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If G:R™™ — R:=RU{+00} is a convex, polyconvex or rank-one convex function, then the function
g : RmX" — R defined as g(A) = G(A?) preserves convexity, polyconvexity, or rank-one convexity,
respectively. The paper shows that this does not hold in general for quasiconvexity provided n > 2 and
m > 3.
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1. Introduction

A function ¥ : R™" — R := RU {+oo} is called quasiconvex at A € R™" if for
any ¢ € W(R";R™) := {# € WL2(R";R™); 6 is (0,1)"-periodic} (or equivalently any
@ € WE®((0,1)" R™)) (see e.g. [9, 10, 11, 16, 17, 18])

B(A) < /(0 A+ V() da (1.1)

whenever the integral on the right hand side exists. We say that ¥ is quasiconvex if the
previous inequality is valid for any A € R™*". Quasiconvexity is the key property in
the calculus of variations. Namely, if ¥ is only finite valued then quasiconvexity of W is
equivalent to sequential weak lower semicontinuity (omitting some growth conditions) of
the functional

I(u):/Q\II(Vu(x))dac,

where  C R" is a bounded Lipschitz domain and u : Q — R™ smooth enough; cf. e.g. [1,
5, 9]. If ¥ attains also the value +oo then it is known that quasiconvexity is the necessary
condition for sequential weak lower semicontinuity of I; cf. [4, 5, 9, 16]. Unfortunately,
quasiconvexity is very difficult to verify even in particular cases. On the other hand, there
are known sufficient conditions and necessary conditions for quasiconvexity.

One sufficient condition is polyconverity; cf. [2, 5]. ¥ given above is polyconvex if there
is a convex function ¢ such that, for any A € R™*" U(A) = ¢(T(A)), where T(A) is a

vector of all subdeterminants of A, thus, 7 : R™*" — RY where N := Z?g(m’") (M) -
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Dacorogna [5] showed that ¥ is polyconvex at A € R™*™ if and only if

N+1 N+1 N+1
U(A) = inf{Z)\i\Il(Ai); D ONT(A)=T(A), Y XNi=1, \>0, 4 € R’"X"} (1.2)
=1 =1

=1

The necessary (if ¥ is real-valued) condition is rank-one convezity. The function ¥ (as
above) is called rank-one convex if W(AA + (1 — A\)B) < AU(A) + (1 — A\)¥(B) for any
0<A<1andany A, B € R"" rank(4 — B) =1; cf. e.g. [5, 6, 13, 16, 19, 20].

If min(m,n) = 1 then quasiconvexity, polyconvexity and rank-one convexity are equiva-
lent to usual convexity. The question whether or not rank-one convexity implies quasi-
convexity if min(m,n) > 1 has been open for many years. In 1992 Sverak [18] found a
counterexample showing that this is not the case when m > 3 and n > 2. In particular,
he showed that for any € > 0 there is k = k(¢) > 0 such that the function ff :R>*? - R

fi(A) = f(PA) +e(|A]” + |A[") + k|A — PAJ? (1.3)

is rank-one convex but there is € > 0 such that f; is not quasiconvex for any & > 0 at the
point A = 0. Above, P : R¥*2 — R3*? is an orthogonal projector given by

A Ap An 0
Pl Ay Ay | = 0 Az
A3 Asg Asz1 ;Aaz A31gA32
and
F(PA) = _A11A22(1?231 + A32)’
where A;;, 1 =1,2,3, j = 1,2 mean the entries of A and | - | is the Euclidean norm.

The aim of this paper is to discuss properties of the function Ff : R?*3> — R defined as
Fp(A) = f(A) (1.4)
and its limit for & — oo. The superscript “t” denotes the transposition (i.e. Af; = Aj).

Namely, we show that limy_,, Fi is quasiconvex although limj_,, f is not.

In other words, quasiconvexity is not invariant under composition with linear mappings.
This is a completely different situation in comparison with rank-one convexity (for map-
pings, which map rank-one matrices into rank-one matrices), polyconvexity, or convexity.

We will start with an easy lemma.

Lemma 1.1. Let G : R™™ — R be rank-one conver (polyconvez). Then g : R™" — R,
g(A) = G(A?Y) is also rank-one convez (polyconvez).

Proof. Take A, B € R™" rank(A — B) =1 and 0 < A < 1. Then rank(4* — B*) =1
and

gAA+(1-X)B) = GAA'+(1—-N)B") < AG(A) +(1-NG(B") = Ag(A)+(1—N)g(B) ,

which shows rank-one convexity of g.
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Take T : R**™ — RN that T(A) is the vector of all subdeterminants of A € R™™. Let
T : R™" — RN be such that T(B) is the vector of all subdeterminants of B € R™*".
Then T(A*) = LT(A) where L : R¥ — RV is a suitable permutation (reordering) of
elements of the vector T(A). We have a convex function ¢ such that

9(4) = G(A) = (T (4")) = (LT (A)) = (¢ o L)(T(A)).

As L is linear and ¢ convex, ¢ o L is also convex and the proof is finished. O

2. Properties of F;

First, let us show some obvious properties of F;. We will suppose that £, e are such that
f is rank-one convex.

Proposition 2.1. If f; is rank-one convez, then Fy is rank-one conver but not polycon-
ver.

Proof. We need only to show that f, is not polyconvex. But it cannot be polyconvex
because it is not quasiconvex at the origin. Thus due to (1.2) there are A4; € R3*?
and \; > 0, for i = 1,...,10, such that 1% N, = 1, 1% \,T(4;) = T(0) = 0 and
0= f£(0) > 322, Aifi(A;). In fact, it follows from [18, Proof of Theorem| and [5, Ch. 5]
that there is § > 0 independent of k£ that

10
0=f(0)>—=0> ) Nifi(4). (2.1)

i=1
The assertion of the proposition is implied by Lemma 1.1. O

Set £ = {p € W(R?*;R?); PVt = V'¢} (we abbreviated Vip := (V)!). We have the
following lemma.

Lemma 2.2. Let ¢ € L. Then there ezist o, 3,7 € W(R;R) such that
p1(z) = a(z1) +v(x3) , pa(z) = B(22) + 7(23)-
Proof. By the definition of P we have

dp1  O0py 02 — 1) 3
= = = 0 f .d. 0 1
90, — D1, oes ora.a. z € (0,1)°,

whence 1(x) = a(x1, z3) and @o(x) = b(x2, x3), and also

Oa ob

8—953(:51’:53) = a—xg(l"z,ﬂfs);

the left hand side must be independent of x; and the right hand side independent
of x5, therefore both are functions of z3 alone. Thus a(z,23) = a(x1) + v(z3) and
b(xe,x3) = B(x2) + v(23); the summability and periodicity properties of the three func-
tions are straightforward. O
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An important role in Sverdk’s counterexample is played by the fact that the test function
which “breaks” (1.1) fulfills Vo = PV, ¢ € W(R?;R?). The next proposition shows
that this does not work in the case of Fj.

Proposition 2.3. Let ¢ € L. Then for any A € R**3

FE(A) g/ FE(A + Vo(a)) da. (2.2)

(0,1)3

Proof. Let A € R**® and ¢ € L be arbitrary. We have
/ FE(A+ V(o)) de = FE(A + Vio(z)) da
(0,13 (0,13

= f(P(A"+ V'¢(z)) dx
(0,1)3

b [ A V@) + A+ V(o)) da
(0,1)3
+ k|A'— PA'2.
The only term we have to deal with is f(o,1)3 f(P(A + Vp(z))") dz because all of other
terms are convex functions invariant on transposition.
By Lemma 2.2 we obtain

| SR Vgl do

1

= 9 /(0,1)3 (A + o/ (1)) (Ao + B'(22)) (A13 + 27/ (23)) dz

1! ! '
= —5/ A dx1/ A22d$2/ Arzdas
0 0 0
= H(PaAY),

As all of other terms in the definition of F} are convex functions we end up with

FE(A) < / FE(A + Vol(z)) da.
(0,1)3

The proposition is proved. O

3. The functions F and fZ
Let us define F2 : R®>3 — R, by F2 := limy_,, Ff. We have

F(PAY) + e(|AY2 + |A*)  if A* = PA*

Foo(4) = { +o00 otherwise . (3.1)
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Proposition 3.1. FZ is quasiconvex but not polyconver.

Proof. We must verify (1.1) with F2, instead of U. Take A € R?*3 and ¢ € W(R3; R?)
arbitrary. We will divide the proof into four steps.

STEP 1. Let A' = PA" and let Vg = PV'p. Then (1.1) follows from Proposition 2.3.

STEP 2. Let A" = PA" and V'p # PV'p. Then P(A" + V') # A + V'p on a subset of
(0,1)? with a positive Lebesgue measure, so that the right side in (1.1) equals to +oc.

STEP 3. Let A" # PA" and V'p = PV'p. Then both of the sides in (1.1) are +00. This
is clear for the left side. To show it for the right one we argue as in Step 2.

STEP 4. Let A® # PA" and V'p # PV'p. To show that both sides of (1.1) are +o0 in this
case, we need only to exclude that 0p;/0xs = —Ajy # 0, Ops/0x; = —Ag; # 0 and that
0(p1 — o)/ 0z3 = Ags — A1z # 0. But this contradicts the fact that ¢ is (0, 1)3-periodic,
hence its first or second components (or their difference) cannot be affine in the directions
Z9, T1 Or x3, respectively. Note that Ao = 0, Ay; = 0 and A3 = Az would contradict
At #£ PA'.

Altogether we verified that F, is quasiconvex.

We showed in the proof of Proposition 2.1 that f; is not polyconvex at 0. The limit
passage for £ — oo in (2.1) shows that fZ (0) does not fulfill (1.2) and therefore neither
f&, nor FS are polyconvex. O

As for infinity-valued functions quasiconvexity does not imply rank-one convexity we have
to show explicitly that F is rank-one convex. But this is easy because it is the point
limit of rank-one convex functions {F} }x>k, for some ko > 0.

Proposition 3.2. Let f& :=limg o ff. Then 5 (A) = F2(AY) is not quasiconver but
it is rank-one convex.

Proof. It is shown in [18] that

fi(Vi(z)) dz = foo(Vip(z)) dz < f(0) = f5,(0) =0, (3.2)

(0,1) (0,1)

where ¥(x) = 1/(27)(sin 2wz, sin 2729, sin 27 (21 + x2)). Note that Vi) = PV.

Finally, rank-one convexity of f:  follows from the same pointwise convergence argument
as above. O

Sverék ([18, Corollary]) constructed a mapping M : R™" — R3*2 n > 2 m > 3,

By Bis
VB e R™" MB=| By By
B3 Bsy

and defined ff : R™" — R by fg(B) = fi(MB). He showed that for suitable values of
k>0ande >0 fk is rank-one convex but not quasiconvex. Similarly as above we can get
that fs = limy_, o f,c is not quasiconvex but Fs R™ ™ — R given by F£ c(B) = f’3 (BY)
is quasiconvex. Namely, following the proof of Proposmon 2.3 we get for ¢ € W(R™; R")
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such that MV'p = PMV'p that 0p,/0x; does not depend on x5 and 3, dp,/dxs does
not depend on z; and z3 and, finally, that 0(¢; + ¢2)/0z3 does not depend on x; and z.
Therefore, we get for any A € R"*™ and any ¢ as above

Fe(A) < / Fe(A+ Vo(z)) dz.

(o,1)™

The proof of quasiconvexity of Fcfo is then the same as the proof of Proposition 3.1.
Eventually, we have the following assertion.

Proposition 3.3. Let n > 2 and m > 3. Then there is a quasiconvez function G :
R ™ — R such that g : R™" — R, g(A) = G(A?) is not quasiconver.

4. Concluding remarks

e Let m,n > 3 and let “C” be such a condition on B, By € R**™ that if B, By satisfy
“C” then also B!, B} satisfy “C”. Then quasiconvexity of h : R**™ — R cannot be
expressed e.g as Jensen’s inequality h(ABy + (1 — A\)By) < Ah(By) + (1 — A\)h(Bs),
0 < A < 1, provided By, By satisfy “C”. In particular, our result partly negatively
answers the question by Pedregal [14, 15] whether quasiconvexity can be described
by means of discrete inequalities invariant on transposition. See [8] for more results
in this direction.

e  Recently, I learned from [12] that the infiniteness of F, is not essential for the example
above. We conjecture that Fy becomes quasiconvex once f; (and also Fy) starts
to be rank-one convex. This conjecture is based on many numerical experiments
checking quasiconvexity of Fy. We used an element-wise affine approximation of
¢ € Wy™((0,1)% R?) on tetrahedral elements. Here we rely on results by Dacorogna,
and Haeberly [7] who numerically computed that, for ¢ = 0.01, ff is rank-one convex
if £ > 1/0.12978763.

e  Assume for a while that rank-one convexity would be equivalent to quasiconvexity for
functions R?*? — R and let ¢ : R2*? — R be quasiconvex. Then also G : R?*? — R,
G(A) = g(AY), have to be quasiconvex. Therefore, we have for any ¢ € W (R*;R?)
and any A € R?*?

/<o 12 G+ Vo) do = / 9(A+ V'p(z)) dz > G(A") = g(A).

(0,1)?

Eventually, we would get that any quasiconvex function g : R2*? — R satisfies both
| gt V() do > g(4)
(0,1)2

and
| o+ Vie@)do = g(a)
(0,1)

for any A € R?*? and any ¢ € W(R?; R?).
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