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We study the asymptotic behavior of the energy functional associated to the parametric equation d;u. (t, x)
+ac(t,z) g (us(t,x)) = f(t,2), us(0,2) = up(x). Techniques of Young measures are improved in order
to characterize the T'-limit of the sequence of energy functionals in terms of the oscillations of a.. We
assume some sort of independence between time and the oscillating character of a.. The example of a
periodic mixture of two materials with coefficients analytic in time is presented.

1. Introduction

Consider the problem

ou, . . "
E(t’ z)+a.(t,z) g (us(t,z)) = f (t,z) in (0, T) X ©, (L1)

4(0, %) = ug(z) on €,

where a.(t,z) are highly oscillating coefficients and ¢ is a decreasing sequence of real
numbers converging to 0. In the early eighties L. Tartar studied the above problem
for a linear function ¢g and time independent coefficients a. (see [18]). A memory effect
appeared in the limit equation, by means of a kernel expressed in terms of Young measures
associated to the sequence (a.).. In the case when the coefficients are time dependent
the limit of problem (1.1) was studied by L. Mascarenhas in [13] for linear g. L. Tartar
studied the same problem in [19] and obtained a simpler form of the kernel expressed in
terms of weak limits of some integral expressions of a.. He also considered the case of a
quadratic function g (see [19]). Y. Amirat, K. Hamdache and A. Ziani studied this kind
of problems in the context of transport equations (see [3]).

A different approach, suggested by De Giorgi in [10], is based on I'-convergence of the
associated energy functionals. The case with time independent coefficients, for linear and
non-linear g, was treated by L. Mascarenhas in [14] and [15], and also by L. Ambrosio, P.
D’Ancona and S. Mortola in [2].

The goal of the present paper is to characterize, in the time dependent case, the I'-limit
of the sequence of energy functionals in terms of the oscillations of the coefficients a.. In
order to do this, we assume a sort of independence between the time variable ¢ and the
oscillations of the coefficients a. (¢, x), in the sense of (3.2) below.

As a tool we improve the techniques of Young measures already introduced by L. Mas-
carenhas in [14] and [15] for the time independent case. Those techniques consist in a
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generalization, to the non periodic case, of the two scale convergence method introduced
by G. Nguetseng [16], W. E [12] and G. Allaire [1]. Recently M. Valadier revealed the
link between two scale convergence and Young measures by introducing the two scale
Young measures (see [21] and [22]). In order to identify the two scale limit of a bounded
sequence one has to consider the barycenter of the associated two-scale Young measure.
In the problem under consideration we deal with general non periodic time dependent
coefficients a. and we use classical Young measures as presented in [20]. This allows
us to describe the I'-limit of the energy functionals corresponding to (1.1), as € goes to
zero, only in terms of the Young measures associated to some sequence characterizing the
oscillations (the sequence (c.). introduced in (3.2) below).

For the sake of clarity, we first present in detail the linear case and after that the non-
linear case, just pointing out some steps. In Section 2 we give some results on measure
theory, integration and classical Young measures. The setting of the problem is presented
in Section 3. In Section 4, we give a formula for the I'-limit of the energy functionals,
in the linear case. We prove some auxiliary results which will be used also for treating
the non-linear case. In Section 5, the formula of the ['-limit of the energy functionals is
generalized for a non-linear case, proving only those steps which are essentially different
from the linear case. In Section 6 we consider the example when the coefficients a, are
analytic in t. We particularize further by taking a periodic mixture of two materials with
coefficients analytic in ¢, and obtain a less abstract formula for the I'-limit.

2. Preliminaries

We present here some properties and results about Young measures contained in [20].
The notations are the ones employed in [20].

Let O be a domain in RY and S be a Souslin space (that is the image of a Polish space
by a continuous function). We shall assume that S is a o-compact locally compact space
since in the sequel we shall deal with S as a metrizable compact space or as R?. Let my
be the Lebesgue measure on RY. Let F be the o-field of Lebesgue measurable subsets of
O. Let B(S) be the Borel o-field of S and let F ® B (S) be the o-field product of F and
B(S).

We call Young measure any positive measure o on O x S whose projection on O is my.
Let Y (O; S) be the set of all Young measures.

We will not distinguish g from its disintegration (4;)zco which is a measurable family of
probabilities on S such that for any ¢ : O x § — R, u-integrable,

[ wdu= /O / ¥ (2, ) dpso(€)dm(z)  (sce [6]).

A positive bounded measure A on B (S) is a Radon measure if VA € B(S), Ve > 0, 3K a
compact subset K C A such that A (4 \ K) <e.

Any positive bounded measure on a Souslin space is Radon (see [11]) and, consequently,
since O x S is a Souslin space, any measure in Y (O; S) is Radon.

A sequence of Young measures (u,), is said to be tight if Ve > 03K, a compact subset
of S such that sup,, 1, (O x (S\ K,)) <e.
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A Carathéodory integrand on O x S is a real F ® B (S) measurable function such that
for all z € O, ¢ (z,-) is continuous and bounded on S and x — || (z, )| is Lebesgue
integrable (the above norm is the norm of uniform convergence).

The set Y (O; S) is endowed with the weakest topology which makes the maps yu —
J oxs ¥ dp continuous, for all Carathéodory integrands +. This topology will be called the
narrow topology.

Let u : O — S be a measurable function. The Young measure associated to u is the
image u of my by the map x — (z,u (z)).
A sequence (u,), of measurable functions u, : O — S is tight if the sequence of their

associated Young measures is tight.

Note that if S = R? and (u,,), is bounded in L'(O; R%) then (u,), is tight. If S is compact
any sequence (Uyp)n, u, : O — S is tight.

Theorem 2.1 (Theorem of compactness). (See Theorem 11 from [20])
If (pn)n is a tight sequence of Young measures then there exists a subsequence (fin, ) which
narrow converges in Y (O; S).

A sequence (uy), in L'(O, my, R?) is uniformly integrable if: (a) (u,), is bounded in
LY (O, my, RY), and (b) A € F with my (4) — 0 implies that sup, [, [lun(z)|| dmy(z)
— 0.

Theorem 2.2 (Fundamental theorem for Young measures). (See Theorems 16
and 17 from [20])

Let (uy,)n be a sequence of measurable functions, u, : O — S, such that the sequence of
their Young measures narrow converges to u. Then:

(a)  Ify : OxS — Ris a FQB (S) measurable function such that for allx € O, ¢ (z,-)
is lower semicontinuous and such that the sequence (v (x,u,(x)))n is uniformly
integrable in O, then

Y dp < lim inf/ Y (2, up(x)) d.
o

OxS

(b) Ifyp : OxS — RisaF®B(S) measurable function such that for all x € O,
Y (z,-) is continuous and such that (¢ (x, u,(x)), is uniformly integrable in O, then

Wy = lim/ Y (z, up(x)) dz.
OxS " Jo

3. Setting of the problem

Let © be a open bounded subset in RY .
Consider the problem

Ou, )
5 (t,x) + ac(t, ) ue(t,z) = f (t,z) in (0, T) x Q, (3.1)

us(0,2) =0 on Q,
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where f € L*®((0, T) x Q); for all ¢ > 0, a. € L>((0, T') x ) and

0<a<al(tz)<pB, forsomeaq,>D0.

We assumed that ug = 0. For a general uy € L*(Q) the analysis of the problem is similar
by taking an appropriate space of admissible functions.

Let IT be a metrizable, compact space. Consider (. ). a sequence of measurable functions,
a. @  — II, which is tight. Then, by the Theorem of compactness, there exists
a subsequence still denoted by (a.). such that the sequence of their associated Young
measures narrow converges. We denote by p € Y (€; II) its limit.

Consider the coefficients a, of the form:
a.(t,z) :=c(t,z,a.(z)) (3.2)
where ¢ € L*([0, T x ©; C(II)) and, for some constants «, 3 > 0,
O<a<c(t,z,\)<B V(tz,A) €0, T]xQxIL (3.3)

Here we denote by C(II) the space of real continuous functions on II.

Remark 3.1. The coefficients a. above defined belong to L*®([0, T'] x ). Attending to
(3.3), it suffices to prove that a. are measurable. As L°°([0, T'] x 2; C(IT)) C L*([0, T] x
Q; C(II)), by Lemma A3 in [20], page 178, ¢ is actually a Carathéodory integrand, hence
it is F ® B (II)-measurable. Here we denote by F the set of Lebesgue measurable sets in
[0, T] x ©Q and by B (II) the set of Borel sets in II. Since the map (¢,z) — (¢, z, . (x)) is
(F, F ®@ B (II))-measurable, the composition (t,z) — c(t, z, a.(z)) is F-measurable.

Let
H={ve H(0,T; L*(Q)), v (0,2) =0 my a.e. in Q}, (3.4)

where my is the Lebesgue measure on RV . For each ¢ > 0, let J,. be the energy functional

1 T T
Je(v) ::5/0/9\1)'+asv|2dxdt—//Q(v'+a5v)fdxdt.
0

The energy functionals J. are strictly convex, lower semicontinuous and coercive; thus the
problem

min J,(v) (3.5)

veH

has a unique solution. The following proposition proved in [15] still holds in the time
dependent case under consideration. Its proof is based on a result by H. Brezis and I.
Ekeland (see [4] and [5]).

Proposition 3.2. For each €, u. is solution of the problem (3.1) if and only if u. is
solution of the minimization problem (3.5).
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In the following we introduce some notions about I'-convergence which shall be used in
the sequel. For details and for the missing proofs we refer G. Dal Maso [8].

Let X be a reflexive, separable Banach space. Let (F.). be a sequence of functions
F.: X — R. A sequence of functions F, : X — R is equi-coercive if there exists a
coercive function ¥ : X — R, in the sense that ¥(z) — oo as ||z|| — oo, such that
F. > U for every ¢.

If the sequence (F.). is equi-coercive then the sequential I'-limits defined below coincide
with the I'-limits defined in Chapter 4 of [8] (see Proposition 8.16 in [8]).

Definition 3.3. We say that the function F' : X — R is the sequential lower I'-limit

of the sequence (F;). with respect to the weak topology of X, if it satisfies conditions (a)
and (b) below.

We say that the function F' : X — R is the sequential I'-limit of the sequence (F:).
with respect to the weak topology of X, if it satisfies conditions (a) and (c) below.

(a) for all v € X and for each sequence (v.). converging weakly to v, one has liminf

e—0
F.(ve) > F(v);
(b) for all v € X there exists a sequence (v.). converging weakly to v such that lim inf

e—0
Fe(ve) = F (v);
(c) for all v € X there exists a sequence (v.). converging weakly to v such that lim

F.(ve) = F (v). o

The sequence (J;). is equi-coercive. Within this context the lower I'-limit of the energy
functionals J, may be calculated with the formula below

J (v) = inf{liminf J.(v.) | v. — v in H}. (3.6)
e—0
We shall make use of the space:
H={weH' O, T; L;(Q2x 1)) |w(0,2,A) =0 pa. e inQxI}.

4. Main result in the linear case

As we shall investigate the asymptotic behaviour of problem (3.1) via I'-convergence of
the energy functionals, we assume for the sake of simplicity that f = 0. The energy

functional becomes:
1 (T
J.(v) = —// |v" + a.v|*dx dt.
2 JoJa

Theorem 4.1. The sequence of functionals (J;). T-converges; its T-limit is given by:
1, T , 2
J(v) = 3 inf{ (W' + c(t,z, ) w) du,(Ndzdt : w e H, | wdp, =v}.  (4.1)
oJaoJu I

Here, (11;)zcq is the disintegration of p with respect to the Lebesgue measure my. Recall
that the sequence of Young measures associated to . is assumed to narrow converge.
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The above result generalizes the results in [14].

In order to perform the proof, we need the following auxiliary results. Their proofs will
be given after the proof of Theorem 4.1.

Lemma 4.2. For each bounded sequence (v.). in H there exists w € H and a subsequence
g of € such that, for all ® € L*((0, T) x €; Cy(I1)),

//vstx (t,z, az(z d:vdt—)// (t,z,\) D (t,z,\) du(z, \) dt, (4.2)
QxH

// (t,2)D(t, 2, 0z dxdt—)//mn (2 N)® (Lo, N du(, N dt. (4.3)

In particular
vy — / w(t, , ) dpg(\) weakly in H'(0, T; L*()). (4.4)
11
Proposition 4.3. The space C*([0, T]; C(Q x 1I)) is dense in H*((0, T); L2(Q x II)).

Proof of Theorem 4.1. We shall prove that J is the lower I'-limit of (J;).. As the
same proof holds for any subsequence of (J;)., we obtain that J is the lower I'-limit of
any subsequence of (.J;).. This implies that .J is the I'-limit of (.J.)., as follows: Since (.J;).
is equi-coercive, so is every subsequence of it. Let (J. ) be a subsequence of (J;).. Then
there exists a further subsequence (J.)en of (Jo)e which I'-converges (see Proposition
8.12 in [8]). So the subsequence (J.#).» ['-converges to J. Then every subsequence of
(Je)e contains a further subsequence which I'-converges to J therefore (see Proposition
8.17 in [8]) it turns out that (J.). I'-converges to J.

We prove that J is the lower I'-limit of the sequence (J.). by verifying properties (a) and
(b) of Definition 3.3.

In order to prove property (a), we begin by showing that for every v € H and for every

sequence v, — v in H there exists a subsequence & of € (the one obtained in Lemma 4.2)

such that lim i%f:]g(’l}g) > J (v). Indeed, consider v € H and a sequence (v.). C H such
&—

that v. — v weakly in H'(0, T; L*()). Let (vs) be the subsequence of (v.). extracted
in Lemma 4.2 and let w € H associated to it.

Since H'(0, T'; L*(Q; C(I))) is dense in H'(0, T; L2 (2 x II)) (from Proposition 4.3) it
turns out that there exists a sequence v, € H'(0, T; L*(Q2; C(IT))) such that

nh_l')rloo ||w — ’Un”Hl 0,T; L%L) = 0. (45)

Define v2(t,z) := vy (t, z, az(z)). One may write vs(t, ) = v2(t, z) + (v=(t,z) — v2(¢, z))
and then by using ||(v: — (v2)') + az(v: — v2)||* > 0, one gets the following inequality for
allm e N:

1 T
J=(ve) 25// | (02 + a0 |? dz dt +
070 (4.6)

[ (4 aad) (0 - @2 + aulos - o)) o
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For arbitrarily fixed n € N the term fofg ) + azv® | dr dt passes to the limit as ¢
tends to 0: the function | v/, (¢, z, \)+c (¢, z, /\)vn(t T, ) \2 belongs to L((0, T)xQ; C(II))
and hence statement (b) of the fundamental Theorem for Young measures may be em-
ployed. The functions (v;l + c(t,x, )\)vn)v;l and (U; + c(t,x, )\)vn)c(t, x, A\)v, belong to
LY((0, T) x Q; C(IT)). Therefore one can apply the statement (b) of the fundamen-
tal Theorem for Young measures with these functions in order to pass to the hmlt the
terms fofn "(t,z) + az(t, z)v2(t, x)) (v2)(t, z)dx dt and respectively fofn "(t,z) +
az(t, z)v2(t, x))ag(t x)v2(t,x)dx dt Applylng Lemma 4.2 with the sequence (v ) and the
function v+t x, /\)vn € L*((0, T) x Q; C(IT)) and respectively with the sequence (v¢)z
and the function (v], + c(t z, \)vn)e (t,z, \) € L*((0, T) x Q; C(IT )) one can pass to the

limit the terms fo[Q "+ a:v?)vidz dt and respectively fJQ "+ azv)azvsdz dt .
Hence, the second 1ntegral in the right hand side of (4.6) passes to the hmlt as follows:

/OT/Q((”?Y + as)[(vh — (@2)) + ac(ve — v)] da dt —
/// vy, + ¢ (t, 2, N)vp)[(w' —vy,) + ¢ (t, 2, ) (w — vy,)] dpdt.

For fixed n, passing to the limit as £ — 0 in inequality (4.6) we obtain:

1
limianE—(Ug—)ZE/// vl +c(t,z, N, |* dpdt +

e—0

///” + e (t, 2, ) [(w' —vl) + ¢ (t, 2, \) (w — vy,)]dp dt.

On the other hand, since v, is close to w in the norm of H*(0, T; L,(Q2 x IT)) (by (4.5)),
one obtains:

liminf J:(vs) > /// lw' +c(t,z, w [* dudt — O (lw = vnllmio,m; 22))-

e—0

When n — oo we obtain that

hmlan ///\w +e(t,z, Nw |? dudt > J (v),

where the last inequality holds since J (v) is defined by (4.1) and w satisfies [ w (¢, z, A)

du(X) = v(t,z) mpy ae in (0,7) x Q. We just showed that (v.). has a subse-

quence (vg)s such that lim i%lfjg(vg) > J(v). The same arguments hold for any sub-
E—>

sequence of (v.).. Now, we prove that this implies lim i%lfJE(UE) > J(v). Suppose
E—r

lim ilngE(vg) < J (v); this means that there exists a subsequence (v.)e of (v.). such that
E—>r

limOJE, (ver) < J (v). On the other hand, there exists a further subsequence of it (ve)e
g—

such that liminfJy(vs) > J(v). Hence J(v) < lim Jo(vy) = liminfJz(ve) < J (v)

&—0 & —0 & —0
which is contradictory. Consequently, lim i{)lfJg(vg) > J(v). As the sequence (v.). was
E—>r

arbitrary, property (a) is proved.
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In order to complete the proof one has to show that property (b) in the Definition 3.3 of
the lower I'-limit holds. Consider v € H. We shall prove that there exists a subsequence
¢’ of ¢ and a sequence (ve ) converging weakly to v in H such that J (v) = E}iL)nOJEI (Ver)-
Then one can construct a sequence (v.). by: v. := v if e = & and v, := v if ¢ # £
By this construction, v. — v weakly in H; employing property (a) proved above, we
get ligrrl_i>%1fJg(v5) > J(v). Hence J (v) = E,hglo‘js'(vf') > liEIn_i)I.ngs(vg) > J (v), therefore

hsm_%lfz]s(vg) = J (v).

It remains now to construct a subsequence & of ¢ and a sequence (v.)s converging
weakly to v such that J(v) = SI]iE:OJE:(vEI). Having this end in view, let (w,), C
H be a minimizing sequence with respect to the infimum in the right hand side of
(4.1). One has [;w, (t,z,)) dug(X) = v(t,z) almost everywhere in (0, T') x €. Since
H'((0, T); L*(Q; C(I1))) is dense in H*((0, T); L2(S2 x II)) (by Proposition 4.3), for
each element w, of the minimizing sequence, it implies that, there exists a sequence
(vF), € HY(0, T; L?(Q; C(I1))) such that

(4.7)

] =

lwn = vhll g, 7:22) <

Define v™*(t, z) := v¥(t, 2, a.(x)). For n € N fixed, applying statement (b) of the funda-
mental Theorem for Young measures and property (4.7), one can substract a subsequence
e (n, k) of € such that

. ! 2
kh—I)noo// \vs(nk +a5nk)v€(nk)\ dx dt =

T
///(w;+c(t,x,)\)wn)2dudt
oJaJu

Ezi’k) = lim v*(t, 2, (k) () = /Hwnd,ux = v, weakly in H.

and

For k = k (n), employing (4.8), one gets:

‘// n) T Ge(n vg(n dmdt—///w +c(t,z, Nwy,) dudt|<—

where ¢ (n) := e (n,k (n)). Since (w,), is a minimizing sequence, passing to the limit in
the above inequality as n — oo, one obtains:

:nh_r>noo// —i—ag(n Us(n)) dx dt,

and
Ve () — v in the weak topology of H,

that is, € (n) is a subsequence of € for which lim J; ) (ve ) = J (v). O
n—oo
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Proof of Lemma 4.2. Let 0. be the Young measure on (0, T') x Q x R? associated to
(ve,v!). The sequence (v.,v!) is bounded in L2((0, T') x Q; R?), hence it is tight. Then

3 3

by applying the Theorem of compactness with O = (0, T') x Q and S = R?, there exists a
subsequence (still denoted by o.) which narrow converges to some o € Y((0, T) x Q; R?).

The sequence (). is tight and so is (ve, v.).. Since any pair of tight sequences is still tight,

the sequence (ve,v., o). is tight. Let (f.). be the Young measure on (0, T') X Q x R? x II
associated to (v, v., o). By applying the Theorem of compactness with O = (0, T') x Q
and S = R? x II there exists a subsequence still denoted by 6, which narrow converges
to some 6 € Y ((0, T) x ©; R? x II). Note that the projection of # on (0, T) x Q x I is
dt ® p.

Applying the fundamental Theorem for Young measures, statement (b), with O = (0, T') x
Q,S=R xII, ¢ (t,z,£,(,\) = £D (t,x,)\), one obtains

/ T/ ve(t, 2)® (4,7, 0 (2) dar dt —s €0 (2, \) d (1,2, €,C, A).
0J0Q

(0, T)xQxR2XII

In the following we denote by (6(4,))t,2,0)e(0, T)xox1 the disintegration of 6 with respect
to dt ® p. Then:

T
/ D (t, 2, ) db = / / / O (t,x,\) [ €dOan (€, C) dulz, \) di
(0, T)x Q2 xR2 xIT 0J/Q JII R2

and denoting w (t,z,\) := fR2 §dOtz (€, C),

/OT/é)e(t, )P (t, x, o (x)) de dt —>/OT/QXI}1J (t,x, ) ®(t, 2, \) du(z, X)dt. (4.9)

Applying Jensen’s inequality to the probability measures 6 z,»),

T
2
fullro gy = | [ 1] €dean (€0 dnta ) di <
0J/0QJII JR?
T
< / / / €2 iy ) (€, C)da(, )
0J/Q JII JR2

and applying the fundamental Theorem for Young measures, statement (a), with O =
(0, T) x Q, S =R x I, 9 (t, 2, A) = [,

T
/ £2df < lim inf / v (t, 7)|* dz dt < o,
(0, T) x X R2 XTI e—=0 JoJa

wherefrom w € L*(0, T; L2(Q x TI)).

By using the same argument as above for the sequence of derivatives (v). we obtain

/T/vé(t, z)®(t, z, a.(z))dz dt —>/OT/QXI}D (t,z,\) ®(t, z, \)du(x, \) dt. (4.10)

0J0Q
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where @ (t,2,A) := [ CdOue ) (€,¢) and @ € L?(0,T; L2(2 x IT)).

In order to complete the proof we verify that w is the time derivative of w and that w € H.
Let ® € D ((0, T); C(€2 x II)). Integrating by parts,

// (t,z) @ (t,z, 0 (x)) de dt = //vgt:v "(t,z, a.(z)) dz dt.

Passing to the limit in the above equality as ¢ — 0, like in (4.9) and (4.10), one obtains

// (t,z, \) (t, 2, \) du (x, \) d // (t,z, \) D' (t, z, \) d (z, N) dt.
QxI1 QxI1

Consider ®(t,z, A) = 1 () pa(z, A), with 1 € D(0, T) and ¢, € C( x IT). Then

[ 0000+ w V6 ) )t N i 2) = 0,

for every ¢, € C(Q x II), wherefrom

/0 (@ (t, z, N1 (t) +w (t, 2, )} (t))dt = 0

p almost everywhere in QxTI. Hence @ = w' and then w € H'(0, T; L7 (QxIT)). Consider

now & € C>([0, T[; C(x1I)) such that ®(t, 2, A) = ¢1(t) pa(z, A), with 1 € C>([0, TY),
©1(t) = 0 in a neighborhood of T', and ¢, € C'(£2 x IT). By arguments similar to the above
ones, one proves that w (0, z,\) = 0 p almost everywhere in ) x II. O

Proof of Proposition 4.3. Consider v € H'((0, T'); L7(€ x II)) arbitrarily fixed. The
space C([0, T] x Qx II) is dense in L2((0, T'); L% (2 x IT)) (see Theorem 3.14 in [17]).Then,
there exists a sequence (¢,), C C([0, T] x Q x II) such that

on — " in L?((0, T); L7,(Q x II)).

Since H'((0, T); L7,(Q x )) is imbedded in C ([0, T]; L2 (2 x TI)) (see Théoréme 1 pg.
570 in [9]), v (0) :== v (0,-,-) € L2(Q x II). The space C(Q x II) is dense in L2 (2 x II), so
there exists a sequence (v,), € C(Q x II) such that

vp — 0(0) in L (Q x II).

Define v, € C*([0, T]; C(Q2 x IT)) by

¢
Un(t, z, A) ::/ On(s,z,A)ds + vu(x, N).
0

Writing
t
v(t,z,\) = / v'(s, 2, \)ds + v (0,2, ),
0
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one obtains
v — wn”m ((0,T); L2 (Qx11)) —

/ / / / (5,2, 0) = pu(s,,A)ds + 0 (0,2, A) — va(w, V)] “dps (&, A)dt <
/ / / / (5,2, A) = @uls, 2, N))ds] [0 (0,2, X) — v, A)J* Ydpa (2, \)dt <

<2 T2||“ Spn||L2 ((0,7); L2 (2x11)) + Tlv(0) - Un”%ﬁ(nxn))-

Consequently v, — v strongly in H((0, T); Li(Q x IT)) and the proof is concluded. [

5. Main result in a non-linear case

Consider the non-linear problem (1.1) where, for all ¢ > 0, the coefficients a. belong to
L>*((0,T) x 2), 0 < a < a.(t,x) < p for some a, f > 0, the function f belongs to

L2((0, T) x ), up belongs to L*(Q) and g (y) = —¢, with 1 such that:

d
dy
1 : R — R is strictly convex,

¥ € C'(R), (5.1)
Oly]> — v < (y) < ply|* + 9, for some 6, p >0, 7, § > 0.

Denote by 1* the polar function associated to .

We assume with no loss of generality that vy = 0. Adapting the results in [4] and [5], one
proves that problem (1.1), which can be written as follows

(f —ul) € 0GL(u.) a. e. in [0, T],u.(0) = ug = 0,

(here GL(v) = [, a:(t, z)¥(v)dz and OG! is its subdifferential) is equivalent to the mini-
mization problem mng (v), where the energy functionals have the form below
ve

:/OT/Q[““” (v)+ag¢*<f;€”'> —fv] dwdt+%/9|v(T)|2dx.

The lower I'-limit can be calculated with formula (3.6), for reasons similar to those in the
linear case.

The following result characterizes the I'-limit when the time dependent coefficients a. (¢, x)
have the special form postulated in (3.2) and the function c satisfies (3.3). We shall use
the same notations as in the previous section.

Theorem 5.1. The sequence of functionals (J;). T'-converges; its T'-limit is given by:

— ' * f_wl>_ :| 1 2
_1nf{/0/9/n[c¢(w)+m/f ( . fw duwdmdt+2||w(T)||LZ.
wE’H,/wd,uw:v}
I

(5.2)
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Remark 5.2. The space L2(Q x I) is a separable Hilbert space (since y is Radon and
Q2 x IT is separable). Then a result of variational methods (see Théoreéme 1 pg. 570 in [9])
guarantees that the imbedding below holds

HY0, T; L2(Q2 x IT)) < C([0, T]; L2 (2 x I1)).

Thus, the last term in (5.2) makes sense.

The proof is similar to the one in the linear case which was presented in the previous
section. Therefore we present only some steps of the proof. Nevertheless, in the case
under consideration, we need Lemma 5.3 (which is a consequence of Lemma 4.2) in order
to be able to pass to the limit the terms generated by ||w (T)”%i in the estimates of the

energy functionals. In the linear case this kind of term does not appear explicitly (it can
be prevented from entering the computations).

Lemma 5.3. In the context of Lemma 4.2, for the same subsequence € of €, for any
function ® € L*(Q; C(I)), the following convergence holds

/st(Tx)CI)( dx—>// (T,2,3) ® (2, ) dia(\) dz.

Proof. Denote 7:(t) = [,v:(t,2)® (z,a:(x))dz and v(t) = [, [; v(t,z,A) @ (z,N)
dpg(A) dz. From Lemma 4.2 one obtains y.(t) — ~/(¢ ) and 75( ) — 7(75) in the weak
topology of L?(0, T'). Passing to the limit as £ — 0 in the right hand member of the
equality vz(t) — v:(0) = Ot’yé_(s)ds, one obtains the pointwise convergence v:(t) — (1),
Vt € [0, T']. Taking in particular t = T the conclusion is proved. O

Sketched proof of Theorem 5.1. Consider v € H and a sequence (v.). C H, v. — v
weakly in H'(0, T'; L*(Q)). Let (v:)s be the subsequence of (v.). extracted in Lemma 4.2
and let w € H associated to it. Let (vy)n, v, € H'(0, T; L*(Q; C(I1))) be a sequence
such that

nh_le |lw = vallg107, L2) = 0.

Define v2(t, z) := v,(t, z, az(z)) and write v:(t, z) = v2(t, z) + (ve(t, z) — v2(¢,x)). Then
Vn € N the following holds:

(o0 2000 + [ v e+ @y (C ) -y
— f (v — o)) dodt + / V2(T) (ve(T) — v2(T)) do

Using hypothesis (5.1) and passing to the limit as &€ — 0, we obtain:

liminf J:(vs) > lim J:(vZ) +
£—0 §—0

T ! f_
—i—/o/ﬂ/n[cw (vn) (W = vn) + ()'( L)+ f (w — vn)] dpgdz dt + (5.3)

n / / 0a(T) (w(T) ~ v (T)) dpy da .
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All terms in the above inequality appear from straightforward applications of the funda-
mental Theorem for Young measures and Lemma 4.2, except the last one, which results
from the above Lemma 5.3. From the hypothesis (5.1) it turns out that the second and
the third term in the righthand side of (5.3) are of the order of |[w — vn||#1(0,1;22)- So, as
n — oo it implies that lis_m‘i)l(}fJg(vg) > J (v). By using I'-convergence results (Proposi-

tions 8.12 and 8.14 from [8]) and reasoning as in the linear case, we obtain that .J satisfies
property (a) in Definition 3.3. Property (b) in Definition 3.3, as well as the conclusion
that the lower I'-limit is in fact I'-limit, are proved analogously to the linear case. O

6. Example

We show how the case when the coefficients a, are analytic in ¢ can be treated within the
context of Theorem 4.1, respectively Theorem 5.1 (for the non-linear problem).

Let Q© C R be an open interval. Consider II := [a 46, f — 6] x [[°2,[— My, M,] endowed
with the product topology, where 0 < 0 < ﬁTa and M, > 0 are constants such that

limsup/M, <1/T and > M, T™ < §. Define ¢ : [0, T] x Q@ x II — R by

n—aoo
c(t,z,\) =¢(t, A Z)\ " (6.1)

the above conditions on § and M,, insure the bounds of é&: 0 < a < ¢é(¢,A) < 3 for all
(t,\) € [0, T] x II.

Then, by (3.2) consider the coefficients a. (¢, z), analytic in ¢, in the following sense:

x) = Z Qe () 17, (6.2)

where (a.). is any sequence of my-measurable functions, o, : © — II (here o, means
(Otne)nen)- As IT is compact (by Tychonov’s Theorem), any such sequence («.). is tight.

Therefore, Theorems 4.1 and 5.1 give the I'-limit of the respective sequence of energy
functionals (J;). for analytic coefficients a. in the sense of (6.2).

We shall compute a simpler form of the I'-limit for a periodic (in space) mixture of two
materials, the coefficient of each material being analytic in ¢. This is a generalization of
Example 3.5 in [14]. Consider the linear problem (3.1) with analytic coefficients a. in the

sense of (6.2), with a,.(z) = pnx( )—f—nn(l X( )), where  is the characteristic function

of the interval [0, 7] C [0, 1], extended by perlodlcity to the whole R. Here p, and 7,
belong to [—M,,, M,] (consequently, p = (pn)nen and n = (1, )nen are elements of IT) and ~y
is some real constant in |0, 1[. Then the Young measure y associated to the sequence (o).
will be pp = m; ® (v6,+ (1 —7)d,), where §, and 6, are the Dirac measures concentrated in
p and respectively in 7. The space L?(Q x IT) can be identified with (L*(€2))?, in the sense
that there exists a bijection which associates, to each element h € L2 (2 x II) the pair
(h(-,p), h(-m)) € (L?(©2))?. Consequently, the space H'(0, T'; L2 (2 x II)) is isomorphic
o (H'(0, T; L?(Q)))%. So, H can be identified to {(wi, wy) € (H' (0, T; L*(2)))? |
w1(0,2) =0, wa(0,2) =0 my-a. e. x € Q}, through the bijection w +— (w1, ws), where
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wi(t,z) = w(t,z,p) and we(t,z) := w(t,xz,n). Then, in formula (4.1) the condition
Jaw (2, A) d pe(X) = v(t, x) means yw,(t,z) + (1 — v)wa(t,z) = v(t,z); therefore the
infimum is to be taken over all w; € H'(0, T; L?(2)) such that w,(0,z) = 0, mi-a. e.
x € (), obtaining:

J@)=, it /O /Q [yl () + & (8 p) wn (t, 2)]° +

w1 €HL(0, T; L2
’UI1(0,'):0

[V + () v(t ) =7 (w6 0) + 6t walt, )] .

The above integral is convex in w;, hence its minimum points, over the set {w; €

HY 0, T; L*(Q)) | wi(0,2) =0 my-a. e. x € Q}, are characterized by the Euler equa-
tions, which write:

wi(T) 4+ A(T)wy(T) = D(T) =0 in Q, (6.3)
—wy(t,z) + (B(t,z) — A'(t,z)) wi(t,z) + E(t,z) =01in (0, T) x Q.

Here, A(t,z) := (1 —7)¢é(t,p) +7v¢é(t,n), B(t,x) = (1 —7)E(t, p) +ve%(t,n), D(t,z) :=
V'(t,z) +e(t,n)v(t,x) and E(t,x) :==v"(t,z) + [ (t,n) — E(t,n)]v(t, x).

Let w? be solution of problem (6.3); then, the I'-limit writes

J () = / / [l (8, 2) + (¢, p) (2, )] +
1

: [v'(t,z) + ¢ (t,m) v(t,z) — 7 (v Ot z) +é(t,n) wl(t, x } }dz dt.
-7
The above formula is quite simple; the space II has been eliminated and the infimum has
been replaced by the problem (6.3).
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