on the
set of all x such that f(z) < f(xz), then z* € 3T f(xy).

(i) Ifx* € 0¥ f(xg), f : R® — R is strictly quasiconver, u.s.c. on the set of all x such
that f(z) < f(zo), continuous on a neighbourhood of xo, and there is d € R™ such
that f'(zo;d) = (z*,d) > 0 and [ (.;d) is continuous at xo, then z* € 99 f(z,).

Proof. (i) Let z be such that f(z) < f(x). For A > 0 sufficiently small we have

f(zo) > fzo + Mz — x0)) ( by semistrict quasiconvexity)

> f(xo) + Az*, 2 — o) + o(Allz — o) (by (2.9)).

Therefore
. oAz — z0]})
_ < — =0.
=) < Jim, ~ 2T <o
We have thus proved that
f(z) < f(mo) = (z%, 2 — x20) <O. (3.2)

We show that, in fact,
(x*,x — z0) <O.

Indeed, if (z*,2 — xy) = 0, then by the upper semicontinuity of f and by the property
that z* # 0, we can find a point Z near x such that f(z) < f(zo) and (z*,Z — o) > 0.
This contradicts (3.2). So

f(z) < fxg) = (z",2 — z0) < 0.
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This implication shows that z* € 99" f(xg), as desired.
(ii) By the first part of the theorem and Proposition 2.3, it is enough to show that
1 € 09h(ty). To this purpose, set

o(t) = h(t+to) — h(to) (i.e. @(t —to) = h(t) — h(to)),

where ¢y and h are given by (2.5) and (2.6), respectively. Obviously, ¢ satisfies (2.2) and
(2.3). Condition (2.4) follows from a result of Crouzeix [6, Prop 5.1, p.161] which says
that h is differentiable at o and

[ (20;d)
W(t) =————+=1
(to) (z*, d) ’
where d is the point appearing in the formulation of the theorem. O

An example of a nonsmooth function which satisfies the hypotheses of Theorem 3.2 part
(ii) is provided by any nonsmooth strictly convex function f : R® — R (in particular,
one can take f nondifferentiable on a dense subset of R"). Indeed, if f is differentiable
at xg € R"™ and this point is not the global minimum of f. then there is some d € R"
such that f'(zg;d) > 0; moreover, one has f'(x;d) = (z*, d) for * = f'(xy), the gradient
of f at xg, and f'(.,d) is continuous at zo (this easily follows from the fact that the
subdifferential operator is compact-valued, upper semicontinuous, and reduces to the
gradient at differentiability points). Using Proposition 2.8, one can modify this example
so as to exhibit a nonconvex strictly quasiconvex function satisfying all the assumptions
of Theorem 3.2 part (ii).

Corollary 3.3. Assume that f : R® — R is differentiable on a neighbourhood of o,
strictly quasiconvez, and u.s.c. on the set of all z such that f(x) < f(xo). If the Fréchet
derivative f'(-) is continuous at xo and f'(x) # 0, then 99 f(xo) = {f'(w0)}-

Proof. This follows from the second statement of Theorem 3.2 and property (1) of Q-
subdifferentials. O

Remark 3.4. Corollary 3.3 fails to hold if f is not quasiconvex. As an example, take
f(t) =t—1t* (t € R). Then f'(ty) # 0 for all ty # 3, and 99 f(t) = 0 for all t. Observe also
that the assumption f’(zo) # 0 cannot be removed. Indeed, for the strictly quasiconvex
function f(t) =3 (t € R), we have 99 f(0) = 0.

From now on we asume that C is a subset of X and f: C' — R is a given function. We
shall set f(z) = +oo for all x ¢ C. In this context, instead of saying that f : X — R is
quasiconvex, we say that f: C' — R is quasiconvex on C.

Proposition 3.5. Let C be a conver set of X and f : C — R.

(i)  Assume that f is l.s.c. on C and, for all A > inf{f(z) : © € C}, the level set
S\(f) ={x € C: f(x) < A} is solid (i.e. int Sy\(f) #0). If °F f(x) # O for all x
from a subset C" which is dense in C, then f is quasiconvex on C.

(i)  Assume that f is l.s.c. on C and 0T f(x) # 0 for all x from a subset C' which is
strongly (or radially) dense in C in the sense that the intersection of C' and any
interval (z1,x9) C C is dense in (z1,x2). Then f is quasiconvex on C.
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Proof. (i) Let A > inf{f(z) : x € C} and z; € C\S)(f). Since Sy(f) is closed in C (by
the lower semicontinuity of f), there is an open neighbourhood V' of z; in C such that
V N Sy(f) = 0. Using the fact that int Sy(f) # 0, we can easily check that

VNintQ # 0,

where @ = co(S\(f)u{z1}) denotes the convex hull of Sy(f) U {z1}. Indeed, let Z €
int S(f). Then, for some € > 0,

|z — Z|| < €=z € S\(f).

Since V' is open in C, for some y > 0 we have y = (1 — v)z; + v& € V. We claim that
y € int Q). Indeed, let = be such that ||z — y|| < ve. Obviously, z = (1 — )z, +v(Z + %z),

where z = z — y. Since %z

‘ <€ T+ %z € S\(f), and hence z € Q). This proves that

y € int @ and thus y € V Nint Q. Therefore, V Nint Q # (). Since V Nint @ is open in C
and C' is dense in C, we also have

C'NVNintQ # 0.

Take a point Z from this latter intersection. As Z € C' we have by assumption 9 f(z) #
0. Pick z* € 9 f(z). Then the following implication holds:

[zxeC, (z5z—-Z)>0]= f(z)> f(z).

Since z € V, we get T ¢ S)(f), i.e. f(Z) > A. Therefore, the following implication is also
satisfied:

[xeC, (zz—x)>0]= f(z) >\
In other words, Sy(f) C H, where

H={zeC:{(z",z—Z) <0}.

Assume now that z; € H. Then S\(f) U {x1} C H, whence, by the convexity of H,
(@ C H. But this implies that Z € H, which is false. Therefore z; ¢ H. Thus, for any
x1 € C\S)\(f) we can find a convex set H such that S\(f) C H and z; ¢ H. This means
that S)(f) is an intersection of convex sets, and therefore it is convex. This proves the
quasiconvexity of f.

(ii) Assume to the contrary that, for some A € R, the level set S)(f) is not convex.
Then there are three points z; (i = 1,2,3), such that z; € S\(f) (i = 1,2) and z3 €
(1, 22)\Sx(f). Since Sy(f) is closed in C' and C’ is strongly dense in C, we can find a
point T € (z1,x9) \SA(f) such that 99T f(z) # 0. Pick z* € 0T f(z). Then, as in the
proof of the first statement, we conclude that x € Sy(f) = (z*,z — ) > 0. In particular,
since x € S\(f) for i = 1,2, we have (z*,2; —Z) < 0 (i = 1,2). This contradicts that
T € (x1,29). O

Remark 3.6. Proposition 3.5 fails to hold if the lower semicontinuity property of f is
replaced by upper semicontinuity. Also, the lower semicontinuity on the whole set C
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cannot be weakened to lower semicontinuity on a proper dense (or strongly dense) subset
in C. As a counterexample we can take

Ft) = {1 if t =0,

0 otherwise.

Obviously, f is not quasiconvex, although it is u.s.c. (and @-subdifferentiable and Green-
berg-Pierskalla subdifferentiable everywhere on the real line except for ¢t = 0).

Remark 3.7. It is known since a long time (see, e.g. [13]) that f is quasiconvex on C' if
0% f(z) # 0 at every point z € C.

Using the fact that the Q-subdifferential is a subset of the Greenberg-Pierskalla subdif-
ferential, we obtain

Theorem 3.8. The conditions stated in Proposition 3.5 and Remark 3.7 remain being
sufficient for quasiconvezity when 0%F f is replaced by OF f everywhere in their statements.

Acknowledgements. We thank Jean Pierre Crouzeix and Boris Mordukhovich for helpful
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