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A phase-field model based on the Gurtin-Pipkin heat flux law is considered. The resulting system has
been investigated by Colli and Laurengot who proved existence and uniqueness results, when the time
relaxation coefficient is strictly positive. The aim of this paper is the study of the asymptotic behaviour
of such a solution, as the time relaxation goes to zero, and of the related limit problem.

1. Introduction

Consider a two-phase material located in a bounded domain 2 C R® until a given time
T > 0. Denote by ¢ its relative temperature (fixed in order that ¢ = 0 is the equilibrium
temperature between the two phases) and by X an order parameter (usually named phase-
field) which could represent the local proportion of one phase. To describe the evolution
of the pair (¢, X) we consider the following system

B, (0 +AX)) —k+ A9 =f in Q:=0x]0,T], (1.1)
UOX — vVAX + B(X) 3 =o' (X) + N(X)¥  in Q, (1.2)
9(-,0) =, X(-,0)=Xo in Q, (1.3)
0uX = Bp(k*9) =0 on 00x]0, T, (1.4)

where 0, = 0/0t, * denotes the usual convolution product with respect to the time over
10,¢[, A the Laplacian (in space variables), 0, the outer normal derivative on 9€2. The
coefficients ;1 and v are positive constants, k is the so-called heat kernel, f is a source term,
Y9 and X, are given; moreover, the maximal monotone graph 4 and the given functions
o and A entail a nonlinear constrained dynamics for the phase fraction X.

It must be noted that, in the energy balance equation (1.1), the Gurtin-Pipkin [19] heat
flux law is considered, accounting for memory effects. On the other hand, relation (1.2)
can be derived following the Ginzburg-Landau theory (see [7], [16], [17], [20]). The system
(1.1)—(1.2) is also considered in other different applications in Material Sciences.

Now we are going to recall some existence and uniqueness results of solutions to problem
(1.1)-(1.4), outlining the assumptions taken on the heat kernel £ and the function A.
Since the main issue of this paper is the asymptotic analysis, when the time relaxation
constant u tends to 07, we will also have to mention the results where, instead of (1.2),
a relation close to the following is handled in some sense

—vAX+ B(X) 3> =a'(X) + N'(X)9 in Q. (1.5)
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We start our brief survey by describing the papers [10, 11, 12, 13] by Colli, Gilardi,
and Grasselli. In [10], by assuming k& € W?!(0,T) and X Lipschitz continuous, they
obtained existence, uniqueness, and regularity results of strong solutions to problem (1.1)-
(1.4). Assuming A(X) = AX, with A\ constant (and hence A(X) is linear), in [11] they
proved existence results for weak solutions; in [12] they extend the previous existence and
uniqueness results for strong solution to the case where 9;(¢ + AX + ¢ 9 + 1 % X) occurs
in (1.1) instead of 0;(Y + AX) (¢ and ® being further memory kernels); still in [12] they
studied the asymptotic behaviour of the above obtained solutions, when the coefficient v
of the interfacial energy term vanishes. Finally, by assuming also a positivity condition
(see (2.14) below), in [13] they carried out the asymptotic analysis of the solution obtained
in [12], when p — 0. They actually got existence, uniqueness and regularity results for
problem (1.1)—(1.5)—(1.3)—(1.4) together with some error estimates.

On the other hand, Aizicovici and Barbu [1] studied (1.1)—(1.3) together with Dirichlet
boundary conditions, in the particular case where: A(X) = AX, B(X) = X3, o/(X) = —X. It
must be noted that they dealt with & just integrable and of positive type (see (2.3) below),
obtaining the existence of a solution which is unique provided that £ is a nonnegative
decreasing and convex function, by using semigroup techniques. By assuming a stronger
positivity condition on k, they also investigate the asymptotic behaviour as ¢ — +oc.
The asymptotic analysis, when p — 07, to the problem investigated in [1] is performed in
[8] by Chiusano and Colli; by requiring A > 1/4, they actually proved the existence and
the uniqueness of the solution to the limit problem.

In [14, 15] Colli and Laurengot considered problem (1.1)—(1.4) in the case where: the heat
kernel k is just integrable and of positive type, # and o are general, and A is a nonlinear
function. In particular, they assumed only A" € L*(R), allowing A to have a quadratic
growth; such a behaviour entails that the system (1.1)—(1.2) is a model not only for solid-
liquid phase transitions, but also for ferromagnetic transformations (see [14, Sec. 1]). In
[14] they obtained the existence of weak solutions and studied the asymptotic behaviour
of such solutions as ¢ — +oo. Under a further assumption on the datum Xy, in [15] they
improved the regularity of the solutions obtained in [14], and then they got a uniqueness
result.

The aim of the present paper is to address the study of the asympotic analysis, as  — 07,
of the solutions to problem (1.1)—(1.4) in the general setting considered by Colli and
Laurencgot, complementing the results of [8] and [13]. By taking a positivity assumption
(see (2.14) below), we deal with & just integrable and of positive type (while k£ € W>1(0,T)
is assumed in [13]), 8 maximal monotone graph and o general (while 3 = X3 and 0/ = —X
are taken in [8]). We are able to handle just the case where A(X) = AX; on the other
hand, we can observe that this is the case considered in [8] and [13] too.

The outline of the paper is as follows. The next section is devoted to the assumptions,
the notation, and the statements of the results. Section 3 is concerned with the proof of
Theorem 2.2. In Section 4 we deal with the proof of Theorem 2.1: we obtain some a priori
estimates independently of 1 and then we pass to the limit as 4 — 0%. Theorems 2.1 and
2.2 actually imply an existence and uniqueness result to the “limit” problem (1.1)—(1.5)—
(1.3)—(1.4). In Section 5 we prove a regularity result (Theorem 2.3) for the solution just
mentioned, by deriving the corresponding estimates; then we deduce some error estimates
(Theorems 2.5 and 2.6). Throughout the paper some comments and remarks are given.
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2. Statements of the results

Let 2 C R3, be a bounded domain with boundary 9 of class C>'. We set Q; := Q2x]0, ¢]
for t €]0,7[, H := L*(Q) and V := H(Q). W := {v € H?*(Q) : d,v = 0 on 0Q}.
Identifying, as usual, H with its dual space H', we recall that W c VCc Hc V' Cc W'
with dense and continuous injections. Henceforth, we denote by ((-, -)) the duality pairing
between W' and W, by (-, -) the duality pairing between V' and V, and by (-, -) the scalar
product in H. The norm both in H or in H? is simply indicated by || || . Besides, we denote
by ((-, -)) the scalar product in V. Then, the associated Riesz isomorphism J : V. — V'
and scalar product in V' can be specified by

(Jui,v9) == (v1,v2), (w1, uo)), := (u1, J 'ug) for v; €V, w; € V', i=1,2.

We decide to take |||y == (-, - )2 and [|-||y, := (-, - )"

*

Hereafter we take A(X) = AX, with A constant. Concerning the data, we assume the
following hypotheses

A, v €0, +oc];
ke L'(0,7T);

/t(v(s), (k*xv)(s))ds >0, Vtel0,T], VwvelL*0,T;H); (2.3)

B=006:R— 2% with domain D(f) such that int(D(3)) is nonempty and
5(0) > 0;

B : R — [0, +00] is a proper, convex, lower semicontinuous function;

o € C*(R) with ¢'(0) = 0 and ¢” € L*(R);

—~ o~~~
~N O Ot
~— — ~— ~—

B + o is nonnegative.

Now, by introducing the auxiliary unknown
e=1+ X

(which corresponds to the enthalpy), problem (1.1)—(1.4) becomes

oe—kxAe+ A+ AX=f in Q; (2.8)
poX — vVAX + a(X) 3 e in @ (2.9)
e(-,0)=e and X(-,0) =X, in ; (2.10)
On(kxe)=0,X=0 on 00x]0,T]; (2.11)

where eqg = Y9 + AX, and « is related to (3, o, and A by
a(z) =B(z) +0'(z) + N2z, VzeR.
Now, we assume on « the following conditions

a=07j:R—2% with «(0)30; (2.12)
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j : R —[0,+00] is a proper, convex, lower semicontinuous function with j(0) = 0;
(2.13)

3l > 0 such that

2.14
(m —m) (21 —22) > U(z1 — 2)? VzieD(a), Vnealz), i=1,2 ( )

(recall that D(«) denotes the domain of «). Through (2.14) we assume on a a mono-
tonicity condition which is surely satisfied if the Lipschitz constant of ¢’ is smaller than
A2. From the physical point of view, this corresponds to require the latent heat to be
large enough.

Now, thanks to (2.1)-(2.7) and to (2.15)—(2.16) below, the results of Colli and Laurencot
[14, Thm 2.3], [15, Thm 2.2-Rem 4.3] ensure that the following problem has a unique
solution.

Problem (P,). Let u > 0 be given and (2.1)—(2.7) hold. Moreover, let f,, eg,, and X,

satisfy
fu € L'(0,T; H) (2.15)
eon €H, Xoo €V and f(Xp,) € L'(). (2.16)
Find (e,, X,,, §,) such that
e, € C°([0,T]; V') N L>(0, T; H); (2.17)
X, € H'(0,T;H) N C°([0,T]; V) N L*(0, T; W); (2.18)
¢, € L*(0,T; H); (2.19)
oe, — fu € L*(0,T; W'); (2.20)

and

((Orepu, v)) — (k * €y, Av) + Ak * AX,,v) = (fu,v),Yv €W, ae. in |0,T;  (2.21)
uo X, — vAX, + &, = Xe, ae. in Q; (2.22)

£ € a(X,) ae in Q; (2.23)

eu(+,0) =ep, in V' (2.24)

(2.25)

X'u(',()) = XOM in V.

Now, we study the asymptotic behaviour of the solutions of the previous problem, as
pu — 0. Hereafter, we let y vary in ]0, 1[ and denote by (e,, X,,, €,) the unique solution to
problem (P,), corresponding to the data f,, e, Xo, satisfying (2.15)—(2.16). In order to
pass to the limit in (2.21)—(2.25), as u — 0T, we assume that the following convergences
hold

fu— f in L'(0,T;H) (2.26)
ey —€ inH (2.27)
#/*Xo, — 0 in H. (2.28)

Moreover, we suppose that
3C' > 0 such that

D | (2.29)
1 Xoullv + pllj Xop)llzr @y < € for any p €]0, 1]
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Theorem 2.1. Let (2.1)—(2.7) and (2.12)—(2.14) hold. Moreover, let f,, eou, Xou, f, and
eo satisfy (2.26)—(2.29). Then there exists a triplet (e, X, &) such that

e, — e in C°([0,T]; V) (2.30)
e, = e in L®(0,T;H) (2.31)
X, = X in L*(0,T;V) (2.32)
X, = X in L*(0,T;W) (2.33)
pX, = 0 in H'(0,T;H) (2.34)
p?x, = 0 in L*®(0,T;V) (2.35)
& — ¢ in L*(0,T;H). (2.36)

Moreover, the triplet (e, X, ) solves the problem

((Ore,v)) — (kx e, Av) + Ak x AX,v) = (f,v), Vv e W, a.e in ]0,T7]; (2.37)
—VvAX + &= Xe a.e. in Q; (2.38)

Ee€alX) ae in @ (2.39)

e(-,0)=¢e in V' (2.40)

Note that Theorem 2.1 ensures, in particular, the existence of a solution to problem (2.37)—
(2.40), whenever f and eq satisfy (2.41) and (2.42) below. Actually, the uniqueness result
holds.

Theorem 2.2. Let (2.1)~(2.7) and (2.12)—(2.14) hold. Moreover, let f and ey satisfy

f € L'0,T;H) (2.41)
€y € H. (242)

Then the problem (2.37)—(2.40) has a unique solution.

Hereafter, (e, X, &) denotes the solution to problem (2.37)—(2.40). By assuming some
stronger hypotheses on the sequence of the data, we can obtain uniform bounds which
yield further regularity for e and X.

Theorem 2.3. Let (2.1)-(2.7) and (2.12)(2.14) hold. Let f,, eou, Xou, f, and ey satisfy
(2.26)(2.29). Assume moreover

| fullLro,rvync2o,mvy + [leop — MXoully < ¢ (2.43)
Xoy €W (2.44)
Xou € D(a) a.e. in Q and a®(Xp,) € H (2.45)

(where, for y € D(a), a®(y) denotes the element of a(y) having minimum modulus),

there exists &y, € H such that &, € a(Xo,) a.e. in Q and

w2V AX g, — Eop + o]l < ¢, (2.46)
for some ', " > 0 and any p €]0,1].
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Then

||€u||L°°(0,T;V)OH1(0,T;V’) <c (2.47)

W10,

Leo(0,T;H) T ”XM||L°°(O,T;W)OH1(O,T;V) < e (2.48)

for some c1, co > 0 and any u €0, 1].

Remark 2.4. In view of Theorems 2.2 and 2.3, by (2.47) and (2.48), we deduce the
following convergences, besides (2.30)—(2.36).

e, — e in L®(0,T;V) (2.49)
e, — e in H'(0,T;V') (2.50)
X, = X in H'(0,T;V) (2.51)
X, = X in L®(0,T;W) (2.52)
pl2x, = 0 in Wh(0,T;H). (2.53)

Using the generalized Ascoli theorem (see Simon [21, Cor. 4, Sec. 8]), from (2.49)-(2.52),
we deduce moreover the strong convergences

e, — e in C°([0,T];H) (2.54)
X, — X in C°([0,T];V). (2.55)

Finally, we note that equation (2.37) and the initial condition (2.40) may be meant in V'
and H, respectively, thanks to (2.50) and (2.54).

Now, we establish some error estimates.

Theorem 2.5. Let all the assumptions of Theorem 2.3 hold. Then

llew = ellcogorvny + Xy = XllL2riv) < es {n+eu} (2.56)
X, = Xlleoqoyvy < ca {p'"* + ey} (2.57)

where
eu = lleoy — eoll + I fu = fllzrozsmy » (2.58)

for some c3, ¢y > 0 and any u €]0, 1].

Theorem 2.6. Let all the assumptions of Theorem 2.3 hold and moreover

a € C'(R) non decreasing. (2.59)

Then
lew = ellooqorsan + 1%, = Xllszora < ¢ {472 + (6,72} (2.60)
1% = Xl < 6 {4 + (602} (2.61)

for some cs5, cg > 0 and any u €0, 1].

Remark 2.7. We warn that, in the proofs in the following sections, we will employ the
same symbol ¢ for different constants, even in the same formula, in regard of simplicity.
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3. Proof of Theorem 2.2

We proceed by contradiction. Let (e, X1,&1) and (eg, Xz, &) be two solutions to problem
(2.37)—(2.40), provided by Theorem 2.1. Set nowé := e; —eg, X := X1 —Xo, and§ := & —&,.
Writing (2.37)—(2.38) for both the triplets and taking the differences, we have

((0,6,v)) — (k*&,Av) + Ak * AX,v) =0, VYo €W, ae. in]0,T]| (3.1)

—VAX+E=X ae. in Q. (3.2)

Next, we rewrite (3.1) by the means of the isomorphism J and by inserting the additional
term k x (6 — AX) in order to guarantee coerciveness. Thus, we obtain

((08,0)) + (k* &, Jv) — (k*&,v) — AJ(k *X),v) + Ak * X,v) =0,

Yo e W, ae. in]0,T]. (3:3)
Take now v = J & in (3.3) and integrate from 0 to t €]0, T[. We get
%Ilé(t)H%/ + /Ot((k *€)(s),é(s)) ds = ]Z:Ij(t), (3.4)
where
I(t) = /Ot(k x¢,J 1é) (3.5)
L(t) == A /Ot(J(k *X), J7'é) (3.6)
Ii(t) := =\ /Ot(k x X, J7'E). (3.7)

In order to estimate these integrals, we recall here some properties, which will be useful
in the sequel: the elementary inequality

ab < (6/2)a® + (26) ' Va,beR, V6> 0 (3.8)
and the Young theorem implying
lla *bll2015x) < llallomylbllzoryy ¥V a€ LH0,T), be L*0,T; X), (3.9)

for any real Banach space X.

Now, owing to Holder inequality, (3.9) and the definition of J, we get

[L(8)] < |1 éll205v) 1T el L2o,v) < IRl Lo llEl 7o v (3.10)

L) < ATk * X) || z20,6v) 1T ell 2o,y < (311)
< M&llzr o1 X] 20,69 1€l 220,697



48  Bonfanti, Luterotti / Asymptotic analysis to a phase-field model

L3 (t)] < Ak * Xl 20 5v) ||~ €l L2go,5v) <

(3.12)
S C)\”k”Ll(O,T)

X[ L2 0 5v) ll€ll 2o 85v7) -

Then, multiplying (3.2) by X and integrating over @;, we obtain

t t t
v / V()2 ds + / (€(s), X(s)) ds = A / (&(s), X(s)) ds. (3.13)
0 0 0
Using (2.14) and Hélder inequality, by (3.13) we deduce that

min{, }IX[|Z>0,4v) < MXN p20v) 1€l z20v7) - (3.14)

Finally, we add (3.4) and (3.14), by taking (2.3) and (3.10)—(3.12) into account. Using
(3.8), we deduce the existence of a positive constant ¢ (depending also on v and [) such
that

1, . ) ~ 1 . ~ -
NS, + min{y, DIV 0 v, < 5 mindos BRI ) + oy

for a.a. t €]0,T7.

(3.15)

Thus, Gronwall lemma implies € = X = 0 a.e. in @ and a comparison in (3.2) enables us
to conclude the proof. O

4. Proof of Theorem 2.1

The present proof consists of the derivation of a priori estimates (independently of u)
and the passage to the limit when u tends to zero. For the sake of brevity, in some of
the estimates, we proceed only in a formal way, but we are able to make this procedure
rigorous (also see Remark 4.2 below). From the a priori bounds we deduce some weak
or weak* convergences and (2.39). At the end of the proof we also deduce (2.32). Some
comments and remarks complete this section.

First a priori estimate

We take v = J 'e, in (2.21) and integrate from 0 to ¢ €10, T[. Proceeding as in the first
part of the previous section, we obtain

1 t
Slen®IR: + [ (s (o) euls) ds <
0
1
< Slleaulls + IMlzs0m {lealliaoan + Aullzoevllelzann  + @)

+e / 1£u(3)lew(s)llve ds.

Next, we multiply (2.22) by X, and we integrate over (),. Using, as usual, Holder inequal-
ity, we get

g||X#(t)||2+V/O ||VX“(3)||2ds+/0 (€4(5), Xu(s)) ds < )

1
< S IXoull” + MXullzz vy llenl 20,
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Now we add (4.1) and (4.2), by taking (2.3), (2.12) and (2.14) into account. By (3.8),
there exists a positive constant ¢ (depending also on v and [) such that

lew N7 + ulXu (N1 + min{w, I} X172 0,0v) <
, . , t (4.3)
< leoullvr + pllXoull” + €llell 20 v + € i | fu ()l llen(s)][v ds.

Thanks to (2.26)—(2.28), an extended version of Gronwall lemma (see, e.g., Baiocchi [2])
enables us to deduce that

el Loeo,rvry < €
[Xullz2orvy < e (4.5)
P2 Xl ooy < e (4.6)

Second a priori estimate

We choose v = e, in (2.21) and integrate from 0 to ¢ € |0, T'[. Using Hélder inequality and
(3.9), we have

1 ¢ 1
“llex@NP+ [ ((k* Veu)(s), Veu(s)) ds < =lleql” +
2 /0 2 (4.7)

t
+ A&l 220, |AX | 20,151 | €nl 22 0,61) +/0 | fu(3)lllen(s)] ds.

Next, we multiply (2.22) by —AX, and we integrate over ();. Suppose, for the moment,
that the graph o is a Lipschitz continuous function. Then &, = a(X,). Using again Holder
inequality, we get

1
SIVXUOIE + A%l + [ /06197 <
Q (4.8)

U
< §||VX0u||2 + AAX 220,61 1€l L2 0,4m) -

Now we add (4.7) and (4.8), by taking (2.3) and (2.12) into account. Using (3.8), we
deduce that there exists a positive constant ¢(v) (depending also on v) such that

1 " v

Sleal®IP + IV + 1A s ) <
1 2, M 2 2 ! (4.9)

< Slleoull” + SHVXoull” + e(@)llellz2co,m) + i [ fu(s)Illex(s) | ds.

Inequality (4.9) still holds when « is a graph satisfying (2.12)—(2.14). One can prove
that by approximating « by its Yosida regularization (see, e.g., [6], [13]). Finally, thanks
to (2.26)—(2.27) and (2.29), we apply again an extended version of Gronwall lemma to
deduce that

leullzooo,rm) < c (4.10)
IXullz20,m5wy < € (4.11)

22 Xl o) < e (4.12)
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Third a priori estimate

Arguing as before, we can assume that « is a Lipschitz continuous function (otherwise,
we introduce its Yosida approximation). Then we multiply (2.22) by £, = «(X,) and we
integrate over ();. Taking (2.12) into account, using Holder inequality and (3.8), we get

OGO+ [ oIV + Ieulram <
@ (4.13)

_ 1 A2
< pllg Xop) 10y + §||€M||%2(0,t;H) + 3”%”%2(0,7:;1{) .

Owing to (2.12), (2.29) and (4.10), we apply Gronwall lemma and we deduce the following
upper bounds.

1€ull 20,y < c (4.14)
plld (X) ll oo 0,212y < - (4.15)

Fourth a priori estimate

Taking (4.10)—(4.11) and (4.14) into account, a comparison in (2.22) leads to
1l OX ][22 0,rm) < €. (4.16)
Now, by (2.21), we have
((Orey — fu, v)) < (JIk *eull + Al = Xul)|Jvllw, Yo e W, ae. in]0,T] (4.17)
hence
10e, — fullwr < ||k *eul| + Allk*X,||  a.e. in]0,T7. (4.18)
Finally, thanks to (3.9), (4.5) and (4.10), from (4.18), we deduce that

[|0rey — fu||L2(0,T;W’) <c. (4.19)

Passage to the limit

Thanks to (4.10), (4.11), (4.14), (4.19), (4.12), and (4.16), well known weak and weak*
compactness results allow us to deduce the existence of (e, X, ) such that, at least for a
subsequence of p — 07,

e, — e in L®(0,T;H)

X, = X in L*0,T; W)

£ — & in L*0,T;H)

Oie, — fu — Oee— f in L*(0,T; W)
p?x, =0 in L*(0,T;V)

pX, — 0 in H'(0,T;H).
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The above convergences are enough in order to pass to the limit in (2.21)—(2.22), when
pu — 0%, obtaining (2.37)—(2.38). Next, we observe that (2.26) and (4.20) imply

ey—1xf, = e—1xf in L*(0,T;H) (4.26)
(where 1 % u denotes the time integral primitive of u).
Thanks to [21, Cor.4, Sec.8|, from (4.23) and (4.26), we deduce the strong convergence
ep—1%f, > e—1xf in C°([0,T]; V") (4.27)
and hence (still thanks to (2.26))
e, — e in C°([0,T); V'). (4.28)

We want to show that (2.39) holds. Toward this aim, we multiply (2.22) by X, and we
integrate over (Q;; we obtain

J[ exi==v [[ 190l =Sl + Sl + 3 [[ ex @)
Qt Qt Qt

We take the limsup, as 4 — 07, of both sides of (4.29); using (4.21), (2.28), and (4.28),
we get

lim sup/ X, < —1// IVX|? + )\// ex = // (VAX + Xe)X. (4.30)
K—0 Qi Qs Qs Qi

A comparison in (2.38) gives

u—0

limsup/ Eu Xy g/ X, (4.31)
Qs Q¢

in view of [3, prop.1.1, p.42] (4.31) implies (2.39). Now, we only have to prove (2.32).
We take the difference between (2.22) and (2.38); we multiply the resulting equation by
X, — X and we integrate over ();; by using (2.14), Holder inequality and (3.8), we get

7 1 .
B ()] + 5 min{v, 3 10 — Xl <
2 (4.32)

H 2 A 2
< =[|X OX X+ — — V1 3
< 2|| oull +,U//Qt i XX + 2(min{1/,l})”€“ 6||L2(0,t,v)

since (2.28), (4.25), (4.28) hold, we deduce (2.32). O

Remark 4.1. Let us consider the following equation:

where the Coleman-Gurtin [9] heat flux law is taken into account and kg is a positive
constant. In [4, 5], existence, uniqueness and regularity results were proved for the system
(4.33)—(1.2) supplemented by Cauchy and homogeneous Neumann boundary conditions.
Remark that the assumptions on the heat kernel are only (2.2) and a positivity condition
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—which comes from Thermodynamics, see, e.g., [18], [4, Sec. 1]— for kod + &k (where ¢
denotes the Dirac mass). Moreover, ) is a nonlinear function which can have a quadratic
growth in [4], while it is Lipschitz continuous in [5]. It must be noted that the presence
of the term —kyAv in (4.33) entails that the solutions of the mixed problem related to
(4.33)—(1.2) are more regular than the ones of the problem (1.1)—(1.4), obtained in [14,
15]. Hence, the asymptotic analysis, as y — 0%, of the solutions found in [4, 5] is simpler
(using the same tools) than the one performed in the present paper. For the sake of
brevity, we don’t give here neither a precise statement, nor a proof, concerning such an
asymptotic result.

Remark 4.2. Since e, is only H-valued (see (2.17) above), the second a priori esti-
mate has been actually derived in a formal way. The rigorous procedure should had
been the following: multiply (2.21) by a regularization of e,, said e, € W, satifying
e +eAee, = e, with A suitable operator from H to W (also see [13] for a similar pro-
cedure); then pass to the limit when € — 0, obtaining the bounds (4.10)-(4.12). Another
method to make our argument rigorous is the following: consider a regularized prob-
lem (P.,), instead of (P,), by adding the term (—ecAe,,v) in (2.21); consider, moreover,
(€cps Xep, &p) the corresponding (more regular) solution to (P.,), satisfying, in particular,
een € HY(0,T;V')N L>(0,T; V) (thanks to [4, Thm. 2.1]); derive the same bounds (now
in a rigorous way); pass to the limit with £ and then with .

5. Regularity and error estimates

In the first part of the present section, we deal with the proof of Theorem 2.3; in the
second one, we prove the error estimates established by Theorems 2.5 and 2.6.

Proof of Theorem 2.3. As in the previous section, for the sake of brevity, we derive
some uniform bounds only in a formal way. A rigorous procedure can be performed
arguing as in Remark 4.2.

We differentiate (2.22) in time, we multiply by 0;X,, and we integrate over ();. Recalling
that the formal derivative o/ is bounded from below by [/ thanks to (2.14), we have

1
S 10X + IV OXull L2 ) + LB Xl 20, 5m) <

) 2 (5.1)
<SP+ [[ aedx,.
Q¢

We recover the initial value of 0,X, from (2.22), taking (2.24)-(2.25) and (2.46) into
account. Applying Holder inequality, from (5.1) we get
g”aﬁxu(t)”Q + min{y, }H|0X,ul|720,5v) < €+ MOeeullrzivn0Xull 20wy (5:2)

By (3.8), there exists a positive constant ¢ (depending also on v and [) such that
O O + min{v, AN B0 vy < €+ 0k v (5.3)

Next, we take v = J '0se,, in (2.21) and we integrate from 0 to t. We obtain

8

10reullZa vy = D L), (5.4)

=4
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where
L(t) = — /0 (s e, 016,) (5.5)
L(t) = /0 (s e T 04e,) (5.6)
Ie(t) = A /0 Th*X,), T 0ke,) (5.7)
L(t) = - /0 (s X, T ke, (5.8)
0= [ (s 0 6:9)

Owing to Holder inequality, (3.9) and the definition of J, we estimate the above integrals
as follows.

[L4(t) + Is(t)| < cllklloo,ry {leull vy + Xulle20v) } 110€sll20,v7) (5.10)
I5(t) + L ()] < cllklleao,ry {lleallezomvry + Xullezo vy } 18senll2o,vr) (5.11)
s (8)| < || full 2,5y 10eenll L20,v7) - (5.12)

Now, we use (3.8) taking (4.4)—(4.5) and (2.43) into account. We deduce that

10reulaoivn < e {1+ leulZaom ) (5.13)

for some positive constant c.

Next, we consider equation (2.21) rewritten in terms of 9, and X, recalling that e, =
9, + AX,. Proceeding formally, we test it by v = —A",, and we integrate from 0 to ¢. We
obtain

1 ) ¢ 1 )
SIVOLOIF + / ((k = A0,)(s), Ad,(s)) ds = 5|V 0,* +

¢ ¢ (5.14)
A [ (V0,(5). V3, ds+ [ (94,(5).99,()) ds.
where 9o, = eg, — AXoy-
Now, we apply Holder inequality and (3.8), recalling (5.3) and (5.13). We have
t
- )\/0 (VOXyu(s), VIu(s)) ds < c {||3txu||2L2(o,t;V) + ||V79u||%2(0,t;H)} < (5.15)

< {1+ el + IVl } < {1+ 103200 |

thanks also to (4.5) and (4.10).
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Using again Holder inequality, we obtain

/0 (V1,4(5), VO,(s)) ds < / IV 1) I V8,(5)]| ds. (5.16)

Finally, recalling (5.15)—(5.16) and owing to (2.3) and (2.43), we can apply to (5.14) an
extended version of Gronwall lemma and deduce the following bound

|Vl Lo 0,m5m) < - (5.17)
Now, by (5.17), (4.5) and (4.10), we have

leullz2orv) < c. (5.18)

Next, by (5.18) and (5.13), we recover

10renllL20,mvry < c. (5.19)
Finally, by (5.19) and (5.3), we get

210X | oo 0,51y < €
10X ull 20,75y < €. (5.21)

Next, we multiply (2.22) by —AX, and we integrate by parts only in space. Thanks to
(2.14), (5.20) and (4.10) we can deduce

Xl oo (0.15w) < €. (5.22)

Finally, thanks to (5.22), (5.17) and (4.10), it holds
leull e (o,m5v) < € (5.23)

and (2.47)—(2.48) are completely proved. O

Proof of Theorem 2.5. We argue like in the derivation of the first a prior: estimate,
in the previous section. We consider the difference between equations (2.21) and (2.37),
we take v = J (e, — e) and we integrate from 0 to ¢ €]0,7[. Next, we multiply the
difference between (2.22) and (2.38) by X, — X and we integrate over ),. We detail only
the term coming from £10,X,, because we have to handle it in a different way with respect
to the procedure adopted in the previous section. Considering it on the right hand side,
we get

l i
—H //Q atxu(xu - X) < §||Xu - X“%?(O,t;H) + 2_l||8txli||%2(0,t;H)' (5-24)
t

Now, we insert (5.24) in the formula corresponding to (4.2), owing to (2.48); we add the
inequalities corresponding to (4.1) and (4.2); we apply an extended version of Gronwall
lemma and we obtain

e = elléaqoryy + 1 = X0y <

) , , (5.25)
< c{lleou = eoll® + 115 = F3sgoiran | + es®.
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Thus, on account of (5.25) and (2.58), we deduce (2.56).

Next, we multiply the difference between (2.22) and (2.38) by X, — X and we integrate
only in space. Arguing, in particular, as for (5.24), we get

V[V 0 = X)(s)I” + %II(XM = X)(s)|I” <

2 (5.26)
W
< IO + Al =) ($)Ivll(en = e)()llvs  for aa. s €]0, T
By using suitably (3.8), we deduce that
106 = X))V < ep®lloXu(s)II* + ell(e, — e) ()N, for aa. s €]0,T[.  (5.27)
Finally, since /1'“8?5XN”%°°(0,T;H) is uniformly bounded thanks to (2.48), by (5.27) and (2.56)
follows (2.57) (recall that X, — X is continuous from [0, T’ into V). O

Proof of Theorem 2.6. We consider the difference between equations (2.21) and (2.37),
we take v = e, — e and we integrate from 0 to ¢ €]0,7[. Note that this choice of test
function is admissible because Theorem 2.3 ensures that both equations (2.21) and (2.37)
may be meant in V' (see also Remark 2.4); moreover, e,—e € L*(0,7’; V) thanks to (2.49).
Next, we consider the difference between (2.22) and (2.38), we multiply by —A(X, — X)
and we integrate over (J;. We proceed as in the derivation of the second a prior: estimate,
in the previous section. Clearly, some modifications are needed due to the terms coming
from p0,X,, and £, — & We recall that, by assuming (2.59), we have here £, = o(X,) and
¢ = a(X). Similarly to the formula (4.8), we obtain

YA = + [ @ IV0 =P <
<M/Qatxax _ ) //Q X)X - V(X = X) + (5.28)

||A( )||L2 (0,£;H) + ||e“ e||L2(OtH)

Using again Holder inequality and (3.8), we get

2
v p
u/Q XA = X) < ZIAX = 0)720,5m) + N0Xull720,5m)- (5.29)
t

Now, we note that (2.52) implies X, X € L*°(Q) thanks to the three-dimensional injection
H?(Q) C C°). Thus, owing to (2.59) and (2.32), we have

J[ wix | VXV -9 e [ 19XV 06 ) < a0

< || VX[ r20,6m 1V (X = X 20061y < ellXu — Xl 220,v)-

Taking (5.29)—(5.30) and (2.59) into account, from (5.28), we deduce that

v A2
§||A( )||L2 0,t;H) ||8tX ||L2(0tH 7”6;1 - eH%Z(O,t;H) + X = X[ 2(0,6v)-

(5.31)
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Next, we add (5.31) with the inequality corresponding to (4.7) (after a suitable use of
(3.8)), owing to (2.48) and (2.56). Applying an extended version of Gronwall lemma, we
infer that

lew — elleogomym < e {12 + (€)'} (5.32)

and then
IACG = )Nl 2o,rmy < e {ut/? + (e4)'/7} - (5-33)
Thus, (2.60) is proved. Next, we multiply the difference between (2.22) and (2.38) by

—A(X, — X) and we integrate only in space. Arguing similarly to (5.29)—(5.30), we get

v 2 MQ 2
S IAX =X)($)II7 < —-|0Xu(s) I +

v (5.34)
+ —ll(ew = ) S)I + cllXlli@rm (X = X)(s)lv,  for a.a. s €]0, T
Finally, recalling (2.48), (2.60), (2.52) and (2.57), by (5.34), we deduce
1AGY = V)= < e (it + ()7} (5.35)
and (2.61) is proved. O
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