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This paper deals with the existence and the regularity of state function v in an N-dimensional shape
optimization problem. We use a variational approach to get the existence of a solution u of a variational
problem. Then we prove a Lipschitz continuity result of w by a penalization argument.

1. Introduction

The aim of this paper is to present an existence and a Lipschitz continuity results for the
following variational problem: Let D be an open subset of RV and consider the functional
J defined on the Sobolev space Hj(D) as:

1

J(v) := 5/1) ((AVv, Vv) + agv?) dz — (f,v), (1.1)

where (-,-) denotes the duality pairing between H;(D) and its dual space H™*(D), f €
H (D), ag € L*°(D) such that ap > 0 and A is a symmetric matrix of functions a;; €
L>*(D), i,j = 1,..., N, satisfying for a suitable constant o > 0 the usual ellipticity
condition:

N

Vz € E, \V/S € RN, Z az’j(x)gigj 2 O!|£|2. (12)

ij=1

For any v € H}(D), set Q, := {& € D/v(z) # 0}. Consider the class of admissible
functions V := {v € H;(D)/|Q,| = m}, where | - | denotes the Lebesgue measure and m
is given constant in |0, |D|[ (|D| < 400).

The considered problem is:

find v € V such that:
{ (P)

Yo eV, J(u)<J).

An interest of the study of the continuity of u is that one can deduce an existence result
for the following shape optimization problem:

Min {E(Q)/ Q € On}, (1.3)
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where O,, = {Q open subset of D /||Q2] = m} and E(2) = J(ugq) ; the state function ugq
being the unique solution of the Dirichlet problem:

(1.4)

—Au = f in Q,
u € H(Q),

where A : H} (D) — H (D) is the elliptic operator defined as Av = div(AVv) — agv.

In the case where D = R? and A is the Laplace operator A, M. Crouzeix [3] proved
the Lipschitz regularity of any solution of (P) for f € L®(R?) with compact support K
satisfying | K| < m. He proved also that if the boundary 09, of Q, is sufficiently smooth
then (u, §2,) solves the free boundary problem: find Q € O,, and v € H'(R?) satisfying

—Au f in Q,
v = 0 on 09, (1.5)
s\Vul> = A on 09,

where the constant A is an unknown of the problem.

For the same problem, it is proven in [9] that €, is bounded, and 0, is analytic when
m is large enough and [ fdx # 0.

The problem (1.5) arises in in electromagnetic shaping of molten metals without surface
tension; see [8] for another approach.

Since the technics used in [3] and [9] are specific to the Laplace operator in R?, we shall
proceed differently. The structure of the paper is as follows:

In Section 2, we introduce more notations and we give the statement of the main result.
In Section 3, we deal with the existence question; namely we prove a non existence result
for (1.3) for non smooth data f. Section 4 is devoted to the study of an approximated
variational problem (P.) where the the constraint [Q2| = m is regularized: we establish
the existence of a minimizer u.; then we get the regularity of u. as a consequence of
the necessary condition of optimality which is a semi-linear partial differential equation.
In Section 5, we prove that (u.) converges strongly in H' to a solution u of the initial
variational problem.

To get a Lipschitz regularity of this solution, a uniform Lipschitz estimate for u. is crucial.
Nevertheless, by exploiting an idea of H. Berestycki, L. A. Caffarelli and L. Nirenberg [1],
we establish, in Section 6, the desired estimate when u. does not change its sign.

2. Notations and the main result
In the rest of the paper, D C RY is a given open set. The Lebesgue measure of a

measurable subset £ of R, which we denote |E| is given by |E| = / Xp(z)dz. Xg
D

being the characteristic function of E defined as: Xg(z) = 1if z € E and Xg(z) = 0 if
v € EC =RV \E.

We shall use the notion of Sobolev capacity of a subset £ of RY defined as follows (see
for instance [7]):

Ci2(E) = inf {||¢||m@~) /¢ € Us}
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where U = {p € H'(RY)/p > 1 a.e. in a neighbourhood of E}. We say that a property
P(z) holds quasi everywhere (shortly g.e.) on E if P holds for all z € E except for the
elements of a set G C E with C5(G) = 0.

A subset Q of RY is said to be quasi open if for ¢ > 0, there exists a set G. such
that Q U G. is open and C;2(G:) < €. A function f : RY — R is said to be quasi
continuous if for ¢ > 0, there exists a continuous function f. : R¥ — R such that

Cio ({z € RY /(@) # L(@)}) <e.

It is well known that every Sobolev function v € H'(R"Y) has a quasi continuous repre-
sentative which we still denote u. Therfore, level sets of Sobolev functions are quasi open
sets; in particular Q, = {x € D/ |v(z)| > 0} is quasi open subset of D.

For an open subset Q of RV | the usual definition of the Sobolev space H¢ () is equivalent
to the following (see for instance [6]):

Hy(Q) ={ve H'(RY) /v =0g.e. on Q°}.

When (2 is only a quasi open subset of RY | we define the Sobolev space H{ () in the same
way. If || < +o0o we will denote ugq the unique solution of the Dirichlet problem (1.4),
which is to be understood in the following sense: find u € H}(Q) such that

Vo € Hy(Q), /

Q

(AVu, Vo) + apup dz = / fedz. (2.1)
Q

Recall that the existence and the uniqueness of uq follow from Lax Milgramm Lemma
thanks to (1.2) and the inequality:

Yu € Hy(Q), [|Vullzo) < ColQ [[ullz2), (2.2)

where Cy = Cy(N). Note that (2.2) is a consequence of Schwarz symmetrization principle
[10]. Note also that ug satisfies:

Yv € Hy(Q), J(ug) < J(v). (2.3)

In the above notation one can consider the following shape optimization problem which
is a weak version of (1.3):

Min {E(Q) / Qe om} (2.4)

where O,,, = {Q quasi open subset of D /|| = m} and E(Q) = J(uq).

G. Buttazzo and G. Dal Maso [2] proved an existence result for a class of shape optimiza-
tion problems including (2.4). But, as we will see in the sequel (Theorem 3.11), a solution
Q of (2.4) is not always open set. So an interesting question is: under which conditions
Q is an open set and therefore a solution of (1.3)?

Our main result is:
Theorem 2.1. Assume that the coefficients of A are in C%'(D), f € L?>(D)NL%(D) with
q > N and, if D is not bounded,

{ \fz| € L*(D), |agz| € L*(D) and

Vi,j =1,.. -N, Vaij-a: € LOO(D). (2'5)
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Assume also that D is of class CY' and

Jdzg € D such that : |0”D| = / do < 400 (2.6)

o0—D

where 0~ D := {z € 0D | v(x)- (x — zo) < 0}, v is the unit outward normal to 0D and
o is (N — 1)-dimensional area element of OD. Then, if f does not change its sign (i.e
f>0or f<0), the problem (P) admit at least a solution u € C®*(D) satisfying:

Ve e D, [Vu(@) < C (IfBam) + | fllagmy +1) (2.7

This theorem is a consequence of Corollary 6.4 and remark 6.5 in Section 6.

Remark 2.2. If D is not bounded, the assumption (2.5) is satisfied for example when f
has a compact support and A = A (i.e. a9 =0 and A = Id).

The assumption (2.6) is satisfied for example if |0D| < 400 because 0~ D C 0D, in
particular if D is bounded or if D = K© for some compact set K with smooth boundary.
Note also that (2.6) holds if D is star shaped with respect to some point zy € D since in
this case - D = 0.

Corollary 2.3. Assume that the hypothesis of Theorem 2.1 hold. Let u be a solution of
(P) satisfying (2.7). Then the open set S, is a solution of the shape optimization problems
(2.4) and (1.3).

This corollary is a consequence of Theorem 2.1 and Corollary 3.8 in the next section.

3. Existence and non existence results

The main difficulty to prove an existence result for problem (P) is that the class V is not
closed for the weak topology of Hj (D). To overcome this difficulty we introduce as in [3]
the problem:

find v € YV, such that:
{ ° (Po)

Yo € Vo, J(u) < J(v),
where Vo = {v € Hj(D)/ |Q,| < m}.
Remark that V C V; and as it is shown in [3] or [9]:
Lemma 3.1. The class Vg is weakly closed in H;(D).

That is if a sequence of functions v, € V; converges in weak topology of Hj(D) to
v € Hj(D), then v € Vy. Moreover we have:

Lemma 3.2. The set V is dense in Vy; that is:

Vv € Vg, Vn € N*, 3, €V such that : v, —— v in Hy(D).

n—-+0o0o

Proceeding as in [9] where this lemma is proved for D = R? one can prove it for an
unbounded subset D of RY. Here is a proof in general case.
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Proof. Let v € Vo \ 'V, ie. |,| < m. By Lebesgue measure theory, there exists an open
set @ such that: Q, C @ C D and |©| < m < |D|. Let zy € D; since r — |B(xg,7) U &
is an increasing continuous function from [0, +o0[ to [|@],|D]], there exists some ry such
that the open set w := B(xg,7) U @ satisfies: Q, C & C D and |w| = m.

Now for € > 0, consider the solution v, of the Dirichlet problem:

ve —eAv, = v+e(l —Xgq,) in w,
ve € Hi(w).

Since v+¢(1—Xq,) € L?(w) we have v, € HE (w) and Av, € L?(w); moreover the equation

is satisfied a.e. in w. But Av, =0 a.e. on {z € w/v.(x) =0} and v +¢(1 —Xgq,) # 0 a.e.
on w. Thus v, # 0 a.e. on w; extending v, by 0 outside w we get v, € V.

Let ¥ be the solution of: —AW¥ = (1—Xgq,) inw and ¥ € H;(w). The function w, = (v.—v)
satisfies:

we —eAw, = eA(v+ V) inw,
w, € Hj(w).

Taking w, as test function, we get:

/w?dx+e/|sz|2dx: —s/ngV(v+\I!) dx.

Since |w| = m and thanks to (2.2), it follows that (w,) is bounded in H}(w) and therefore
in H}(D). Thus, up to a subsequence, w, converges to 0 weakly in H}(D). Using the
above equality once more, we get strong convergence in H}(D). U

Another interesting remark is given by the following lemma.

Lemma 3.3. If u is a solution of (Py) then u satisfies:

/ (AVuVo) + apup dz = / fodz,
D D

for every function ¢ € H}(D) such that |, U Q,| < m.

Proof. Let v and ¢ as in Lemma 3.3. Then for every ¢t € R, u 4 tp € V; and therfore
dJ(u +ty)

J(u) < J(u+ tp). Thus the lemma follows from: &

= 0. O
t=0

Remark 3.4. The condition |[Q, U Q,| < m is satisfied for all ¢ € Hj(Q,). So if u is a
solution of (Py) then u = ugq,, i.e. u is the solution of the Dirichlet problem (2.1) with
Q= Q,.

From Lemma 3.3 one can prove that (see [5]):
(f#£0) = (u#£0) and (f > O(resp. f <0)) = (u > 0(resp. u <0)).

An immediate consequence of Lemmas 3.2 and 3.3 is the following lemma.
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Lemma 3.5. Assume that f satisfies the following condition:

“Au=finD
there is no u € Hy (D) such that Au=fin D, (3.1)
12, < m.
Then the problems (Py) and (P) are equivalent.
Proof. The proof is the same as for Lemma 1, in [3]. O

Remark 3.6. If (3.1) does not holds, i.e. 3u € H(D) such that —Au = f in D and
Q0| < m. Thus from (2.3) we have, Vv € Vy C H;(D), J(u) < J(v). In this case, u = up
is the unique solution of (Py) (because of the uniqueness of the solution of Dirichlet
problem).

Let us now give the existence result for problems (P,) and (P).

Theorem 3.7. The problem (P,) admit at least one solution. Moreover, if f satisfies
(3.1) then any solution of (Py) is also a solution of (P).

Proof. According to Lemma 3.5, we have only to prove the existence for (Py). The proof
is the same as for Theorem 1 in [3]. O

Corollary 3.8. Let u be a solution of (Py). Two cases could happen:

(i)  w € Vy\'V. Then there erists at least an open set Q* € O,,, satisfying 2, C QF,
which is a solution of shape optimization problems (2.4) and (1.3).

(i) w € V. Then u solves (P) and Q,, is a solution of (2.4). If moreover u is continuous
then €, is a solution of (1.3).

Remark 3.9. In the case (ii), a sufficient condition for u to be continuous is f € L?(D)
with ¢ > & Indeed, in this case u is Holder continuous (see for instance [4]).

Proof. (i) If u € V5 \'V, i.e |Q,] < m then, as in the proof of Lemma 3.2, there exists
Q* € O, such that Q, C Q* so that u € H}(Q*). Thus from (2.3) we have E(Q*) =
J(ug<) < J(u) and, since ug« € Vy, we have J(u) = J(ug+). Now for all Q € O,
ug € Vy; s0 E(Q*) = J(u) < J(uq) = F(2). That is the open set Q* is a solution of (1.3)
and (2.4).

(i) Proceeding as in (i) we get that the quasi open set €, solves (2.4). It solves also (1.3)
if €2, is an open set; this is in particular the case if u is continuous. O

Remark 3.10. A particular case of situation (i) is described in Remark 3.6. In the same
way, the situation (ii) occur for example if f does not satisfy:

—Au = fin D,

Q| =m. (3:2)

there is no u € Hy(D) such that {

By Corollary 3.8, the shape optimization problem (2.4) has always a solution. But in
general this solution is not an open set. Indeed, when (3.2) does not hold we have the
following non existence result for (1.3).
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Theorem 3.11. Let D = B(0,1) be the unite ball of R® and A = A. There exists m,
with 0 < m < |D|, and f € H™Y(D) such that the shape optimization problem (1.3) has
no solution.

To prove this theorem we need the next lemma.

Lemma 3.12. Assume that Q* is a solution of the shape optimization problem (1.3) and
that f does not satisfy (3.2), i.e. there exists u € Hy(D) such that u = up and || = m.
Then

u=1ug and Xgq, = Xq+ a.e€.

Proof. As in remark 3.6, u = ug, and E(Q,) = J(u) < J(ug-) = E(*). On the
other hand, Q* solves (1.3); so E(Q2*) = J(ug+) < J(uq), VQ € O,,. For ¢ > 0, set
Q. = {x € D/|u(z)] > €}. When ¢ \, 0, we have |Q.| ~ m. Moreover by the
same argument as in the proof of Lemma 3.2, there exists an open set w. € O, with
Q. Cw: C D. So BE(Y*) = J(ug+) < J(w.), where w, = (u—e)*—(u+e)~ € H}(w.). Thus
when ¢ N\, 0, we get J(ug-) < J(u) and therefore J(ug:) = J(u) < J(v), Yv € H}(D).
Then by strict convexity of J we obtain u = ugq~ and €2, C Q*. This finishes the proof
because |Q*| = |, = m. O

Proof of Theorem 3.11. According to Lemma 3.12 it is enough to find u € H; (D) such
that 0 < |Q,| < |D| and that €, (which is quasi open set) does not satisfy Xq, = Xq a.e.
for any open set Q with |Q| = |Q,]. Indeed, Theorem 3.11 follows with m = |{,| and
f=—-Aue H'(D).

Let us first find the function u. Consider the function v defined on R® as:

v(z) == min(1, F(x)) with F(x)= Z \:c(—linmn\’

n>0

where (z,,) is a sequence of points of D which is dense on D and (o) is a sequence of
sufficiently small non negative numbers such that:

1
Vn €N, B(z,,a,) C D and E an < e (3.3)
T
n>0

Observe that for all n € N, v(z) = 1 on B(z,, a,). From (3.3) it comes that ||F||;1 < 1
and therefore |[v < 1]| # 0 (here [v < 1] = {z € D/v(z) < 1}). Moreover v € L*°(D) and
it is superharmonic (as a minimum of two superharmonic functions); then v € Hj (D), see
for example [7]. Note that v is l.s.c. but not continuous. Fix now a function ¥ € H}(D)
such that ¥ > 0 on D and ¥ =1 on B(0, 5). Set u(z) := (1—n—v(z))*¥ wheren > 0is a
fixed sufficiently small number so that |[v < 1 —n]| # 0 and therefore |2,| # 0. Moreover
it is easily seen that |Q,| < |D| because v = 1 on UB(x,, a,,) and |U B(x,,, a,)| # 0. Note
also that €2, is quasi open set.

It is remains to prove that there is no open set Q such that || = |Q,| and Xq, = Xq a.e.
If this were the case, we will have Q # () (because || # 0). Then, by the density of (z,),
there exists ny € N and € > 0 such that ¢ < o, and B(x,,,c) C Q. This implies that
v(z) <1—mnin B(xy,, <) which is in contradiction with v = 1 in B(2y,, 0ty )- O
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In conclusion, according to Theorem 3.7, Corollary 3.8 and remarks 3.6 and 3.10, it
remains to study the case where f satisfies:

—Au = fin D,

3.4
Q] < m. (3:4)

there is no u € Hy(D) such that {

In the rest of the paper we shall assume (3.4) as well as f € L?(D) so that:

1

J()=JW) = i/D ((AV, Vv) + agv?) d —/va dz.

Remark 3.13. Thanks to maximum principle, (3.4) holds if f > 0 or f < 0.

4. An approximated variational problem

In this section we study a variational problem analog to (Py) where the constraint |€2,| <
m is regularized as follows:

Let p: R — R" be a regular even function satisfying:

- (p(r)=1,Vr>1)and (p/(r) 2 0, Vr € RY),
- p(0) =p'(0) =0 and p"(0) > 0.

Note that, for such a function, there exists a number a > 0, such that:

vr e [-1,1], p(r) > ar® (4.1)

For ¢ > 0, let p. be the function defined on R as: p.(r) := p(g) and consider the

approximated variational problem:

(Pe)

find u. € V. such that:
J(ue) < J(w), YveV,,

where V. := {v € Hj(D); ||p:(v)||r1(py < m}.
Remark 4.1. Note that, Vv € H;(D) with Xq, € L'(D), p.(v) —2 Xg, in L'-norm.
E—r

Moreover, Vo C V.; because Vv € H} (D), p-(v) < Xq,. Note also that by Fatou’s Lemma,
V. is weakly closed in Hy (D).

Lemma 4.2. Let (v.). be a sequence of functions such that: Ve > 0, v. € V.. If (v).
converges to v weakly in H} (D), then v € V.

Proof. Let (w.). be the sequence of the functions w, := (v. —&)" — (ve +¢&)". It is
obvious that w, € V;. Since v, — v weakly in H}(D), we get that w, — v weakly in
H(D). Then Lemma 3.1 finishes the proof. O

Theorem 4.3. There erists at least one solution u. of (P.).

To prove this result, we need the following lemma:
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Lemma 4.4. For every v € H}(D), we have:

1
L Ip@) |z )\ ?
[v]]20) < Collp(@) 15 oy I V0]l 20y + 2 (7” , (4.2)

where a is as in (4.1) and Cy is the constant in (2.2).

Proof of Theorem 4.3. Remark first that from (1.2) and Holder inequality, we have:

o
Vv € Hy(D), J(v) > §||VU||%2(D) — [ fll2oy vl 22 ()

For every v € V., the Lemma 4.4 applied to (2) gives:
€

1

1 mN\ 2
[v][r2(py < Com¥[|Vv[r2(p) + 26 (E> . (4.3)
Hence, for every v € V,,

1
2 o m\ s
J(v) > (||VU||L2(D) - M) - §M3 -2 (;) | f1lz2 (D) (4.4)

| e

where M, = éC’Om%HfHLz(D). Thus J(v) > —o0, Yv € V..

Now, consider a minimizing sequence (uy),. Since 0 € V. and J(0) = 0, we can assume
that J(u,) <0, Vn € N, so that (4.3) and (4.4) implies that:

lvnllgy(py) < Cr + ce,

where C = 2M0(Com% + 1) and ¢, is a positive constant converging to 0 when ¢ — 0.
Then there exists u. € H; (D) such that, using eventually a subsequence, we can assume
that (un), converges to u. weakly in H} (D). Moreover, u. satisfies:

||“s||H5(D) <(Ci+ec, (4.5)

and, by the Remark 4.1, u, € V.. Hence the theorem follows from the lower semicontinuity
of J. »

Now we have to prove the Lemma 4.4.

Proof of Lemma 4.4. Assume that ||p(v)||,1(py < oo (since (4.2) is obvious otherway).
Set Q:={x € D;|v(z)| > 1} and F := {z € D;|v(x)| < 1}. Thanks to (4.1), we have:

Ip(W) 171 )

. (4.6)

[0l 20y <
On the other hand, inequality (2.2) applied to w := (Jv| — 1)* gives:

2
| @ =2l + )z < GBI o) IV ey
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Using Holder inequality, we get:

1 2 2
(Iloll2@ = Ip@)3sq)) - < CllP) 01701200y

and therefore
1 1 2
01830y < (Coll(®) 1550 IVl 2o + 1p(0) 131y ) (4.7)

Here we used [ = ||p(v)||11(0) and ||Vv|r2@) < [[VV]l 22
Now to get (4.2) we put (4.6), (4.7) in

101220y = 10l1Z2(@) + 101122,
and we take into account that ||p(v)||z1(py = |lp(v)||L1) + [lP(V)||L1ry and 0 < @ < 1. O
Lemma 4.5. Assume that (3.4) holds. Then there exists £9 > 0 such that

||ps(us)||L1(D) =m, Ve €]0, gg). (4.8)

Proof. Assume that this is not the case, i.e. ||p.,(ue;)||1(py < m for some subsequence
(¢i)i;- Then for g; fixed and for every ¢ € C§°(D), we have ue, + tp € V., for [t| small
enough; so that J(u.,) < J(ue, + ty) implies: —Au,, = f in D. Thus, for all &;, u., = u
where u is the unique solution of the Dirichlet problem —Au = f in D, u € Hy (D). Hence

1Pz, (e )l p) = [P (W)l o) —> IXullzr) < m,

which is inconsistent with (3.4). O

Theorem 4.6. Let u. be a solution of (P-). Then there exists a positive number \. such
that:

—Au. = f — A\pl(u) in D. (4.9)
Moreover . > 0 whenever (3.4) holds.

Corollary 4.7. Assume that A satisfies (1.2). Then, if f € LY(D),q > &, any solution
ue of (Pe) is locally Holder continuous. Moreover, we have:

|uellzo(py < C| flLe(py + ¢,

where C' is a constant depending only on N, o, q, m and on the L* norms of the coefficient
of A and ay.

Proof. To prove the estimate in Corollary 4.7, it is enough to see that from (4.9) we
have —Au, = f in Q. := {x € D; |u.(z)| > ¢}, and use Theorem 8.16 in [4]. Note that
Q2] < m. O

Corollary 4.8. In addition to the hypothesis of Corollary 4.7, suppose that the coefficients
of A are in C%Y(D). Then, if f € LYD),1 < q < oo, any solution u. of (P.) is in
W2UD). In particular, if ¢ > N then u, € C.2(D), for0 < <1 — %.

loc

Moreover, if D is of class C"' then u. € CL%(D).

loc
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Proof. This is a simple consequence of Theorems 9.11 and 9.13 in [4]. O

Proof of Theorem 4.6. Let ¢ € C§°(D), and consider the function ® : R x R — R
defined as:

O(t,0) := /Dps(ﬁ(us +tp))dz — /Dps(us) dz.

It is easy to see that ® € C'(R x R,R) and ®(0,1) = 0, moreover since u can not be
identically 0 (because f # 0) and p. is even, we have:

0p®(0,1) = / pe(ue)ue dz > 0.
D

The implicit function theorem implies the existence of a positive number n > 0, and a
function 6 € C*(] — n,n[, R) such that: #(0) = 1, ®(¢,0(t)) = 0,Vt €] — n, 5[, and

/
900, /Dps(uf)ﬁpdg”
89<I>(0, 1) / pl (us)us dac
D

Thus, 6(t)(ue + tp) € V. whenever ¢ €] — n,n[. Now writing that 0 is a local minimum of
t— J(O(t)(ue + tp)), we get:

7(0) =

/ (AVu,, Vo) + agu.pdz :/ fodr — /\5/ Pl (ue)pdz,
D D D

where

/fu,;.da:—/ (AVu,, Vu,) + apu? dz
A =22 D }

/ P (ue)u. dzx
D

This proves (4.9). Now, to prove that A, > 0, we remark that for a sufficiently small num-

1
ber ¢t > 0, we have (1—t)u. € V.. Then by making ¢t — 0% in ; (J((1 = t)ue) — J(ue)) >0,

we get:

/ fu.dr — / (AVu,, Vu,) + apu? dz > 0.
D D

Proceeding as in Lemma 4.5, it comes that A, > 0 whenever (3.4) holds. O

Another consequence of Theorem 4.6 is the following lemma.

Lemma 4.9. In addition to the hypothesis of Corollary 4.8, suppose that D is of class
CY'. Then

Vz € aD, [Vu.(z)] < C (|fllpem) +¢),

where the constant C does not depend on u. and .
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Proof. In this proof, the value of C' can change but does not depend on u, and €. Remark
first that by Kato’s inequality it comes from (4.9) that:

Alug| > sign(ue)Au, > —|f| in D.

Here we used that Vr € R, pL(r)sign(r) > 0 and A > 0.

Fix now zy € 0D. Without loss of generality we can assume xy = 0, the general case
being recovered by the coordinate transformation  — x — zy. Let us denote B; the unite
ball of RY and wy its measure. By LP-theory of P.D.E (see for instance chapter 8 in [4]),
the Dirichlet problem

w = |ue| on (D N By),

has a unique solution w € I/Vlgo’q(D N By). Since ¢ > N > % and D N B, is bounded and

C
according to Corollary 4.7, w satisfies

[wllzeprmyy < CUIfllzew) + ltelleo ) < C|fllza) + €)-
On the other hand by Lemma 9.16 in [4] and thanks to the smoothness of 9D we have:
lwllw2aons,) < Clllwllzapnsy) + [ fllLaons,))-

But for ¢ > N, ||w||re(pns,) < wn||w||zes(pnp;). Thus from Sobolev embedding theorem
we get:

lwllor@mzy) < € (Ifllzewns) +¢) -

1
2

Now maximum principle implies that w < |u.| in D N B;. Taking into account that
u:(0) = w(0) = 0 (since 0 € (D N By)), we obtain that

Ou, (0 ow(0
220 < 1220 < Yo on oy

This finishes the proof since u. = 0 on 0D and therefore the tangential derivative of u,
vanishes on 9D. O

5. Preliminary results when ¢ — 0
In this section we shall derive some useful lemmas from the following result.

Theorem 5.1. Let (u:). be a sequence of solutions of the corresponding problems (P.).
Then, up to a subsequence, (u.). converges to a solution u of (Py) in Hy(D).

Proof. Recall that from (4.5), (u.). is bounded in H'-norm. Then by the Lemma 4.2,
there exists v € Vg and a subsequence, which we still denotes (u.)., such that
(uc). converges to u weakly in Hj(D). Moreover, since V; C V., u is a solution of
(Py)- Now to get a strong convergence we have to prove that u. — w in L?(D) and

Vu. — Vu in L?(D).
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By (1.2) and using the fact that ay > 0 we get

o||Vu. — Vul|rzpy < / (AVu,, Vu,) + apu? dz +

D

/ (AVu,, Vu,) + apu? dz — 2/ (AVu,, Vu) + agu.udz,
D D
Since A; > 0 and p.(r)r > 0, it comes from (4.9) that:

/(AVuE,Vug)Jraou?da:g/fugdx.
D D

Then the weak convergence implies that

e—0

/ (AVu, Vu) + agu® dz < lim inf/ (AVu,, Vue) + agu? dz,
D D

e—0

lim sup/ (AVu,, Vu,) + agu? dz < / fudz = / (AVu, Vu) + agu® dz.
D D D

The last equality is the equality in Lemma 3.3 with ¢ = u. Thus Vu, — Vu in L?(D).
Finally remark that, because of (4.1), u. — u in L?(D) is equivalent to w, — u in L?(D)

where w, = (u. — &)t — (u. + ). Note that we have also Vw, — Vu in L?*(D). But
|Qw. —u)| < 2m; therefore inequality (2.2) implies that

1
e = ull 2y < Co(2m) ¥ Ve, = V| 2oy — 0.

The next lemma gives another formulation of the necessary condition of optimality.

Lemma 5.2. Let u. be a solution of (P.), and assume that D is of class CY' and that
the coefficients of A are in C%*(D). Then, for every ® € (C’(‘)’O(RN))N, we have:

1
/ ([D®A|Vu., Vu,) dz — 5/ (AVue, Vu,)div® dz —
D D

1
1/ (AVue, Vu,) ®-vdo — —/ ([A'®)Vue, Vu,) dz —
2 Jan 2Jp
/ aOUEVUJE-CI)dx:/ fVug(I)da:+/\5/p5(u5) div ® dz, (5.1)
aD D D

where D® is the Jacobian matriz of ® and [A'®] is the matriz defined by [A'®P] =
(Vai; ®)1<ij<n-

Proof. Let ® = (®;,...,®y) € (CRM))", and @ € C=([0, 00[, R) such that:

1 ift €0,1],

0< o<1 and @o(t) =
Spos<l and o(f) {0 if ¢ € [2, 00).
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For £ € N*, consider the function ¢, defined on D by ¢i(z) = (po(%). Thanks to

Corollary 4.8, u, € VVlQOCZ(D), thus we can choose ®;¢0u. as a test function in (4.9), with
l€{1,...,N}. Integrating by part and taking the limit as k£ — oo, we get:

1/ (AVuE,Vus)Qﬂ/ldo—/ (AVu,,v) ®;0u. do +
2 Jap aD

1
/ (AVu V&) dyu. dz — 5 / (AVu,, Vu,) 0,9, dx —
D

D

1

5/ ([0, A]Vue, Vu,) @, dx—/ agu.®;0pu, dz =

D D
/f@lalusd:v—i-)\s/ pe(ue)0,®; du,
D D

where [0,A] := (0,a;,),; j<y- Hence, the lemma follows by taking the sum on I going
from 1 to N. - O

In the following lemma, we give another expression of ..

Lemma 5.3. In addition to hypothesis of Lemma 5.2, suppose that (2.5) holds. Then

1 2—N
=— | —— [ (AVu., Vu,) dz—
Ae N( 3 /D( Ue, Ve ) dx

1 1
—/ (AVu,, Vu,)v-zdo — —/ ([A'z]Vue, Vu,) doz —
2 Jop 2Jp

/aouEVug-xdx—/ fVuE-:rda:). (5.2)
D D

Moreover, if f € LY(D) with ¢ > N and if D satisfies (2.6) then there erists a constant
A independent of € < gy such that

0 <A <A (5.3)

Proof. To proof (5.2), we put ® = z¢y in (5.1), where ¢y is as in the proof of the Lemma
4.3. Then, under the condition (2.5), we take the limit as £ — co. Now, to prove (5.3),
remark first that from (5.2) we have:

1 1
0< A< —N <—§ /D ([A'z)Vu,, Vu,) dz —/DaOUEVug-xd:c—

/ fVuE-xdx—i—/ (AVUE,VuE)I/-xda> )
D a-D
Hence (5.3) follows from (4.5) and the hypothesis (2.5) and (2.6). O

6. A uniform Lipschitz estimate

The aim of this section is to prove a uniform L*-gradient estimate for a solution wu,
of (P.). Following an idea from [1], and using standard elliptic estimates, we prove such
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estimate for any solution u,, of the equation (4.9), which does not change its sign. Namely
the Harnack inequality compels us to assume the non negativity of u.. Note that if u, is
a negative solution of (P.), then —u, is a solution of the same problem with — f instead

f-

Since we are assuming that the coefficients of the matrix A are in C%!(D), we shall
consider a more general form of the equation (4.9):

Lv=f+g.(v) in D, (6.1)
where L is the elliptic operator:
N
Lv=">Y"ay@ azjv+2b )0 + c(x)v, (6.2)
1,j=1
where the coefficients a;;, b; and ¢ are functions defined on D. The functions a;; satisfy

a;; = aj; for all 4,5 = 1,..., N and the ellipticity condition (1.2). The function f is in
LY(D),q > N, and the nonlinear term g, is a nonnegative L* function satisfying:

B
ge < — and support of g, is in [0, £], (6.3)
€

where B is a constant independing on €. We always assume that D is of class C*! and
that:

aij € C°(D), b; and c are measurable, and (6.4)
llas;ll ooy, [|bill L= (py, llcllLeo(py < K Vi, j =1,...,N, '
and
c<0. (6.5)

Remark 6.1. Under the considerations in Lemma 5.3, the equation (4.9) comes from

(6.1) by taking g. = A.p. (so that B = X*||p'||pw)), Z 0ja;; and changing f in —f.
j=1

The main result of this section is the following:

Theorem 6.2. Let v € C*(D) be a nonnegative solution of (6.1), and suppose that (6.3)—
(6.5) are satisfied and that D is of class C''. Then there exists a constant C, independing
on g, such that:

Vo € D, |Vu(zo)| < C (||v]lreo(ny + || fllLapy + B) - (6.6)

Remark 6.3. This result is analog to Theorem 3.1 in [1] where the studied problem is
Lv = g.(v) in D, p- Vv =0 on 0D, with u(z) is non tangent vector to 0D.

An immediate consequence of this theorem is
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Corollary 6.4. Under the hypothesis of Theorem 2.1, any non negative (or equivalently
non positive) solution u. of (P.) satisfies:

vr €D, [Vue(a)| < O (17 oy + 1 lsncoy +1)

where C' s some constant idepending on u. and on € < &.

Moreover if there erists a sequence (&,) such that e, — 0 and u., > 0 (or equivalently
ue, < 0), then the problem (Py) admit at least one solution u € C%' (D) satisfying:

Vo € D, [Vu(e)| < C (17 2oy + 1 ey +1) -

Proof. The first estimate follows from Theorem 6.2 by the considerations in remark 6.1.
Indeed, using (4.5) and (5.2) we see that \* < C’(||f||i2(D) +1) +c.. Recall also that from

Corollary 4.7 it comes that ||u.||ze < C||f||ze(py + €.

The second statement in Corollary 6.4 follows from the first one by Theorem 5.1 and
Ascoli Theorem. O

Remark 6.5. Thanks to maximum principle, the condition of the second statement in
Corollary 6.4 is in particular satisfied if f > 0 or f < 0.

The main tool of the proof of Theorem 6.2 is the interior gradient estimate for the solutions
of the equation Lu = f in B, := B(0,7):

1
9u(0)) < 0 (s lul + 1 smy ) (6.7

where C' is a constant depending on N, o, K and on the moduli of continuity of the
coefficients a4, i,j=1, ... , N, but does not depend on u and r < 1. This follows from the
W2P-estimates, with p > N, and embedding theorem in [4]. An other important property
of the nonnegative solution of the equation Lu = f in B is:

upu < C (u(0) + || fllvsy)) » (6.8)

S
B;
1

where C' is a constant depending on N, o and K. This follows from Hélder and Harnack
estimates, of Krylov and Safonov. See [4], chapter 9. We need also the following lemma
which is a particular case of Theorem 2.2 in [1]:

Lemma 6.6. Let u € C'(B;) N C°(B,) be a nonnegative solution of Lu = 0 in the unite
ball By of D, and assume that

uw(Z) =0 and 0 <lim u(ta)

<
_t—>01—t_1’

for some x € 0B;. Then, there exists a constant M depending on N and the operator L
such that:

u(0) < M.
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Remark 6.7. To prove Theorem 6.2, we have to show that |Vv(z,)| satisfies (6.6), for
every 2o € D. We shall distinguish three cases. In the first case, we consider zy € Q, :=
{z € D;v(x) > €}, and we prove that the estimate of |Vv(zg)| follows from the second
case where zy € Qg = {z € D;0 <wv < ¢}. In this case we prove also that the estimate
of |Vu(xg)| follows from the last case where we have to estimate |Vuv| on dD.

If L is the Laplace operator and f is sufficiently smooth, then the first step is a simple
consequence of the following argument: Let Ey denotes the fundamental solution of the
Laplace’s equation, and consider w = Fn * f its convolution with f. Obviously, we have
A(v —w) = 0 € Q, and therefore |V(v — w)|?* is a subharmonic function in €, i.e.
A(|V(v —w)|?) > 0. Then,

sup |V (v —w)[* = sup [V (v — w)[?,
Qe Ne

and consequently,

sup |Vo|? < sup |[Vo|? + 2||Vw||%oo(D)-
0. 09,

Note that ||Vw]||ze(p) is bounded by a constant depending on f and N, and that sup V|
89,

is bounded by sup |Vuv].
af

Proof of Theorem 6.2. First case zy € €),:

As in the proof of Corollary 4.9, we can assume zy = 0. Let B; the ball centred at the
origin with radius ¢ := d(0,QC), the distance of the point 0 to QF, so that B; C Q C D
and v satisfies: v > ¢ on Bg, and

Lv = f in B;.
Hence, if § > 1, then (6.6) follows from (6.7) with r = 1.

Sz) —
Now, for § < 1 we consider the scaled function: w(z) := W, and see that w

satisfies the scaled equation:

Lsw = f5 in B; and w > 0 on By,
where f5 is the function defined as f5(z) := 0f(0x) — c¢(dz)de, and Ls is the operator
defined as L with the coefficients: af;(z) := a;;(6z), b)(z) = 6b;(0z) and ¢ (z) = 6°c(éx),

for i,7 = 1,...N. Note that, since § < 1, L; satisfies the condition (1.2) and (6.4).
Consider now the decomposition w = w; + we on By, where w; and wy are given by:

L5w1 = f5 in Bl, and L5w2 =0in Bl,
wy; = 0 on 0By, wy = w on 0B;.

From standard elliptic estimates, it comes that:

lwilleva < CUIfllzas,) +€); (6.9)
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where C' is a constant independent of w; and ¢ (recall that 6 < 1). On the other hand,
from the definition of 4, there exists z* € Bs N QY such that v(z*) = &. So wy(Z) = 0,

with Z = dz* € 0B,. Moreover, by the maximum principle we have w, > 0 on Bj; thus
using (6.9) and writing Vws = Vw — Vw;, we get:

[Vwy ()| < C| fllzocs) + [V (Z)].

Hence the Lemma 6.6, applied to wy normalized by the right hand side of the above
inequality, gives:

0 < wy(0) < M (C(|fllzagmy) + &) + [Vw(z)]) (6.10)
where M is the constant in the Lemma 5.5. Writing w(0) = w1 (0) 4+ w2(0), we get:
0<w(0) < C (Ifllzey) + [Vw(@)| +¢),

where C' is another constant as before. Now, writing (6.7) and (6.8) for w with r = 1, we
get:

[Vw(0)| < C s;lpw—l- ||f||Lq(B%) +e,
1

sup w < C (w(0) + || fllze(s) +€) -
%

a=N 1
Here we use the fact that || f||zv,) < wy™ || fsllzes) and || fsllasy) < |[fllLes,) + wie
(where wy = |Byl|). Then, since Vw(0) = Vo(0) and Vw(z) = Vo(z*), we have:
[Vu(0)] < C (I fllzapy + [Vu(a)| +¢) .

Thus, since z* € QF, the gradient estimate in zy € Q, with d(z, Q) < 1, will follow
from the gradient estimate on QF.

Second case zy € Q°:

v(ex)

As before, assume zy = 0, and consider the scaled function: w(z) := , satisfying:
€

Lew = f. +eg.(ew) and w >0 on By,

where L. is defined in the same way as for L in the first case, and f. is given by f.(z) =
ef(ex). By (6.3), we have:

_N 1
1f- + €9 (ew)||za(m) < €' 7 || fllzan) + wiyB-

Then, proceeding as in the first case and taking into account that w(0) < 1, < 1 and
Vv(0) = Vw(0), we get:

[Vo(0)] < C (1 + || fllzeo) + B) -

This finishes the proof if d(zq,0D) > ¢.
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v(0x)

Now if 7y € QF and 6§ = d(zy, D) < ¢, the function w(z) = satisfies

Lsw = fs+ 0g.(0w) in B; and w >0 on Bj.

Note that here f5(z) = §f(dx) so that

N 6 1 1
I1f5 + 09:(0w) | acsyy < 6° ¢ || fllLagsy) + gwj(,B < | fllzaesy) + wi B,

since 6 < € < 1. Using the same decomposition w = w; + wy as in the first case (with
fs + 0g:(dw) instate of f5) we get

V(o) < © (||f||m<35> LW B+ |w(x*)|) ,

where z* is some point of 0D where d(zq, 0D) is achieved.

Third case zg € 0D:

Here also assume that zy = 0 and consider the unite ball By = B(0, 1) of center 0 € 0D.
Let w be the unique solution of

Lw=—-f" in BiND,
w=wv on 9(B;yND),

where f~ is given by f = f* — f~ with f*,f~ > 0. Note that, since g.(v) > 0,
Lw=—f < f+ g.(v) = Lv. Thus an argument similar to that in the proof of Corollary
4.9 gives the desired estimate:

[Vo(zo)| < C([[vllzee (D) + 1 flle(0y)-
O

Remark 6.8. In [5], it is shown that if u is a continuous solution of (P) such that the
open set (2, has a sufficiently smooth boundary 0€2,. Then (u,$2,) solves the following
free boundary problem analog to (1.5):

—Au = f in €,
v = 0 on 09,
sIVul> = A on 00N D,

where the constant A is an unknown of the problem. Indeed A is the limit, up to a
subsequence, of ..
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