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The analysis of the relationships between the functional F(°)(Q,): u € WH(Q) > inf {liminf, [,
F(Vup)dz : {up} € WH*°(Q), up — v in weak*-Wh>°(Q)}, and the sequential weak*-W>°(Q)-relaxed
functional > (2, ) of the integral u € WH>(Q) — [, f(Vu)dz is carried out, where f: R™ — [0, +oc],
) is a bounded open subset of R™, and u € W1°°(Q).

In [8] it has been proved the existence of f(°): R™ — [0, +00] such that F(*)(Q,u) = [, f(>)(Vu)dz for
every convex bounded open set 2, u € W1H°°(Q) such that F()(Q,u) < 400, and this result is exploited
there to deduce that F*™) (Q,u) = [, f**(Vu)dz for every convex bounded open set Q, u € Wh>(Q),
where f** is the bipolar of f.

In the present paper it is first proved that f(>) is the convex envelope of the lower semicontinuous
envelope of f, and an example is produced showing that f(°) may be different from f**. Conditions for
their identity are then furnished.

Examples and conditions concerning the coincidence between F(°°)(Q,u) and Jof (20)(Vu)dx for every
convex bounded open set 2, u € W>°() are also proposed.

By such results conditions for the identity between F(>°) and F(m) are deduced.

1. Introduction

Let f: (z,8,2) € R* x RxR* — f(z,s,2) € [0,+00] be a function satisfying suitable
growth and measurability conditions, and let €2 be a regular bounded open subset of R",
then a problem in the Calculus of Variations which has attracted much attention deals
with the study of the sequential weak* — W1 (Q)-relaxed functional F) (€, -) of the
integral F(Q,): u € Wh*(Q) — [, f(z,u(z), Vu(z))dz, i.e. of the greatest sequentially
weak* — WH(Q)-lower semicontinuous functional less than or equal to F(,:) (cf. for
example [1, 3, 4, 5, 8, 10, 12, 13]).

In many cases the analysis of the properties of T (€, -) is carried out by first studying
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the (simpler) functional F(>)(Q, ) defined by
FOO(Q,): u € WH()

inf { lin}linf/ f(z,up, Vup)dz : {up} € WH*(Q),up — u in weak* — W1’°°(Q)},
Q

and then by proving some relationships between ) (©2,-) and F)(1Q,-) (cf. the above
mentioned papers).

Tt is clear that F') (€2, -) is sequentially weakly* W1 (£2)-lower semicontinuous whilst in
general, since the weak* — W1 (Q) topology does not satisfy the first countability axiom,
F()(€,) is not.

The above outlined procedure applies also to some cases in which pointwise constraints

on the gradient are taken into account, more precisely when for a.e. x € R* and every
s € R, f(z,s,-) = +oo outside a fixed ball of R” not depending on z and s (cf. [13]).

In a more general setting, it has been carried out in [8] where it has been proved, among
other things, that if f: R® — [0,+oc] verifies suitable local boundedness and upper
semicontinuity assumptions, if the set {z € R* : f(z) < +oo} is convex, and if f(>) is
defined by
)z € R v inf (f + Ig,,)™ (),
meN

then f(>) is convex, Borel and

F(“)(Q,u)z/f(c’o)(Vu)dx
Q

for every convex bounded open set Q,u € WH*(Q) such that F(*)(Q, u) < +oo.

(1.1)

In addition, if {z € R" : f(2) < +00}° # 0, (1.1) holds for every bounded open set €,
u € WE(R™) for which F()(Q, u) is finite.

loc

In the above formulas, for every m € N, Q,, =] —m, m[", Ig,, is the indicator function of
Qm defined by I, (2) = 0if 2 € Qum, Ig,.(2) = +oo if z € R* \ Qp,, and (f + Ig,,)*™ is
the bipolar of f + I, defined as the greatest convex lower semicontinuous function less
than or equal to f + I, .

By such result it is also deduced that

F 7 (Q,u) /Qf (Vu)dx

for every convex bounded open set Q,u € WH®(Q).

(1.2)

In the present paper, starting from the results of [8], we want to analyze more closely the

functional F(*) and its relationships with ) when the integrand f does not depend

on z and s, is allowed to take also the value +oc, and the set in which it is finite is not
necessarily bounded.
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Given f: R*™ — [0, +oc], denoted by sc™ f the lower semicontinuous envelope of f, and by
co f the convex hull of f (cf. Section 2), we establish, first of all, a finite representation
formula for f(>) by means of these standard operations (cf. Proposition 3.3), i.e

f(OO)(Z) = co(sc” f)(z) for every z € R" (1.3)

and observe that formula (1.3) becomes of particular interest since it always true that
(cf. (2.3))
f™(z) =sc (co f)(z) forevery z € R".

Then we propose an example that points out an interesting phenomenon: contrary to what
occurs when integrands taking only real values, or taking the value +oo outside a ball,
are considered (cf. [13]), also in the case of upper semicontinuous integrands depending
only on the z variable f(*) and f** may be different (cf. Examples 3.4 and 3.5) and

consequently F(*) may not agree with ) (cf. Example 4.4).

Some sufficient, conditions implying identity between f(>) and f** are then proposed (cf.
Section 4), for example we prove that f(>) = f** if the convex envelope of {z € R" :

f(2) < 400} is an affine set, or if it is a strictly convex set, or if lim,_, % = 400, or if

{z € R" : f(z) < +o0} is bounded. We also propose a geometric condition characterizing
the convex subsets C' of R" such that for every f having C as the convex envelope of the
finiteness set one has f(*) = f** (cf. Theorem 3.13).

Obviously the identity f(°°) = f** trivially implies, by (1.1) and (1.2), that F(*)(Q, u)

= F(Oo)(Q, u) for every convex bounded open set 2, u € W*(Q) such that F)(Q,u) <
~+00.

In order to analyze the full identity between F(*) and F(Oo), we give an example of
a function f verifying the above quoted assumptions for which (1.1) holds, but such
that for some convex bounded open set 2, u € C®(R"), F(*)(Q, u) is not finite, being
fQ Vu dz finite (cf. Example 5.1). Then we are able to propose some sufficient
condltlons 1mply1ng the validity of (1.1) on the whole W*°(Q) (cf. Section 5). For
example we prove that if f verifies the above mentioned assumptions yielding (1.1) and
is bounded on the bounded subsets of {z € R* : f(z) < +oo}, then (1.1) holds for
every convex bounded open set Q, u € WH®(Q). We also prove the same result if
{z € R": f(2) < +o0} is bounded, or if it is an affine set, or if n = 1.

Obviously the identities f(*) = f** and, for a given convex bounded open set Q, F(*)((, -)
= [, f©)(V-)dz on the whole W1>(Q) imply, by (1.2), that F©)(Q,u) = F (9, u) for

every u € W1 >(€2). However in the last section, for sake of clearness, we explicitly state
the results about this last identity.

Some of the results of the present paper have been announced in [6].

2. Notations and preliminary results of Convex Analysis

For every subset C of R" we denote by co(C) the convex hull of C, i.e. the intersection
of all the convex subsets of R* containing C, and by aff(C) the affine hull of C, i.e. the
intersection of all the affine subsets of R” containing C'. If C' is also convex, we denote by
ri(C) the relative interior of C, i.e. the set of the interior points of C, in the topology of
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aff(C'), once it is regarded as a subspace of aff(C), and by rb(C’) the relative boundary of
C,i.e. the set C'\ri(C). When aff(C') = R" we write as usual ri(C) = C° and rb(C) = 9C.

We recall that (cf. for example Theorem 6.2 and Theorem 6.1 in [15]), if C is a convex
subset of R, then C' and 1i(C) are convex subsets of R" having the same affine hull and
that, for every zo € C, z € 1i(C), and t € [0, 1], it results that tzq + (1 — t)z € ri(C).

For every subset C' of R" we denote by I the indicator function of C' defined by I¢(z) = 0
if z€ Cand I¢(2) =+o00if z € R* \ C.

For every r > 0 and zy € R", by B,(zy) we denote the open ball of R* centred in z, and
with radius r, and by @,(zy) the open cube of R” with faces parallel to the coordinate
planes centred in zy and with sidelength 7. We also set @, = @Q,(0).

For every function f: R* — |— oo, 400] we denote by dom f the effective domain of f,
ie. domf ={z€R": f(2) < 400}, by sc™ f the lower semicontinuous envelope of f, i.e.

sc” f:z € R" — liminf f(y),
y—z

by co f the convex hull of f, i.e.
cof:z€R" — sup{p(z) : ¢: R* =] — o0, +o0] convex, ¢ < f on R"},
and by f** the bipolar of f, i.e. (cf. for example [12], Proposition 4.1 at page 18)
[ 2 € R — sup{o(z) : ¢: R* — R affine, ¢ < f on R"}.

Let f: R* — |— 00, +0o0], then obviously sc™ f turns out to be lower semicontinuous, co f
convex, f** convex, lower semicontinuous and

™ (2) <cof(z) < f(z) forevery z € R". (2.1)
Moreover we also have (cf. for example [12], Definition 3.2 and Proposition 3.1 in Chap-
ter 1)
[ (z) =sup{¢(z) : : R* = |— 00, +0o0] convex, lower semicontinuous, ¢ < f on R"}
for every z € R”
(2.2)
and (cf. for example Corollary 12.1.1 in [15])
f™(z) =sc (cof)(z) forevery z € R". (2.3)

The following representation result follows by Carathéodory Theorem (cf. Corollary 17.1.5
in [15]).

Theorem 2.1. Let f: R* — |— oo, +0o0], then

n+1
co f(2) :inf{z/\jf(zj):OS/\j <1 for every j € {1,... ,n+ 1},
j=1
n+1 n+1

Z)\j = I,Z)\jzj = z} for every z € R".
j=1

=1
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By Theorem 2.1 it follows that for every f: R" — ]— oo, +00] it results
dom(co f) = co(dom f). (2.4)

The following theorem yields a representation result for f**.

Theorem 2.2. Let f: R" — |— 00,4+00] be lower semicontinuous, and assume that
there exists a Borel function 6: [0,4o00[ — [0, +00] with lim;_,, 0(t)/t = +00 such that
0(|z]) < f(z) for every z € R", then

n+1

*(z) = min{ Z)\jf(zj) :0< )\ <1 forevery j € {1,... ,n+1},
7j=1
n+1 n+1

Z/\j = 1,2)\]-2]- = z} for every z € R".
7j=1 7j=1

Proof. Similar to the one of Lemma 3.3 at page 280 of [12] in which 6: ¢ € [0, +00[ — ¢?
with p > 1. O

By Theorem 2.2 we deduce the following result.
Theorem 2.3. Let f: R* — [0, +0o0], and assume that lim, [&) 400, then

l2|

n+1
() :min{ Z)\jsc’f(zj) 10 <\ <1 forevery j € {1,... ,n+1},

=1
n+1 n+1

Z/\j = I,Z)\jzj = z} for every z € R".
j=1 j=1

Proof. Let us preliminarly observe that f** < sc™ f < f from which, being clearly
(f**)™ = f*, it follows that

™ (2) = (sc™ f)*(z) for every z € R". (2.5)

By the assumption on f it is easy to deduce the existence of a continuous function
6: (0,400 — [0, +00] with lim; ., 8(¢)/t = 400 such that §(|z]) < f(z) for every z €
R"™, from which we conclude that

0(|z|) <sc” f(z) for every z € R". (2.6)

At this point we observe that, by (2.6), the assumptions of Theorem 2.2 are fulfilled by
sc” f, therefore by (2.5) and Theorem 2.2 we obtain that

n+1
F(2) = (s~ f)*™(2) = min { Z)\j sc” f(z) :0 < \; <1forevery j€{1,...,n+1},
j=1

n+1 n+1

Z)\j = 1,2/\ij = z} for every z € R",
j=1 j=1

that is the thesis. O
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Proposition 2.4. Let f: R* — [0, 4+00], then

ri(dom f**) = ri(dom(co f)) = ri(co(dom f))

rb(dom f**) = rb(dom(co f)) = ri(co(dom f)) (2.7)

and
f™(z) =co f(z) for every z € R* \ rb(co(dom f)). (2.8)

Proof. Equalities in (2.7) follow by (2.3), Corollary 7.4.1 in [15], and (2.4), whilst (2.8)
by Theorem 7.4 in [15], and (2.4). O

In particular, given f: R® — [0, +oc], by Proposition 2.4 we deduce that
dom f** C co(dom f). (2.9)

Let C' be a convex subset of R*. A supporting half-space to C' is a closed half-space
containing C and having a point of C' in its boundary. A non-trivial supporting hyperplane
to C'is a hyperplane not containing C' which is the boundary of a supporting half-space
to C.

The following result is well known (cf. for example Theorem 11.6 in [15]).
Theorem 2.5. Let C' be a convex subset of R", and let z € C, then there exists a non-
trivial supporting hyperplane to C' containing z if and only if z ¢ ri(C).
3. Some new results of Convex Analysis: the function f(*
In [8], for every f: R® — [0, +oc], the function f(°) given by
fO): 2 e R inf (f +1q,)"(2) (3.1)

has been introduced.

In the present section, given f: R* — [0, +00], we want to carry out the study of f(*)
and, in particular, of its relationships with f**. We first compare f(°) with f** and co f,
then prove that, similarly to f** (cf. (2.3)), also f(> can be deduced by f by means of
convexification and relaxation operations, and observe that, in general, they are different.
Finally we propose some conditions in order to have identity.

Let us first recall the following elementary properties of f(°°) already established in [8]
(cf. Proposition 6.3 in [8]).

Proposition 3.1. Let f: R* — [0, +oc], then f(>) is convex, Borel and
f(2) < f)(2) <cof(z) for every z € R, (3.2)

ri(dom f**) = ri(dom f{*) = ri(dom(co f)),

3.3
rb(dom f**) = rb(dom £=) = rb(dom(co 1)) 3

f(2) = f)(2) = co f(2) for every z € R* \ rb(dom f(*)). (3.4)
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Remark 3.2. We observe explicitly that, given f: R* — [0, 4+00], the definition of f(*°)
does not depend on the choice of the sets involved, in fact it is easy to see that

in%(f +1g,)" = in%(f + Lyym(A—2))"" whenever A is a bounded open set, z, € A.
me me

Proposition 3.3. Let f: R* — [0,+00], then
) (2) =co(sc™ f)(z) for every z € R™.

Proof. It is clear that
FO=) < (f +1q,)™(2) < sc™(f + Ig,)(2) =sc™ f(2)

. (3.5)
for every z € R*,m € N with z € Q,,,
therefore, being f(*) convex, by (3.5) we deduce that
) (2) < co(sc™ f)(z) for every z € R". (3.6)

In order to prove the reverse inequality to (3.6), we fix z € R* and m € N, then by
Theorem 2.3 and Theorem 2.1 we get 2",... 2%, € R*, AT*,... , A", € [0,1], with

Z?;l AT =1, Z?jll AT'z{" = z, such that

n+1 n+1

(f +1g,) " (2) = D _AT'se™(f + Lg ) (") = Y Nf'sc™ f(2") = co(sc™ f)(2)
j=1 j=1 (3.7)
for every m € N,
therefore by (3.1) and (3.7) we conclude as m diverges that
F®)(2) > co(sc™ f)(z) for every z € R™. (3.8)
By (3.6) and (3.8) the thesis follows. O

Example 3.4. Let n = 2, and let f be defined by

29— z1€2 if 2o >0and 0 < 21 < z9e %2
fi(z1,2) € R?2— <0 if 29 > 0 and z0e %2 < 21
400 otherwise,

then dom f is convex, f is upper semicontinuous in R? and locally Lipschitz in dom f.
Moreover, by (2.3), it is clear that

0 if z1 >0and 29 >0

for every (21, z,) € R?
+o0o  otherwise y (21,22) ’

£ (a1, 22) = 5 (c0 )1, 22) = {

whilst, by Proposition 3.3, we it is easy to see that

29 ifzg>0and 2, =0
f(oo)(zl, z9) = co(sc™ f)(z1,22) =10 if 2o > 0and 2z >0 for every (21, 2) € R%.

+o0o otherwise

Note that in this case (> is convex but not lower semicontinuous.
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In the example below we observe that £(>) and f** can be different also when f is bounded
in dom f, and dom f is very regular.

Example 3.5. Let n = 2, and let f be defined by

+00 if 21 <0
fi(z,2) ER {1 —ze% if0<z <e
0 if 21 > e %2,

then dom f is convex, f is bounded and upper semicontinuous in R?, locally Lipschitz in
dom f. Moreover it is clear that

+oo ifz; <0

for every (2, z2) € R?,
0 ifzn>0 Y (71, 2)

[ (21, 22) :{

whilst f(°) is given by

+oo ifz; <0
O (zy,25) =4 1 if 2y =0 for every (z1,2) € R2.
0 if 21 >0

Also in this case f(*) is convex but not lower semicontinuous.

We now propose some conditions in order to have identity between f(>) and f**.
Remark 3.6. Let f: R® — [0,400], then by using the convexity of f(* and (2.2) we
deduce that the following conditions are equivalent
f)(2) = f**(z) for every z € R",
f©°) is lower semicontinuous.

Proposition 3.7. Let f: R* — [0,+0c0|, and assume that co(dom f) is an affine set,
then f(°) = f**

In particular f(*) = f** if co(dom f) = R*, or if dom f = R".
Proof. By (2.4), co f turns out to be convex and finite in co(dom f). Therefore, being by
our assumptions co(dom f) = ri(co(dom f)), it turns out to be continuous in co(dom f).

On the other side our assumptions imply also that co(dom f) is closed. This, together
with the continuity of co f in co(dom f), yields the lower semicontinuity of co f on the
whole R" and hence that co f(z) < f**(z) for every z € R".

By virtue of this and (2.1) the first part of the thesis follows.
The second part follows by the first one, being by (2.1) dom f C co(dom f). O

Proposition 3.8. Let f: R* — [0,4+00], and assume that lim, . f|(zz|) = 400, then
floo) = fox,
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Proof. By Theorem 2.3, Theorem 2.1 and Proposition 3.3 we obtain that

n+1
f*(2) = min{ Z)\jsc’ f(z;):0<Aj <1forevery je{l,...,n+1},
j=1
n+1 n+1
Z)\j =1, Z)\jzj = z} = co(sc™ f)(z) = f©)(2) for every z € R",
7j=1 7j=1
that is the thesis. d

Remark 3.9. Let f: R* — [0, +00], then by using Proposition 3.1 and (2.4) we deduce
that
f*(2) = f)(2) =co f(z) for every z € R* \ rb(co(dom f)),

therefore, to prove identity between f(*) and f**, we have to prove only their coincidence
in rb(co(dom f)).

In the following results, given f: R — [0, +-00], we prove that coincidence of f(>) with
f** depends, in some cases, only on some geometric properties of dom f. We characterize
the convex subsets of R* that are convex envelopes of effective domains of functions for
which such coincidence holds.

We start with some results of local nature.

Proposition 3.10. Let f: R* — [0,400], 29 € rb(co(dom f)), and assume that there
exists a non-trivial supporting hyperplane to co(dom f) having bounded intersection with
rb(co(dom f)) and containing zy, then

£ (z0) = f*(0)- (3.9)

Proof. Let H be the non-trivial supporting hyperplane to co(dom f) having bounded
intersection with rb(co(dom f)) and containing zy, 3 be the closed half-space containing
co(dom f) whose boundary is H and r > 0 be such that

H N rb(co(dom f)) C B,(z)- (3.10)

Let m € N be such that Byy(29) C Qm, a be an affine function with a(z) < (f + Ig,,)(2)
for every z € R*, n € R with n < min{a(zp), 0}, and, for every 7 > 0, let ., be an affine
function verifying

an(2) < an(2) < a(z) for every 1,19 €]0, +o0[ with 11 < 79,2 € X7,
lim «,(z) = —oo for every z € ¥°, (3.11)

T—+00

a,(2) = a(z) for every 7 > 0,z € H.

Moreover, for every 7 > 0, let us set P, = {z € R" : a,(2) = n}, and denote by X, the
closed half-space containing 2z, whose boundary is P;.

Let us prove that

there exists 79 > 0 such that ¥ N X, Nco(dom f) C By (20). (3.12)
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To this aim we argue by contradiction. We assume that for every h € N there exists
zp, € XN 3, Neo(dom f) with |z, — 29| > 27, then by the convexity of co(dom f) we get
that

ZhT R ¢ co(dom f) for every h € N. (3.13)

En=120+2r
" e —

It is clear that |&, — 29| = 2r, that by (3.11) lim, dist(&,, H) = 0, and that there exist
{&,.} € {&} and £ € R" such that limg &, = £ Then, once observed that co(dom f) N
H = rb(co(dom f))NH, by (3.13) it follows that £ € rb(co(dom f)) N H and | — z| = 2r,
contrary to (3.10).

Let 7o be given by (3.12), then, being f(z) = 400 for every z € R* \ ¥ and f(z) > 0> 7
for every z € X, it turns out that

a,(z) < f(z) forevery z € (R*\ X)U (R \ ). (3.14)

Moreover, since Ba,(20) € Qm, by (3.12) we get that f(z) = +o0 for every z € (XNX,)\
(Qm and hence, taking into account also (3.11), that

a,(2) < f(2) forevery z€ X UX,,. (3.15)

In conclusion, by (3.14) and (3.15), we have that a, (z) < f(z) for every z € R* from
which, together with (3.11), we infer that

a(20) = ar,(20) < ™ (20)- (3.16)

By (3.16), being a a generic affine function with o < f + I, on R, we conclude that
(f +1g,.)"(20) < f**(20) and, by (3.2) of Proposition 3.1, that

£ (20) < £ (20) < (f + Ign)™(20) < f(20),

that is (3.9). O

In order to invert Proposition 3.10 let us first prove the following result.

Lemma 3.11. Let C be a conver subset of R*, and H be a non-trivial supporting hyper-
plane to C, then H Nrb(C) is unbounded if and only if H N rb(C) contains an half-line.

Proof. It is clear that, if H Nrb(C) contains an half-line, then H Nrb(C') is unbounded.

Conversely let us assume that H N rb(C) is unbounded, let zo € H Nrb(C) and observe
that it is not restrictive to assume that zg = 0.

For every h € N there exists z, € H Nrb(C) with |z;] > h and set &, = z,/|z4|, then,
being 0 € H N C, by the convexity of H N C we deduce that &, € HNC for every h € N.
Let & € R" be such that |§| = 1 and, up to subsequences, &, — &, then, being H N C
closed, we get also that & € HNC.

Let us prove that the half-line {t{ : ¢ > 0} is contained in H N C, this will conclude the
proof since HNC = H Nrb(C).
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Let ¢ > 0, then it is clear that t& € H, so we only have to prove that t&, € C.

Let r > 0, and take h € N be such that |z,| >t and &, € By (&0), then, being 0 € C,
by the convexity of C' we conclude that t§, = ‘Lzh € C and that t&§, € B,/(t&). By

2|

virtue of this we infer that B, (&) Nri(C) # 0 for every r > 0, i.e. t& € C. O

Proposition 3.12. Let C be a convex subset of R*, H be a non-trivial supporting hy-
perplane to C, and assume that f)(z) = f**(2) for every f: R* — [0,+o0] with
co(dom f) = C and every z € H Nrb(C), then H Nrb(C) is bounded.

Proof. If n = 1 the thesis is certainly true since rb(C) is empty or bounded.

If n > 1 let us prove that if H Nrb(C) is unbounded, then
there exist f: R* — [0, +oc] with co(dom f) = C and zZ € H Nrb(C)

such that f(oo) (z) # *(2). (3.17)

To this aim let [ be the half-line with { C H Nrb(C) given by Lemma 3.11, and assume
for the moment that H = {2 e R" : 21 =0}, {z €eR" 1 z1 =2 = ... = 2, 1 = 0,2, >
—1} Cl and that C C {z € R" : 2; > 0}.

As in Example 3.4, let fy be given by
yo —y1e¥? ifyo > 0and 0 <yy < e ¥?

fO: (ylayQ) € R2 =490 if Y1 2> max{y2€_y27 0}
+00 if Y1 < 0,
and set
fir (21,0, 20) €ER" = fol21,20) + Lo(21, - - - 5 20),
then co(dom f) = dom f = C.
Let Z € ri(C) with Z, =0, and set S = {tZ+ (1 —t)z: z € | with 2, > 0,t € D, 1]}, then
it is clear that S C ri(C) and hence that

for every z € S there exist &1,& € S, 7 € [0, 1]

3.18
such that z = (1 — 7)& + 7& and f(&) = f(&) =0, (3.18)
therefore by the convexity of co f, (2.1) and (3.18) and we conclude that
co f(z) < (1—7)co f(&)+Tecof(&) < (1—7)f(&)+7f(&) =0 (3.19)
for every z € S .
and, by (2.3) and (3.19), that
£7(0,0,...,0,2,) =0 for every z, > 0. (3.20)
Let now m € N, and observe that the affine function ay,: (21, ... ,2,) € R* = 2, —e™?2
is such that a,, < fo + Ig,, < f +1g,, on R", and that this yields
Zn = ap(z) < 1 *(z
0= an(2) < (F +10,)" () 51

foreverymeNze{zeR : 21 =20=...=2, 1=0,0< 2, <m/2}.



152 L. Carbone, R. De Arcangelis / On a non-standard convez regularization
In conclusion by (3.20), (3.21) and (3.1) we obtain that

f7Z) < f)z) forevery z€ {2 €R 12y =290 = ... = 2,1 = 0,2, > 0}
provided that H = {2 € R : 2 =0}, {z € R* : 2y =20 = ... = 2,1 = 0,2, > =1} C [,
and that C C {z € R" : z; > 0}.

In order to prove (3.17) in the general case let A: R* — R" be a one to one affine mapping
such that A(H) ={( e R : (4 =0} AD)D{CeR : (G =6C=... =(1=0,( >
—1},and A(C) C {¢ € R* : (; > 0}, then by (3.17) in the just considered particular case
we deduce the existence of a function g: R* — [0, +00] with co(dom g) = A(C) such that

g () > ¢g**(C) for some ¢ € A(H)N A(C), (3.22)

and set f = g(A()).

By Theorem 2.1 it is not difficult to verify that co f(z) = cog(A(z)) for every z € R,
from which, together with (2.3), we conclude that

7 (2) = g"*(A(z)) for every z € R". (3.23)

)) + La@n)(A()), and

Analogously, for every m € N, we have that f + I, = g(A(:
(3.1) and Remark 3.2, we

therefore that (f 4 Ig,, )" = (9 +1a0,,))** (A(-)). Therefore by
infer that

F (=) = inf (f +1Iq,)"(2) = inf (g4 Lag,) " (A(2) = inf (9+ I,)" (A(2))

(3.24)
= g®)(A(z)) for every z € R".
By (3.24), (3.22) and (3.23) we obtain that
f(Z) > f**(z) forsomeze€ HNC,
from which (3.17) and the thesis follow. O

By the previous results we deduce the following characterization of global nature.

Theorem 3.13. Let C be a convex subset of R™, then the following conditions are equiv-
alent:

(i)  for every zo € tb(C) there exists a non-trivial supporting hyperplane H to C con-
taining zo such that H Nrb(C) is bounded,

(i)  f®) = f** for every f: R* — [0, 4+o00] with co(dom f) =

(iii) for every non-trivial supporting hyperplane H to C, H Nrb(C) is bounded.

Proof. Let us prove that (i) = (ii) = (iii) = (i).

It is clear that (i), together with Remark 3.9 and Proposition 3.10, implies (ii), and that,
by Proposition 3.12, (iii) follows by (ii).

Finally let zy € rb(C'), and let H be the non-trivial supporting hyperplane to C' containing
2o given by Theorem 2.5, then (iii) yields (i). O
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By Theorem 3.13 we deduce the following corollary.
Corollary 3.14. Let f: R* — [0, 4+00], and assume that dom f is bounded, then f(>) =
f**.

Proof. Follows by Theorem 3.13 once observed that if dom f is bounded, so is also
rb(co(dom f)). O

Let C be a convex set, we recall that C is said to be strictly convex if for every z;, 29 €
rb(C) with 21 # 2o and ¢ €]0, 1], it results tz1 + (1 — )z € 1i(C) or, equivalently, if every
point of rb(C) is an extremal point of C.

Corollary 3.15. Let f: R* — [0,+00], and assume that co(dom f) is strictly conver,
then f(®) = f**

Proof. Follows by Theorem 3.13 once observed that if co(dom f) is strictly convex, then
for every non-trivial supporting hyperplane H to co(dom f), H Nrb(co(dom f)) consists
of only one point. O

Corollary 3.16. Let f: R — [0, +00], then f(®) = f**.

Proof. Let us observe that in one dimension rb(co(dom f)) can be empty or made up by
one or two points.

If it is empty then co(dom f) = R and the thesis follows by Proposition 3.7, otherwise
rb(co(dom f)) is bounded and Theorem 3.13 applies. O
We conclude this section with a result that will be useful in the sequel.

Proposition 3.17. Let f: R* — [0,+00| be bounded on the bounded subsets of dom f,
and such that dom f is convex, then for every open set A it results that

domf(oo) NACdom(f+I4)*.

Proof. Let us preliminarly prove that the boundedness of f on the bounded subsets of
dom f implies that

dom f N A C dom(f + I4)™. (3.25)
To do this, we observe that if z € dom f N A and {z,} C dom f N A is such that z, — z,

then by the lower semicontinuity of (f + 14)**, (2.1), and the boundedness of f on the
bounded subsets of dom f, we infer that

(f +1a)"(2) < iminf(f + 14)™ () < Uiminf(f + Z4)(2p) = liminf f(z3) < +o0
for every z € dom f N A,

from which inclusion in (3.25) follows.

At this point by (3.2) of Proposition 3.1, (2.9), the convexity of dom f, and (3.25) we
conclude that

dom f*®) N A Cdom f*NACdomfNAC dom(f + I4)™,
that is the thesis. O



154 L. Carbone, R. De Arcangelis / On a non-standard convez regularization

4. Recalls and preliminary results of Calculus of Variations

For every z € R* we denote by u, the function defined by u,: x € R* — 2z - z.

Let Q be an open set. Given {u,} C WH*°(Q) and u € WH®(Q), we say that {u,}
converges to u in w* — WH*(Q), and write up, — u in w* — WH*(Q), if {u,} converges
to u in L*>(€2) and {Vu,} converges to Vu weakly* in (L*°(£2))".

We recall the following lower semicontinuity result (cf. for example Corollary 3.4.2 in [3]).

Proposition 4.1. Let f: R* — [0, +0o0] be convezx, lower semicontinuous, and 2 be an
open set, then the functional u € Wh(Q) — [ f(Vu)dz is sequentially w* — Wh>(Q)-
lower semicontinuous.

Let f: R* — [0, +o0] be a Borel function.

For every bounded open set €2 let us denote by F (€, -) the greatest sequentially weak* —
WL(Q)-lower semicontinuous functional less than or equal to the integral F(Q,-): u €
Whe(Q) — [, f(Vu)dz, and by F©)(€,-) the one defined by

FONQ, ) u e Who(Q) —

inf { lin&linf/ F(Vup)da : {up} € WES(R™), up — u in w' — Wl,oo(Q)}' (4.1)
Q

)
oc

When f may take he value +oo the study of F(* is carried out in [8] where the following
assumptions are introduced

dom f is convex, (4.2)

f is locally bounded in ri(dom f), (4.3)

i.e. for every compact subset K of ri(dom f) there exists My > 0 such that f(z) < M
for every z € K,

for every bounded subset L of dom f there exists z;, € ri(dom f)
such that the function t € [0,1] — f((1 —t)zr +t2) is (4.4)

upper semicontinuous at ¢t = 1 uniformly as z varies in L,

i.e. for every € > 0 there exists ¢, < 1 such that f((1 —t)z; +tz) < f(z) + € for every
t €lte,1] and z € L.

Remark 4.2. Assumption (4.4) looks like a sort of uniform radial upper semicontinuity
on bounded subsets of dom f, nevertheless it does not imply in general (4.3) (think for
example to the case in which n = 2, f(z1,20) = |22|/|21] if |21]* + |22/ < 1 and 2125 # 0,
f(z1,22) = 0if |21]® + |22 < 1 and 2129 = 0, f(21,22) = 400 otherwise in R?, and
zr, = (0,0) independently on L). It is fulfilled if f is finite and continuous in R" or if
there exists zp € ri(dom f) such that the function t € [0,1] — f((1—1)zo+1z) is increasing
for every z € dom f.

In [8] the following representation result is proved (cf. Theorem 6.1, Remark 6.2 and
Proposition 6.3 in [8]).
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Theorem 4.3. Let f: R* — [0,400] be a Borel function verifying (4.2)<(4.4), £ be
given by (3.1), and F) by (4.1), then

F©)(Q,u) = lim / (f + Ip,)** (Vu)dz > / F(Vu)dz
m Ja Q

(4.5)
for every convex bounded open set Q,u € WH™(Q),
F©)(Q,u) = lim / (f + Io,)™* (Vu)ds = / N (Vu)d
m Ja Q (4.6)
for every convex bounded open set Q,u € WH*(Q) such that F©)(Q,u) < +oc.
If in addition (dom [)° # 0, then
F)(Q,u) = lim / (f + Ip,)™ (Vu)dz > / N (Vu)dz
m Jo Q (4.7)
for every bounded open set Q,u € I/Vl};coo(R"),
F®)(Q, u) = lim / (f + Io,)" (Vu)dr = / F(Vu)da
m Ja Q (4.8)

for every bounded open set Q,u € W,o°(R") such that F©)(Q,u) < 4oo0.

oc

Example 4.4. Let f be given by Example 3.4, then f fulfils (4.2)+(4.4).

Let us prove that, given a bounded open set €, F(*)(€,-) is not even strongly W>(0)-
lower semicontinuous.

To see this take Z = (0,b) with b > 0, and {z,} CJ]0,+oo[? such that z, — %, then
u,, — uz in WH°(Q), and by (4.7) of Theorem 4.3 we get that

FN(Q,uz) > f0)(Z) meas() > limhinff(oo)(zh) meas(£2). (4.9)

On the other side, since we have that
F)N(Q,u,,) < f(z;) meas(Q) < 400 for every h € N,
by (4.9) and (4.8) of Theorem 4.3 we conclude that
FNQ, uz) > lin}lian(oo) (2, u,,).

Note that in this case F(*)(f2,-) cannot agree with T (Q,-).

Proposition 4.5. Let f: R* — [0, +00] be a Borel function verifying (4.2)+(4.4), F(*)
be given by (4.1). Assume that for every z € R, F(®)(Qy,") is WY (Q,)-lower semi-
continuous in u,, then for every convex bounded open set €1, F(oo)(Q, -) is sequentially
w* — W (Q)-lower semicontinuous.

If in addition (dom f)° # (), then for every bounded open set Q, F(*®)(Q,-) is sequentially
w* — W (Q)-lower semicontinuous.



156 L. Carbone, R. De Arcangelis / On a non-standard convez regularization

Proof. Let us first prove that f(>) is lower semicontinuous.

To this aim let {z;,} C R*, 2 € R* with 2, — z and liminf, f(®(2,) < 4+00. Moreover
let, by (4.2), 2o € ri(dom f) and {t,} C [0, 1] with t;, — 1, then by the convexity of f{°
we obtain that

]in}linff(oo) (thzn + (1 — th)20) < limhinf{thf(oo)(zh) + (1= ) [ (20)}
4.10
= ]imhinff(oo)(zh) < +o00. (4.10)

For every h € N we infer, by (4.2), that tpz, + (1 — t5)2o € ri(dom f). This implies that
F)(Qy, Uty zp+(1—tn)z0) < f(thzn + (1 —tp)20) < 400, and hence, by Theorem 4.3, that

F(o) (Q1, Uty 2y +(1—tp)20) = f(o0) (thzn + (1 —th)zp) for every h € N. (4.11)

By the W*°(Q;)-lower semicontinuity of F(*)(Qy,-) in u,, (4.11) and (4.10) we obtain
that

FON(Qy,u,) < limhian(“) (Q1; Utz +(1—ty)z0) = limhinff(‘”) (thzn + (1 —tn)20)

< lim inf F(z) < +o0

from which we deduce that F' (°°)(Q1, u,) too is finite and, again by Theorem 4.3, that
FNz) = FO Qy,u,) < lim inf £ (z),

i.e. the lower semicontinuity of f(°).

Finally by the convexity and the lower semicontinuity of f(>), Proposition 4.1 and The-
orem 4.3, the thesis follows. O

5. Integral representation of F(*) on the whole space of Lipschitz functions
Let f: R* — [0, +00], £ be defined in (3.1), and F(*) be given by (4.1).

In this section we first prove that in some cases, even being the assumptions of Theorem
4.3 fulfilled, one can have +oo = F(®)(Q,u) > [, f(*)(Vu)dz for some regular bounded
open set ©, u in C*°(R™), and then propose some conditions in order to deduce identity
between F(*)(Q,-) and [, f(*)(V-)dz on the whole W>(Q) for every convex bounded

open set, 2, or on the whole W,>>°(R") for every bounded open set Q2 if (dom f)° # 0.
Example 5.1. Let n = 2, and let f be defined by

+00 if 21 <0
f:(zl,zg)ERQr—) %—ezg if0<z1§6_z§
0 if 2 >€_z%,

then f is continuous and verifies (4.2)+(4.4). Moreover, by Proposition 3.3, it is clear
that

if 1 <0
F (21, 25) = o0 1 a= for every (z1, 29) € R?. (5.1)
0 if z1 >0
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In addition let us also observe that

+00 if 21 <O0orz >mor |z >m
(f +1g,.)" (21, 20) = i —e™ if 0 <2z1 <e™ and —m < 2 <m (5.2)
0 ife™ <z <mand —-m<2<m '

for every m € N, (21, 20) € R%.

Let Q =]0,1[x] — 1,1[, and u: (z1,22) € R?> + 2?/2, then by Theorem 4.3 and (5.2) it
follows that F©)(Q, u) = +oo whilst, by (5.1), it results [, f°)(Vu)dz = 0.

We now propose some sufficient conditions ensuring the validity of (4.6) and (4.8) of
Theorem 4.3 without any finiteness restriction. More precisely that

F)(Q, u) :/Qf(oo)(Vu)dx (5.3)

for every convex bounded open set Q,u € WH®(Q),

or, if (dom f)° # (), that

loc

F)(Q,u) = / f®)(Vu)dz for every bounded open set Q,u € W,u®°(R").  (5.4)
0

Proposition 5.2. Let f: R® — [0,4+00] be a Borel function verifying (4.2)=(4.4), and
F() be given by (4.1). Let Q be a conver bounded open set, or simply a bounded open
set if (dom f)° # 0, let u € I/VIIOO(R"), and assume that one of the following conditions
15 fulfilled:

i) [, f(Vu)dz < +o0,
(ii) there emsts a compact set K C ri(dom f) such that Vu(z) € K for a.e. x € K,
(iii) [, ) (Vu)dz = +oo,

then
F(Q,u) = / N (Vu)dz
Q

Proof. If (i) holds, by (4.1) it results F(*)(Q,u) < +oo, and the thesis follows by
Theorem 4.3.

If (ii) holds, by (4.3) condition (i), and hence the thesis, follow.
If (iii) holds, the thesis follows by Theorem 4.3. O

Proposition 5.3. Let f: R® — [0,+00] be a Borel function verifying (4.2)+(4.4), and
F() be given by (4.1). Assume that dom f is bounded, then (5.3) holds.

If in addition (dom f)° # 0, then (5.4) too holds.
Proof. Let us first observe that, if dom f is bounded, then f + Iy, = f for every m € N
sufficiently large, and therefore, by Theorem 4.3, that F(*)(Q,u) = Jo [ (Vu)dz for

every convex bounded open set 2, u € W*°(Q) or, if (dom f)° # (), for every bounded
open set 2, u € W22 (R").

By virtue of this and by Corollary 3.14 the thesis follows. 0
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Theorem 5.4. Let f: R* — [0, 400] be a Borel function verifying (4.2), (4.4), and F(
be given by (4.1). Assume that f is bounded on the bounded subsets of dom f, then (5.3)
holds.

If in addition (dom f)° # 0, then (5.4) too holds.

Proof. Let us prove (5.3), the proof of (5.4) being similar.
It is clear that, by our assumptions on f, condition (4.3) too follows.

Let 2 be a convex bounded open set, v € WH*(Q), then it is clear that, by Theorem
4.3, we have to treat only the case in which F(*)(Q,u) = +oo. If this is the case let
mo > ||Vl (L), then by Theorem 4.3 we get that [, (f + Ig,, )™ (Vu)dz = +oo from
which, taking into account the boundedness of f on the bounded subsets of dom f, we
conclude that

there exists a measurable set F C ) with positive measure

5.0
such that Vu(z) € dom(f + Ig,, )™ for a.e. z € E. (5:5)

By (5.5) and Proposition 3.17, applied with A = @Q,,,, we deduce that Vu(x) € dom f(>)
for a.e. € E, and hence that [, f©*(Vu)dz = 400, from which (5.3) follows. 0O
By Theorem 5.4 we deduce the following corollaries.

Corollary 5.5. Let f: R* — [0, 4+00] be a Borel function verifying (4.2), (4.4), and F(*)
be given by (4.1). Assume that dom f is closed, and that f is upper semicontinuous, then
(5.3) holds.

If in addition (dom f)° # 0, then (5.4) too holds.

Proof. Follows by Theorem 5.4. O

Corollary 5.6. Let g: R* — [0,+00] be continuous, C be a conver subset of R*, f =
g+ Ic, and let F(®) be given by (4.1), then (5.3) holds.

If in addition C° # 0, then (5.4) too holds.

Proof. Follows by Theorem 5.4 once observed that f verifies (4.2)+(4.4). O

Corollary 5.7. Let f: R* — [0, +o0] be a Borel function verifying (4.2)+(4.4), and F(*
be given by (4.1). Assume that dom f is an affine set, then (5.3) holds.

If dom f = R™, then (5.4) holds.
Proof. Follows by (4.3) and Theorem 5.4. O

The following result shows that Example 5.1 needs to be settled at least in dimension
two.

Proposition 5.8. Let f: R — [0,4+00] be a Borel function verifying (4.2)+(4.4), and
F©) be given by (4.1), then

FNQ,u) = / fN ' )dz  for every bounded open set Q,u € W (R). (5.6)
Q
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Proof. Tt is clear that we can assume that (dom f)° # (J, so that dom f turns out to be
an interval.
If dom f is a bounded interval, the thesis follows by Proposition 5.3.

If dom f = R, the thesis follows by Corollary 5.7, therefore we have to treat only the
case in which dom f is an unbounded interval with one real endpoint, say for example
dom f =]a, 400 or dom f = [a, +oc[ for some a € R.

Let us prove that
(f +10,)" (2) < f(2) + f(z0) +1

(5.7)
for every zo > a,m > |a| + |z0] + 1, 2 €]a, 2].

To do this let zg > a, m > |a| + |z0| + 1, z €]a, 29[, then by Theorem 2.1 there exist zi,
z9 € dom f with z; < z, A € [0, 1] such that z = Az; + (1 — \)z», and

A (z1) + (1= X)f(2z2) <cof(z) + 1. (5.8)
Since a, zy € @, and 21 € [a, 2], it is clear that z; € @Q,,, and we treat separately the
cases in which zy € Q,,, and 2o & Q.
If 29 € Qm, by (2.1), Theorem 2.1, (5.8), and Proposition 3.1 we have that
(f +1q,,)" (2) < co(f + Ig,,)(2)
<A +10.)(21) + (1 = N(f + 1g,.)(22) = Af(21) + (1 = A) f(22)
<cof(z)+1=f(z)+1,
from which (5.7) follows.

If 2o & Qm, let p € [0, 1] be such that z = pz; + (1 — p)2p, and let us consider the two
cases in which puf (21) + (1 = p) f(20) < Af(21) + (1 = A)f(22) and puf (z1) + (1 = p) f(20) >
A () + (1= N f(z).

If pf(z1) + (1 — p)f(z0) < Af(z1) + (1 — AN)f(z2), by (2.1), Theorem 2.1, (5.8), and
Proposition 3.1 we have that

(f +1g,)" (2) < co(f + Ig,)(2)
< p(f +1g,)(2) + (1= ) (f + Ig,)(20) = pf(21) + (1 = ) f ()
M () + (1= Vf(z) <cof(z2) +1=f(z) +1,
from which (5.7) follows.

If puf(z1)+ (1 —p)f(z0) > Af(21)+ (1= A)f(22), by (2.1), Theorem 2.1, and (5.8) we have
that

(f +1q,.)"(2) < co(f + Iq,,)(2)

< ulf + 1g,)(21) + (1= p)(f + Ig,)(20)

= uf () + (1= 1] 2o 59)

= Af(z1) + (1= A) f(z2) + pf (z1) + (1 — p) f (20) — '
— (Af(z1) + (1= N)f(2))

<cof(z)+ 14 puf(z1)+ (1 —p)f(z0) = (Af(z1)+ (1 =N)f(22))-
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We now observe that Af(z;) + (1 — A)f(22) is the value at z of the affine function «
verifying a(z1) = f(21) and a(z2) = f(22), whilst puf(21) + (1 — u) f(20) is the one at z of
the affine function (3 verifying £(z1) = f(21) and $(20) = f(20), therefore, once observed
that 8(z1) = a(z1), and that a(z) > 0, we obtain that

pf(z1) + (1= ) fz0) = (Af(z1) + (1 = A) f(22))

VA(
— 8(2) - al2) < Bz0) — alz0) < (0). (510)

By (5.9), (5.10), and Proposition 3.1 we conclude that

(f +1,.)™(2) < co f(2) + 1+ f(z0) = F2) + 1 + f(20),

from which (5.7) follows also in this case.

Let us observe now that, if zo > a, m > |a| + |20| + 1, by the lower semicontinuity of
(f +1p,,)™, (5.7), the convexity of f(>) and (3.2) of Proposition 3.1 it results that

(F +10,)" (@) < min(f + Lo, )" (ta + (1~ 1))
< ligﬂlp{tf(“)(a) + (1 =1)f(20)} + f(20) +1 (5.11)
< fa) + f(z0) + 1,
whilst by Proposition 3.1, and (2.4) it clearly follows that
(f +1I,)"(2) < fO2) + f(z0) + 1 for every z < a. (5.12)

Hence by (5.7), (5.11), and (5.12) we conclude that

(f +10,,)" (2) < f(2) + f(z0) + 1

(5.13)
for every 2o > a,m > |a| + |20| + 1,2 €] — 00, 2.

In conclusion, if € is a bounded open set, u € W™(R) with F(*)(Q,u) = +oo, and
29 > ||u'||pee (), We deduce by Theorem 4.3, and by the monotonicity properties of { Jo(f+
IQm)** Ydz}, that [,(f + Ig,.)"(u')dz = +oo for every m € N and, by (5.13), that

Ja ) (u')dx = +o0. By virtue of this, and again Theorem 4.3, (5.6) follows. O

6. Applications to the identity between F and F)

Let f: R* — [0, +00], f® be defined in (3.1), and F\°”, F(*) in Section 4.
In the present section we apply the previously obtained results to prove identity between
F©) and ™. More precisely that

@) = P00 = [ (Vu)ds (6.1)

for every convex bounded open set Q,u € WH®(Q),
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and

FOQ,u) = F(Q,u) = / F(Va)da
Q

(6.2)
for every bounded open set Q,u € W,o®°(R").
Let us preliminarly observe that, by using also Proposition 4.1, it follows that
/ £ (Vu)de < F(Q,u) < FO(Q, u)
Q (6.3)

for every bounded open set Q,u € WH®(Q).

Theorem 6.1. Let f: R" — [0,400] be a Borel function verifying (4.2)+(4.4), and as-
sume that dom f is an affine set, then (6.1) holds.

If dom f = R"™, then (6.2) too holds.

Proof. Follows by (6.3), Corollary 5.7, and Proposition 3.7. O

Theorem 6.2. Let f: R" — [0,+00] be a Borel function verifying (4.2)+(4.4), and as-
sume that dom f is bounded, then (6.1) holds.

If in addition (dom f)° # 0, then (6.2) too holds.

Proof. Follows by (6.3), Proposition 5.3, and Corollary 3.14. O

Theorem 6.3. Let f: R* — [0, +00] be a Borel function verifying (4.2), (4.4). Assume
that f is bounded on the bounded subsets of dom f, and that one of the following conditions

1s fulfilled
(1) lim, 00 12 = oo,

(ii)  for every zy € rb(co(dom f)) there ezists a non-trivial supporting hyperplane to
co(dom f) containing zy having a bounded intersection with rb(co(dom f)),

then (6.1) holds.
If in addition (dom f)° # 0, then (6.2) too holds.

Proof. Follows by (6.3), Theorem 5.4, and Proposition 3.8 or Theorem 3.13. O]

Theorem 6.4. Let f: R — [0, +00] be a Borel function verifying (4.2)+(4.4), then

FNQ,u) = F(oo)(Q,u) = / f*(u')dz  for every bounded open set Q,u € W(R).
Q

loc

Proof. Follows by (6.3), Proposition 5.8, and Corollary 3.16. O
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