Lipschitz Continuity of the State Function in a Shape Optimization Problem

Mohammed Hayouni

Université Henri Poincaré Nancy 1, Institut Elie Cartan, UMR CNRS 9973, B.P. 239, 54506 - Vandœuvre-lès-Nancy, France. e-mail: hayouni@iecn.u-nancy.fr

Received June 2, 1998

This paper deals with the existence and the regularity of state function u in an N-dimensional shape optimization problem. We use a variational approach to get the existence of a solution u of a variational problem. Then we prove a Lipschitz continuity result of u by a penalization argument.

1. Introduction

The aim of this paper is to present an existence and a Lipschitz continuity results for the following variational problem: Let D be an open subset of \mathbb{R}^N and consider the functional J defined on the Sobolev space $H_0^1(D)$ as:

$$J(v) := \frac{1}{2} \int_{D} \left((A\nabla v, \nabla v) + a_0 v^2 \right) dx - \langle f, v \rangle, \tag{1.1}$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $H_0^1(D)$ and its dual space $H^{-1}(D)$, $f \in H^{-1}(D)$, $a_0 \in L^{\infty}(D)$ such that $a_0 \geq 0$ and A is a symmetric matrix of functions $a_{ij} \in L^{\infty}(D)$, $i, j = 1, \ldots, N$, satisfying for a suitable constant $\alpha > 0$ the usual ellipticity condition:

$$\forall x \in \overline{D}, \ \forall \xi \in \mathbb{R}^N, \quad \sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \ge \alpha |\xi|^2.$$
 (1.2)

For any $v \in H_0^1(D)$, set $\Omega_v := \{x \in D/v(x) \neq 0\}$. Consider the class of admissible functions $\mathbb{V} := \{v \in H_0^1(D)/|\Omega_v| = m\}$, where $|\cdot|$ denotes the Lebesgue measure and m is given constant in |0, |D| ($|D| < +\infty$).

The considered problem is:

$$\begin{cases} \text{find } u \in \mathbb{V} \text{ such that:} \\ \forall v \in \mathbb{V}, \quad J(u) \leq J(v). \end{cases}$$
 (\mathcal{P})

An interest of the study of the continuity of u is that one can deduce an existence result for the following shape optimization problem:

$$\operatorname{Min}\left\{E(\Omega) / \Omega \in \mathcal{O}_m\right\},\tag{1.3}$$

where $\mathcal{O}_m = \{\Omega \text{ open subset of } D / \|\Omega\| = m\}$ and $E(\Omega) = J(u_\Omega)$; the state function u_Ω being the unique solution of the Dirichlet problem:

$$\begin{cases}
-\mathcal{A}u &= f \text{ in } \Omega, \\
u &\in H_0^1(\Omega),
\end{cases}$$
(1.4)

where $\mathcal{A}: H_0^1(D) \longrightarrow H^{-1}(D)$ is the elliptic operator defined as $\mathcal{A}v = \operatorname{div}(A\nabla v) - a_0v$.

In the case where $D=\mathbb{R}^2$ and \mathcal{A} is the Laplace operator Δ , M. Crouzeix [3] proved the Lipschitz regularity of any solution of (\mathcal{P}) for $f\in L^\infty(\mathbb{R}^2)$ with compact support K satisfying |K|< m. He proved also that if the boundary $\partial\Omega_u$ of Ω_u is sufficiently smooth then (u,Ω_u) solves the free boundary problem: $\operatorname{find}\Omega\in\mathcal{O}_m$ and $u\in H^1(\mathbb{R}^2)$ satisfying

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega, \\
\frac{1}{2} |\nabla u|^2 = \Lambda & \text{on } \partial \Omega,
\end{cases}$$
(1.5)

where the constant Λ is an unknown of the problem.

For the same problem, it is proven in [9] that Ω_u is bounded, and $\partial \Omega_u$ is analytic when m is large enough and $\int f dx \neq 0$.

The problem (1.5) arises in in electromagnetic shaping of molten metals without surface tension; see [8] for another approach.

Since the technics used in [3] and [9] are specific to the Laplace operator in \mathbb{R}^2 , we shall proceed differently. The structure of the paper is as follows:

In Section 2, we introduce more notations and we give the statement of the main result. In Section 3, we deal with the existence question; namely we prove a non existence result for (1.3) for non smooth data f. Section 4 is devoted to the study of an approximated variational problem $(\mathcal{P}_{\varepsilon})$ where the the constraint $|\Omega| = m$ is regularized: we establish the existence of a minimizer u_{ε} ; then we get the regularity of u_{ε} as a consequence of the necessary condition of optimality which is a semi-linear partial differential equation. In Section 5, we prove that (u_{ε}) converges strongly in H^1 to a solution u of the initial variational problem.

To get a Lipschitz regularity of this solution, a uniform Lipschitz estimate for u_{ε} is crucial. Nevertheless, by exploiting an idea of H. Berestycki, L. A. Caffarelli and L. Nirenberg [1], we establish, in Section 6, the desired estimate when u_{ε} does not change its sign.

2. Notations and the main result

In the rest of the paper, $D\subseteq\mathbb{R}^N$ is a given open set. The Lebesgue measure of a measurable subset E of \mathbb{R}^N , which we denote |E| is given by $|E|=\int_D\chi_E(x)\,\mathrm{d}x$. χ_E being the characteristic function of E defined as: $\chi_E(x)=1$ if $x\in E$ and $\chi_E(x)=0$ if $x\in E^C:=\mathbb{R}^N\setminus E$.

We shall use the notion of Sobolev capacity of a subset E of \mathbb{R}^N defined as follows (see for instance [7]):

$$C_{1,2}(E) = \inf \left\{ \|\varphi\|_{H^1(\mathbb{R}^N)} / \varphi \in \mathcal{U}_E \right\}$$

where $\mathcal{U}_E = \{ \varphi \in H^1(\mathbb{R}^N) / \varphi \ge 1 \text{ a.e. in a neighbourhood of } E \}$. We say that a property P(x) holds quasi everywhere (shortly q.e.) on E if P holds for all $x \in E$ except for the elements of a set $G \subset E$ with $C_{1,2}(G) = 0$.

A subset Ω of \mathbb{R}^N is said to be *quasi open* if for $\varepsilon > 0$, there exists a set G_{ε} such that $\Omega \cup G_{\varepsilon}$ is open and $C_{1,2}(G_{\varepsilon}) < \varepsilon$. A function $f : \mathbb{R}^N \longrightarrow \mathbb{R}$ is said to be *quasi continuous* if for $\varepsilon > 0$, there exists a continuous function $f_{\varepsilon} : \mathbb{R}^N \longrightarrow \mathbb{R}$ such that $C_{1,2}(\{x \in \mathbb{R}^N / f(x) \neq f_{\varepsilon}(x)\}) < \varepsilon$.

It is well known that every Sobolev function $u \in H^1(\mathbb{R}^N)$ has a quasi continuous representative which we still denote u. Therfore, level sets of Sobolev functions are quasi open sets; in particular $\Omega_v = \{x \in D/|v(x)| > 0\}$ is quasi open subset of D.

For an open subset Ω of \mathbb{R}^N , the usual definition of the Sobolev space $H_0^1(\Omega)$ is equivalent to the following (see for instance [6]):

$$H_0^1(\Omega) = \{ v \in H^1(\mathbb{R}^N) / v = 0 \text{ q.e. on } \Omega^{\mathcal{C}} \}.$$

When Ω is only a quasi open subset of \mathbb{R}^N , we define the Sobolev space $H_0^1(\Omega)$ in the same way. If $|\Omega| < +\infty$ we will denote u_{Ω} the unique solution of the Dirichlet problem (1.4), which is to be understood in the following sense: find $u \in H_0^1(\Omega)$ such that

$$\forall \varphi \in H_0^1(\Omega), \quad \int_{\Omega} (A\nabla u, \nabla \varphi) + a_0 u \varphi \, dx = \int_{\Omega} f \varphi \, dx. \tag{2.1}$$

Recall that the existence and the uniqueness of u_{Ω} follow from Lax Milgramm Lemma thanks to (1.2) and the inequality:

$$\forall u \in H_0^1(\Omega), \ \|\nabla u\|_{L^2(\Omega)} \le C_0 |\Omega|^{\frac{1}{N}} \|u\|_{L^2(\Omega)}, \tag{2.2}$$

where $C_0 = C_0(N)$. Note that (2.2) is a consequence of Schwarz symmetrization principle [10]. Note also that u_{Ω} satisfies:

$$\forall v \in H_0^1(\Omega), \ J(u_\Omega) \le J(v). \tag{2.3}$$

In the above notation one can consider the following shape optimization problem which is a weak version of (1.3):

$$\operatorname{Min}\left\{ E(\Omega) / \Omega \in \tilde{\mathcal{O}}_m \right\} \tag{2.4}$$

where $\tilde{\mathcal{O}}_m = \{\Omega \text{ quasi open subset of D } / |\Omega| = m \}$ and $E(\Omega) = J(u_{\Omega})$.

G. Buttazzo and G. Dal Maso [2] proved an existence result for a class of shape optimization problems including (2.4). But, as we will see in the sequel (Theorem 3.11), a solution $\tilde{\Omega}$ of (2.4) is not always open set. So an interesting question is: under which conditions $\tilde{\Omega}$ is an open set and therefore a solution of (1.3)?

Our main result is:

Theorem 2.1. Assume that the coefficients of A are in $C^{0,1}(\overline{D})$, $f \in L^2(D) \cap L^q(D)$ with q > N and, if D is not bounded,

$$\begin{cases} |f x| \in L^2(D), |a_0 x| \in L^{\infty}(D) \text{ and} \\ \forall i, j = 1, \dots N, \nabla a_{ij} \cdot x \in L^{\infty}(D). \end{cases}$$
 (2.5)

Assume also that D is of class $C^{1,1}$ and

$$\exists x_0 \in D \text{ such that : } |\partial^- D| = \int_{\partial^- D} d\sigma < +\infty$$
 (2.6)

where $\partial^- D := \{x \in \partial D / \nu(x) \cdot (x - x_0) < 0\}$, ν is the unit outward normal to ∂D and σ is (N-1)-dimensional area element of ∂D . Then, if f does not change its sign (i.e $f \geq 0$ or $f \leq 0$), the problem (\mathcal{P}) admit at least a solution $u \in C^{0,1}(\overline{D})$ satisfying:

$$\forall x \in \overline{D}, \quad |\nabla u(x)| \le C \left(\|f\|_{L^2(D)}^2 + \|f\|_{L^q(D)} + 1 \right). \tag{2.7}$$

This theorem is a consequence of Corollary 6.4 and remark 6.5 in Section 6.

Remark 2.2. If D is not bounded, the assumption (2.5) is satisfied for example when f has a compact support and $A = \Delta$ (i.e. $a_0 \equiv 0$ and A = Id).

The assumption (2.6) is satisfied for example if $|\partial D| < +\infty$ because $\partial^- D \subset \partial D$, in particular if D is bounded or if $D = K^C$ for some compact set K with smooth boundary. Note also that (2.6) holds if D is star shaped with respect to some point $x_0 \in D$ since in this case $\partial^- D = \emptyset$.

Corollary 2.3. Assume that the hypothesis of Theorem 2.1 hold. Let u be a solution of (\mathcal{P}) satisfying (2.7). Then the open set Ω_u is a solution of the shape optimization problems (2.4) and (1.3).

This corollary is a consequence of Theorem 2.1 and Corollary 3.8 in the next section.

3. Existence and non existence results

The main difficulty to prove an existence result for problem (\mathcal{P}) is that the class \mathbb{V} is not closed for the weak topology of $H_0^1(D)$. To overcome this difficulty we introduce as in [3] the problem:

$$\begin{cases} \text{find } u \in \mathbb{V}_0 \text{ such that:} \\ \forall v \in \mathbb{V}_0, \quad J(u) \leq J(v), \end{cases}$$
 (\mathcal{P}_0)

where $V_0 = \{ v \in H_0^1(D) / |\Omega_v| \le m \}.$

Remark that $\mathbb{V} \subset \mathbb{V}_0$ and as it is shown in [3] or [9]:

Lemma 3.1. The class V_0 is weakly closed in $H_0^1(D)$.

That is if a sequence of functions $v_n \in V_0$ converges in weak topology of $H_0^1(D)$ to $v \in H_0^1(D)$, then $v \in V_0$. Moreover we have:

Lemma 3.2. The set \mathbb{V} is dense in \mathbb{V}_0 ; that is:

$$\forall v \in \mathbb{V}_0, \ \forall n \in \mathbb{N}^*, \ \exists \ v_n \in \mathbb{V} \ such \ that : \ v_n \xrightarrow[n \to +\infty]{} v \ in \ H_0^1(D).$$

Proceeding as in [9] where this lemma is proved for $D = \mathbb{R}^2$ one can prove it for an unbounded subset D of \mathbb{R}^N . Here is a proof in general case.

Proof. Let $v \in V_0 \setminus V$, i.e. $|\Omega_v| < m$. By Lebesgue measure theory, there exists an open set $\tilde{\omega}$ such that: $\Omega_v \subset \tilde{\omega} \subset D$ and $|\tilde{\omega}| \leq m < |D|$. Let $x_0 \in D$; since $r \longmapsto |B(x_0, r) \cup \tilde{\omega}|$ is an increasing continuous function from $[0, +\infty[$ to $[|\tilde{\omega}|, |D|]$, there exists some r_0 such that the open set $\omega := B(x_0, r_0) \cup \tilde{\omega}$ satisfies: $\Omega_v \subset \tilde{\omega} \subset D$ and $|\omega| = m$.

Now for $\varepsilon > 0$, consider the solution v_{ε} of the Dirichlet problem:

$$\begin{cases} v_{\varepsilon} - \varepsilon \Delta v_{\varepsilon} &= v + \varepsilon (1 - \chi_{\Omega_{v}}) \text{ in } \omega, \\ v_{\varepsilon} &\in H_{0}^{1}(\omega). \end{cases}$$

Since $v+\varepsilon(1-\chi_{\Omega_v})\in L^2(\omega)$ we have $v_\varepsilon\in H^2_{loc}(\omega)$ and $\Delta v_\varepsilon\in L^2(\omega)$; moreover the equation is satisfied a.e. in ω . But $\Delta v_\varepsilon=0$ a.e. on $\{x\in\omega/v_\varepsilon(x)=0\}$ and $v+\varepsilon(1-\chi_{\Omega_v})\neq0$ a.e. on ω . Thus $v_\varepsilon\neq0$ a.e. on ω ; extending v_ε by 0 outside ω we get $v_\varepsilon\in\mathbb{V}$.

Let Ψ be the solution of: $-\Delta\Psi=(1-\chi_{\Omega_v})$ in ω and $\Psi\in H^1_0(\omega)$. The function $w_\varepsilon=(v_\varepsilon-v)$ satisfies:

$$\begin{cases} w_{\varepsilon} - \varepsilon \Delta w_{\varepsilon} = \varepsilon \Delta (v + \Psi) \ in \ \omega, \\ w_{\varepsilon} \in H_0^1(\omega). \end{cases}$$

Taking w_{ε} as test function, we get:

$$\int_{\omega} w_{\varepsilon}^2 dx + \varepsilon \int_{\omega} |\nabla w_{\varepsilon}|^2 dx = -\varepsilon \int_{\omega} \nabla w_{\varepsilon} \nabla (v + \Psi) dx.$$

Since $|\omega| = m$ and thanks to (2.2), it follows that (w_{ε}) is bounded in $H_0^1(\omega)$ and therefore in $H_0^1(D)$. Thus, up to a subsequence, w_{ε} converges to 0 weakly in $H_0^1(D)$. Using the above equality once more, we get strong convergence in $H_0^1(D)$.

Another interesting remark is given by the following lemma.

Lemma 3.3. If u is a solution of (\mathcal{P}_0) then u satisfies:

$$\int_{D} (A\nabla u \nabla \varphi) + a_0 u \varphi \, dx = \int_{D} f \varphi \, dx,$$

for every function $\varphi \in H_0^1(D)$ such that $|\Omega_u \cup \Omega_{\varphi}| \leq m$.

Proof. Let u and φ as in Lemma 3.3. Then for every $t \in \mathbb{R}$, $u + t\varphi \in \mathbb{V}_0$ and therfore $J(u) \leq J(u + t\varphi)$. Thus the lemma follows from: $\frac{\mathrm{d}J(u + t\varphi)}{\mathrm{d}t}\Big|_{t=0} = 0$.

Remark 3.4. The condition $|\Omega_u \cup \Omega_v| \leq m$ is satisfied for all $\varphi \in H_0^1(\Omega_u)$. So if u is a solution of (\mathcal{P}_0) then $u = u_{\Omega_u}$, i.e. u is the solution of the Dirichlet problem (2.1) with $\Omega = \Omega_u$.

From Lemma 3.3 one can prove that (see [5]): $(f \not\equiv 0) \Longrightarrow (u \not\equiv 0)$ and $(f \geq 0 (\text{resp. } f \leq 0)) \Longrightarrow (u \geq 0 (\text{resp. } u \leq 0))$.

An immediate consequence of Lemmas 3.2 and 3.3 is the following lemma.

Lemma 3.5. Assume that f satisfies the following condition:

there is no
$$u \in H_0^1(D)$$
 such that
$$\begin{cases} -\mathcal{A}u = f \text{ in } D, \\ |\Omega_u| < m. \end{cases}$$
 (3.1)

Then the problems (\mathcal{P}_0) and (\mathcal{P}) are equivalent.

Proof. The proof is the same as for Lemma 1, in [3].

Remark 3.6. If (3.1) does not holds, i.e. $\exists u \in H_0^1(D)$ such that $-\mathcal{A}u = f$ in D and $|\Omega_u| < m$. Thus from (2.3) we have, $\forall v \in \mathbb{V}_0 \subset H_0^1(D)$, $J(u) \leq J(v)$. In this case, $u = u_D$ is the unique solution of (\mathcal{P}_0) (because of the uniqueness of the solution of Dirichlet problem).

Let us now give the existence result for problems (\mathcal{P}_0) and (\mathcal{P}) .

Theorem 3.7. The problem (\mathcal{P}_0) admit at least one solution. Moreover, if f satisfies (3.1) then any solution of (\mathcal{P}_0) is also a solution of (\mathcal{P}) .

Proof. According to Lemma 3.5, we have only to prove the existence for (\mathcal{P}_0) . The proof is the same as for Theorem 1 in [3].

Corollary 3.8. Let u be a solution of (\mathcal{P}_0) . Two cases could happen:

- (i) $u \in \mathbb{V}_0 \setminus \mathbb{V}$. Then there exists at least an open set $\Omega^* \in \mathcal{O}_m$, satisfying $\Omega_u \subset \Omega^*$, which is a solution of shape optimization problems (2.4) and (1.3).
- (ii) $u \in \mathbb{V}$. Then u solves (\mathcal{P}) and Ω_u is a solution of (2.4). If moreover u is continuous then Ω_u is a solution of (1.3).

Remark 3.9. In the case (ii), a sufficient condition for u to be continuous is $f \in L^q(D)$ with $q > \frac{N}{2}$. Indeed, in this case u is Hölder continuous (see for instance [4]).

Proof. (i) If $u \in \mathbb{V}_0 \setminus \mathbb{V}$, i.e $|\Omega_u| < m$ then, as in the proof of Lemma 3.2, there exists $\Omega^* \in \mathcal{O}_m$ such that $\Omega_u \subset \Omega^*$ so that $u \in H^1_0(\Omega^*)$. Thus from (2.3) we have $E(\Omega^*) = J(u_{\Omega^*}) \le J(u)$ and, since $u_{\Omega^*} \in \mathbb{V}_0$, we have $J(u) = J(u_{\Omega^*})$. Now for all $\Omega \in \mathcal{O}_m$, $u_{\Omega} \in \mathbb{V}_0$; so $E(\Omega^*) = J(u) \le J(u_{\Omega}) = E(\Omega)$. That is the open set Ω^* is a solution of (1.3) and (2.4).

(ii) Proceeding as in (i) we get that the quasi open set Ω_u solves (2.4). It solves also (1.3) if Ω_u is an open set; this is in particular the case if u is continuous.

Remark 3.10. A particular case of situation (i) is described in Remark 3.6. In the same way, the situation (ii) occur for example if f does not satisfy:

there is no
$$u \in H_0^1(D)$$
 such that
$$\begin{cases} -\mathcal{A}u = f \text{ in } D, \\ |\Omega_u| = m. \end{cases}$$
 (3.2)

By Corollary 3.8, the shape optimization problem (2.4) has always a solution. But in general this solution is not an open set. Indeed, when (3.2) does not hold we have the following non existence result for (1.3).

Theorem 3.11. Let D = B(0,1) be the unite ball of \mathbb{R}^3 and $\mathcal{A} = \Delta$. There exists m, with 0 < m < |D|, and $f \in H^{-1}(D)$ such that the shape optimization problem (1.3) has no solution.

To prove this theorem we need the next lemma.

Lemma 3.12. Assume that Ω^* is a solution of the shape optimization problem (1.3) and that f does not satisfy (3.2), i.e. there exists $u \in H_0^1(D)$ such that $u = u_D$ and $|\Omega_u| = m$. Then

$$u = u_{\Omega^*}$$
 and $\chi_{\Omega_u} = \chi_{\Omega^*}$ a.e.

Proof. As in remark 3.6, $u = u_{\Omega_u}$ and $E(\Omega_u) = J(u) \leq J(u_{\Omega^*}) = E(\Omega^*)$. On the other hand, Ω^* solves (1.3); so $E(\Omega^*) = J(u_{\Omega^*}) \leq J(u_{\Omega})$, $\forall \Omega \in \mathcal{O}_m$. For $\varepsilon > 0$, set $\Omega_{\varepsilon} := \{x \in D/|u(x)| > \varepsilon\}$. When $\varepsilon \searrow 0$, we have $|\Omega_{\varepsilon}| \nearrow m$. Moreover by the same argument as in the proof of Lemma 3.2, there exists an open set $\omega_{\varepsilon} \in \mathcal{O}_m$ with $\Omega_{\varepsilon} \subset \omega_{\varepsilon} \subset D$. So $E(\Omega^*) = J(u_{\Omega^*}) \leq J(w_{\varepsilon})$, where $w_{\varepsilon} = (u-\varepsilon)^+ - (u+\varepsilon)^- \in H_0^1(\omega_{\varepsilon})$. Thus when $\varepsilon \searrow 0$, we get $J(u_{\Omega^*}) \leq J(u)$ and therefore $J(u_{\Omega^*}) = J(u) \leq J(v)$, $\forall v \in H_0^1(D)$. Then by strict convexity of J we obtain $u = u_{\Omega^*}$ and $\Omega_u \subset \Omega^*$. This finishes the proof because $|\Omega^*| = |\Omega_u| = m$.

Proof of Theorem 3.11. According to Lemma 3.12 it is enough to find $u \in H_0^1(D)$ such that $0 < |\Omega_u| < |D|$ and that Ω_u (which is quasi open set) does not satisfy $\chi_{\Omega_u} = \chi_{\Omega}$ a.e. for any open set Ω with $|\Omega| = |\Omega_u|$. Indeed, Theorem 3.11 follows with $m = |\Omega_u|$ and $f = -\Delta u \in H^{-1}(D)$.

Let us first find the function u. Consider the function v defined on \mathbb{R}^3 as:

$$v(x) := \min(1, F(x))$$
 with $F(x) = \sum_{n \ge 0} \frac{\alpha_n}{|x - x_n|}$,

where (x_n) is a sequence of points of D which is dense on \overline{D} and (α_n) is a sequence of sufficiently small non negative numbers such that:

$$\forall n \in \mathbb{N}, \ B(x_n, \alpha_n) \subset D \quad \text{and} \quad \sum_{n \ge 0} \alpha_n < \frac{1}{16\pi}.$$
 (3.3)

Observe that for all $n \in \mathbb{N}$, v(x) = 1 on $B(x_n, \alpha_n)$. From (3.3) it comes that $||F||_{L^1} < 1$ and therefore $|[v < 1]| \neq 0$ (here $[v < 1] = \{x \in D/v(x) < 1\}$). Moreover $v \in L^{\infty}(D)$ and it is superharmonic (as a minimum of two superharmonic functions); then $v \in H_0^1(D)$, see for example [7]. Note that v is l.s.c. but not continuous. Fix now a function $\Psi \in H_0^1(D)$ such that $\Psi > 0$ on D and $\Psi = 1$ on $B(0, \frac{1}{2})$. Set $u(x) := (1 - \eta - v(x))^+ \Psi$ where $\eta > 0$ is a fixed sufficiently small number so that $|[v < 1 - \eta]| \neq 0$ and therefore $|\Omega_u| \neq 0$. Moreover it is easily seen that $|\Omega_u| < |D|$ because $v \equiv 1$ on $\cup B(x_n, \alpha_n)$ and $|\cup B(x_n, \alpha_n)| \neq 0$. Note also that Ω_u is quasi open set.

It is remains to prove that there is no open set Ω such that $|\Omega| = |\Omega_u|$ and $\chi_{\Omega_u} = \chi_{\Omega}$ a.e. If this were the case, we will have $\Omega \neq \emptyset$ (because $|\Omega| \neq 0$). Then, by the density of (x_n) , there exists $n_0 \in \mathbb{N}$ and $\varepsilon > 0$ such that $\varepsilon \leq \alpha_{n_0}$ and $B(x_{n_0}, \varepsilon) \subset \Omega$. This implies that $v(x) < 1 - \eta$ in $B(x_{n_0}, \varepsilon)$ which is in contradiction with $v \equiv 1$ in $B(x_{n_0}, \alpha_{n_0})$.

In conclusion, according to Theorem 3.7, Corollary 3.8 and remarks 3.6 and 3.10, it remains to study the case where f satisfies:

there is no
$$u \in H_0^1(D)$$
 such that
$$\begin{cases} -\mathcal{A}u = f \text{ in } D, \\ |\Omega_u| \le m. \end{cases}$$
 (3.4)

In the rest of the paper we shall assume (3.4) as well as $f \in L^2(D)$ so that:

$$J(v) = J(v) := \frac{1}{2} \int_{D} \left((A\nabla v, \nabla v) + a_0 v^2 \right) dx - \int_{D} f v \, \mathrm{d}x.$$

Remark 3.13. Thanks to maximum principle, (3.4) holds if $f \ge 0$ or $f \le 0$.

4. An approximated variational problem

In this section we study a variational problem analog to (\mathcal{P}_0) where the constraint $|\Omega_v| \leq m$ is regularized as follows:

Let $p: \mathbb{R} \longrightarrow \mathbb{R}^+$ be a regular **even** function satisfying:

- $(p(r) = 1, \forall r \ge 1) \text{ and } (p'(r) \ge 0, \forall r \in \mathbb{R}^+),$
- p(0) = p'(0) = 0 and p''(0) > 0.

Note that, for such a function, there exists a number a > 0, such that:

$$\forall r \in [-1, 1], \quad p(r) \ge ar^2. \tag{4.1}$$

For $\varepsilon > 0$, let p_{ε} be the function defined on \mathbb{R} as: $p_{\varepsilon}(r) := p(\frac{r}{\varepsilon})$ and consider the approximated variational problem:

$$\begin{cases} \text{find } u_{\varepsilon} \in \mathbb{V}_{\varepsilon} \text{ such that:} \\ J(u_{\varepsilon}) \leq J(v), \quad \forall v \in \mathbb{V}_{\varepsilon}, \end{cases} \tag{$\mathcal{P}_{\varepsilon}$}$$

where $\mathbb{V}_{\varepsilon} := \{v \in H_0^1(D); \|p_{\varepsilon}(v)\|_{L^1(D)} \leq m\}.$

Remark 4.1. Note that, $\forall v \in H_0^1(D)$ with $\chi_{\Omega_v} \in L^1(D)$, $p_{\varepsilon}(v) \xrightarrow[\varepsilon \to 0]{} \chi_{\Omega_v}$ in L^1 -norm. Moreover, $\mathbb{V}_0 \subset \mathbb{V}_{\varepsilon}$; because $\forall v \in H_0^1(D)$, $p_{\varepsilon}(v) \leq \chi_{\Omega_v}$. Note also that by Fatou's Lemma, \mathbb{V}_{ε} is weakly closed in $H_0^1(D)$.

Lemma 4.2. Let $(v_{\varepsilon})_{\varepsilon}$ be a sequence of functions such that: $\forall \varepsilon > 0$, $v_{\varepsilon} \in \mathbb{V}_{\varepsilon}$. If $(v_{\varepsilon})_{\varepsilon}$ converges to v weakly in $H_0^1(D)$, then $v \in \mathbb{V}_0$.

Proof. Let $(w_{\varepsilon})_{\varepsilon}$ be the sequence of the functions $w_{\varepsilon} := (v_{\varepsilon} - \varepsilon)^{+} - (v_{\varepsilon} + \varepsilon)^{-}$. It is obvious that $w_{\varepsilon} \in \mathbb{V}_{0}$. Since $v_{\varepsilon} \longrightarrow v$ weakly in $H_{0}^{1}(D)$, we get that $w_{\varepsilon} \longrightarrow v$ weakly in $H_{0}^{1}(D)$. Then Lemma 3.1 finishes the proof.

Theorem 4.3. There exists at least one solution u_{ε} of $(\mathcal{P}_{\varepsilon})$.

To prove this result, we need the following lemma:

Lemma 4.4. For every $v \in H_0^1(D)$, we have:

$$||v||_{L^{2}(D)} \le C_{0} ||p(v)||_{L^{1}(D)}^{\frac{1}{N}} ||\nabla v||_{L^{2}(D)} + 2 \left(\frac{||p(v)||_{L^{1}(D)}}{a}\right)^{\frac{1}{2}}, \tag{4.2}$$

where a is as in (4.1) and C_0 is the constant in (2.2).

Proof of Theorem 4.3. Remark first that from (1.2) and Hölder inequality, we have:

$$\forall v \in H_0^1(D), \ J(v) \ge \frac{\alpha}{2} \|\nabla v\|_{L^2(D)}^2 - \|f\|_{L^2(D)} \|v\|_{L^2(D)}.$$

For every $v \in \mathbb{V}_{\varepsilon}$, the Lemma 4.4 applied to $\left(\frac{v}{\varepsilon}\right)$ gives:

$$||v||_{L^2(D)} \le C_0 m^{\frac{1}{N}} ||\nabla v||_{L^2(D)} + 2\varepsilon \left(\frac{m}{a}\right)^{\frac{1}{2}}.$$
 (4.3)

Hence, for every $v \in \mathbb{V}_{\varepsilon}$,

$$J(v) \ge \frac{\alpha}{2} \left(\|\nabla v\|_{L^2(D)} - M_0 \right)^2 - \frac{\alpha}{2} M_0^2 - 2\varepsilon \left(\frac{m}{a} \right)^{\frac{1}{2}} \|f\|_{L^2(D)}, \tag{4.4}$$

where $M_0 = \frac{1}{\alpha} C_0 m^{\frac{1}{N}} ||f||_{L^2(D)}$. Thus $J(v) > -\infty$, $\forall v \in \mathbb{V}_{\varepsilon}$.

Now, consider a minimizing sequence $(u_n)_n$. Since $0 \in \mathbb{V}_{\varepsilon}$ and J(0) = 0, we can assume that $J(u_n) \leq 0$, $\forall n \in \mathbb{N}$, so that (4.3) and (4.4) implies that:

$$||u_n||_{H_0^1(D)} \le C_1 + c_{\varepsilon},$$

where $C_1 = 2M_0(C_0m^{\frac{1}{N}} + 1)$ and c_{ε} is a positive constant converging to 0 when $\varepsilon \to 0$. Then there exists $u_{\varepsilon} \in H_0^1(D)$ such that, using eventually a subsequence, we can assume that $(u_n)_n$ converges to u_{ε} weakly in $H_0^1(D)$. Moreover, u_{ε} satisfies:

$$||u_{\varepsilon}||_{H_0^1(D)} \le C_1 + c_{\varepsilon},\tag{4.5}$$

and, by the Remark 4.1, $u_{\varepsilon} \in \mathbb{V}_{\varepsilon}$. Hence the theorem follows from the lower semicontinuity of J.

Now we have to prove the Lemma 4.4.

Proof of Lemma 4.4. Assume that $||p(v)||_{L^1(D)} < \infty$ (since (4.2) is obvious otherway). Set $\Omega := \{x \in D; |v(x)| > 1\}$ and $F := \{x \in D; |v(x)| \le 1\}$. Thanks to (4.1), we have:

$$||v||_{L^{2}(F)}^{2} \le \frac{||p(v)||_{L^{1}(F)}^{2}}{a}.$$
(4.6)

On the other hand, inequality (2.2) applied to $w := (|v| - 1)^+$ gives:

$$\int_{\Omega} (v^2 - 2|v| + 1) dx \le C_0^2 \|p(v)\|_{L^1(\Omega)}^{\frac{2}{N}} \|\nabla v\|_{L^2(\Omega)}^2.$$

Using Hölder inequality, we get:

$$\left(\|v\|_{L^{2}(\Omega)} - \|p(v)\|_{L^{1}(\Omega)}^{\frac{1}{2}}\right)^{2} \le C_{0}^{2} \|p(v)\|_{L^{1}(\Omega)}^{\frac{2}{N}} \|\nabla v\|_{L^{2}(\Omega)}^{2},$$

and therefore

$$||v||_{L^{2}(\Omega)}^{2} \leq \left(C_{0}||p(v)||_{L^{1}(\Omega)}^{\frac{1}{N}}||\nabla v||_{L^{2}(D)} + ||p(v)||_{L^{1}(\Omega)}^{\frac{1}{2}}\right)^{2}.$$
(4.7)

Here we used $|\Omega| = ||p(v)||_{L^1(\Omega)}$ and $||\nabla v||_{L^2(\Omega)} \le ||\nabla v||_{L^2(D)}$.

Now to get (4.2) we put (4.6), (4.7) in

$$||v||_{L^2(D)}^2 = ||v||_{L^2(\Omega)}^2 + ||v||_{L^2(F)}^2,$$

and we take into account that $||p(v)||_{L^1(D)} = ||p(v)||_{L^1(\Omega)} + ||p(v)||_{L^1(F)}$ and $0 < a \le 1$.

Lemma 4.5. Assume that (3.4) holds. Then there exists $\varepsilon_0 > 0$ such that

$$||p_{\varepsilon}(u_{\varepsilon})||_{L^{1}(D)} = m, \ \forall \varepsilon \in]0, \varepsilon_{0}]. \tag{4.8}$$

Proof. Assume that this is not the case, i.e. $||p_{\varepsilon_i}(u_{\varepsilon_i})||_{L^1(D)} < m$ for some subsequence $(\varepsilon_i)_i$. Then for ε_i fixed and for every $\varphi \in C_0^{\infty}(D)$, we have $u_{\varepsilon_i} + t\varphi \in \mathbb{V}_{\varepsilon_i}$, for |t| small enough; so that $J(u_{\varepsilon_i}) \leq J(u_{\varepsilon_i} + t\varphi)$ implies: $-\mathcal{A}u_{\varepsilon_i} = f$ in D. Thus, for all ε_i , $u_{\varepsilon_i} = u$ where u is the unique solution of the Dirichlet problem $-\mathcal{A}u = f$ in D, $u \in H_0^1(D)$. Hence

$$||p_{\varepsilon_i}(u_{\varepsilon_i})||_{L^1(D)} = ||p_{\varepsilon_i}(u)||_{L^1(D)} \underset{\varepsilon_i \to 0}{\longrightarrow} ||\chi_u||_{L^1(D)} \le m,$$

which is inconsistent with (3.4).

Theorem 4.6. Let u_{ε} be a solution of $(\mathcal{P}_{\varepsilon})$. Then there exists a positive number λ_{ε} such that:

$$-\mathcal{A}u_{\varepsilon} = f - \lambda_{\varepsilon} p_{\varepsilon}'(u_{\varepsilon}) \quad in \ D. \tag{4.9}$$

Moreover $\lambda_{\varepsilon} > 0$ whenever (3.4) holds.

Corollary 4.7. Assume that A satisfies (1.2). Then, if $f \in L^q(D)$, $q > \frac{N}{2}$, any solution u_{ε} of $(\mathcal{P}_{\varepsilon})$ is locally Hölder continuous. Moreover, we have:

$$||u_{\varepsilon}||_{L^{\infty}(D)} \le C||f||_{L^{q}(D)} + \varepsilon,$$

where C is a constant depending only on N, α, q, m and on the L^{∞} norms of the coefficient of A and a_0 .

Proof. To prove the estimate in Corollary 4.7, it is enough to see that from (4.9) we have $-\mathcal{A}u_{\varepsilon} = f$ in $\Omega_{\varepsilon} := \{x \in D; |u_{\varepsilon}(x)| > \varepsilon\}$, and use Theorem 8.16 in [4]. Note that $|\Omega_{\varepsilon}| \leq m$.

Corollary 4.8. In addition to the hypothesis of Corollary 4.7, suppose that the coefficients of A are in $C^{0,1}(\overline{D})$. Then, if $f \in L^q(D), 1 < q < \infty$, any solution u_{ε} of $(\mathcal{P}_{\varepsilon})$ is in $W^{2,q}_{loc}(D)$. In particular, if q > N then $u_{\varepsilon} \in C^{1,\theta}_{loc}(D)$, for $0 < \theta < 1 - \frac{N}{q}$.

Moreover, if D is of class $C^{1,1}$ then $u_{\varepsilon} \in C^{1,\theta}_{loc}(\overline{D})$.

Proof. This is a simple consequence of Theorems 9.11 and 9.13 in [4].

Proof of Theorem 4.6. Let $\varphi \in C_0^{\infty}(D)$, and consider the function $\Phi : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}^+$ defined as:

$$\Phi(t,\theta) := \int_D p_{\varepsilon}(\theta(u_{\varepsilon} + t\varphi)) \, \mathrm{d}x - \int_D p_{\varepsilon}(u_{\varepsilon}) \, \mathrm{d}x.$$

It is easy to see that $\Phi \in C^1(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $\Phi(0,1) = 0$, moreover since u can not be identically 0 (because $f \not\equiv 0$) and p_{ε} is even, we have:

$$\partial_{\theta}\Phi(0,1) = \int_{D} p'_{\varepsilon}(u_{\varepsilon})u_{\varepsilon} \,\mathrm{d}x > 0.$$

The implicit function theorem implies the existence of a positive number $\eta > 0$, and a function $\theta \in C^1(]-\eta, \eta[,\mathbb{R})$ such that: $\theta(0) = 1$, $\Phi(t,\theta(t)) = 0$, $\forall t \in]-\eta, \eta[$, and

$$\theta'(0) = -\frac{\partial_t \Phi(0, 1)}{\partial_\theta \Phi(0, 1)} = -\frac{\int_D p'_{\varepsilon}(u_{\varepsilon}) \varphi \, \mathrm{d}x}{\int_D p'_{\varepsilon}(u_{\varepsilon}) u_{\varepsilon} \, \mathrm{d}x}.$$

Thus, $\theta(t)(u_{\varepsilon} + t\varphi) \in \mathbb{V}_{\varepsilon}$ whenever $t \in]-\eta, \eta[$. Now writing that 0 is a local minimum of $t \mapsto J(\theta(t)(u_{\varepsilon} + t\varphi))$, we get:

$$\int_{D} (A\nabla u_{\varepsilon}, \nabla \varphi) + a_{0} u_{\varepsilon} \varphi \, dx = \int_{D} f \varphi \, dx - \lambda_{\varepsilon} \int_{D} p_{\varepsilon}'(u_{\varepsilon}) \varphi \, dx,$$

where

$$\lambda_{\varepsilon} = \frac{\int_{D} f u_{\varepsilon} \, \mathrm{d}x - \int_{D} (A \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_{0} u_{\varepsilon}^{2} \, \mathrm{d}x}{\int_{D} p_{\varepsilon}'(u_{\varepsilon}) u_{\varepsilon} \, \mathrm{d}x}.$$

This proves (4.9). Now, to prove that $\lambda_{\varepsilon} \geq 0$, we remark that for a sufficiently small number t > 0, we have $(1-t)u_{\varepsilon} \in \mathbb{V}_{\varepsilon}$. Then by making $t \to 0^+$ in $\frac{1}{t} \left(J((1-t)u_{\varepsilon}) - J(u_{\varepsilon}) \right) \geq 0$, we get:

$$\int_{D} f u_{\varepsilon} dx - \int_{D} (A \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_{0} u_{\varepsilon}^{2} dx \ge 0.$$

Proceeding as in Lemma 4.5, it comes that $\lambda_{\varepsilon} > 0$ whenever (3.4) holds.

Another consequence of Theorem 4.6 is the following lemma.

Lemma 4.9. In addition to the hypothesis of Corollary 4.8, suppose that D is of class $C^{1,1}$. Then

$$\forall x \in \partial D, \ |\nabla u_{\varepsilon}(x)| \le C \left(||f||_{L^{q}(D)} + \varepsilon \right),$$

where the constant C does not depend on u_{ε} and ε .

Proof. In this proof, the value of C can change but does not depend on u_{ε} and ε . Remark first that by Kato's inequality it comes from (4.9) that:

$$\mathcal{A}|u_{\varepsilon}| \geq sign(u_{\varepsilon})\mathcal{A}u_{\varepsilon} \geq -|f| \ \ in \ D.$$

Here we used that $\forall r \in \mathbb{R}, \ p'_{\varepsilon}(r) sign(r) \geq 0 \text{ and } \lambda_{\varepsilon} \geq 0.$

Fix now $x_0 \in \partial D$. Without loss of generality we can assume $x_0 = 0$, the general case being recovered by the coordinate transformation $x \to x - x_0$. Let us denote B_1 the unite ball of \mathbb{R}^N and ω_N its measure. By L^p -theory of P.D.E (see for instance chapter 8 in [4]), the Dirichlet problem

$$\begin{cases}
-\mathcal{A}w = |f| \text{ in } D \cap B_1, \\
w = |u_{\varepsilon}| \text{ on } \partial(D \cap B_1),
\end{cases}$$

has a unique solution $w \in W_{loc}^{2,q}(D \cap B_1)$. Since $q > N > \frac{N}{2}$ and $D \cap B_1$ is bounded and according to Corollary 4.7, w satisfies

$$||w||_{L^{\infty}(D\cap B_1)} \le C(||f||_{L^q(D)} + ||u_{\varepsilon}||_{L^{\infty}(D)}) \le C(||f||_{L^q(D)} + \varepsilon).$$

On the other hand by Lemma 9.16 in [4] and thanks to the smoothness of ∂D we have:

$$||w||_{W^{2,q}(D\cap B_1)} \le C(||w||_{L^q(D\cap B_1)} + ||f||_{L^q(D\cap B_1)}).$$

But for q > N, $||w||_{L^q(D \cap B_1)} \le \omega_N ||w||_{L^{\infty}(D \cap B_1)}$. Thus from Sobolev embedding theorem we get:

$$||w||_{C^1(\overline{D\cap B_{\frac{1}{2}}})} \le C\left(||f||_{L^q(D\cap B_1)} + \varepsilon\right).$$

Now maximum principle implies that $w \leq |u_{\varepsilon}|$ in $D \cap B_1$. Taking into account that $u_{\varepsilon}(0) = w(0) = 0$ (since $0 \in \partial(D \cap B_1)$), we obtain that

$$\left|\frac{\partial u_{\varepsilon}(0)}{\partial \nu}\right| \le \left|\frac{\partial w(0)}{\partial \nu}\right| \le \|w\|_{C^{1}(\overline{D \cap B_{1}})}.$$

This finishes the proof since $u_{\varepsilon} = 0$ on ∂D and therefore the tangential derivative of u_{ε} vanishes on ∂D .

5. Preliminary results when $\varepsilon \to 0$

In this section we shall derive some useful lemmas from the following result.

Theorem 5.1. Let $(u_{\varepsilon})_{\varepsilon}$ be a sequence of solutions of the corresponding problems $(\mathcal{P}_{\varepsilon})$. Then, up to a subsequence, $(u_{\varepsilon})_{\varepsilon}$ converges to a solution u of (\mathcal{P}_0) in $H_0^1(D)$.

Proof. Recall that from (4.5), $(u_{\varepsilon})_{\varepsilon}$ is bounded in H^1 -norm. Then by the Lemma 4.2, there exists $u \in \mathbb{V}_0$ and a subsequence, which we still denotes $(u_{\varepsilon})_{\varepsilon}$, such that $(u_{\varepsilon})_{\varepsilon}$ converges to u weakly in $H_0^1(D)$. Moreover, since $\mathbb{V}_0 \subset \mathbb{V}_{\varepsilon}$, u is a solution of (\mathcal{P}_0) . Now to get a strong convergence we have to prove that $u_{\varepsilon} \to u$ in $L^2(D)$ and $\nabla u_{\varepsilon} \to \nabla u$ in $L^2(D)$.

By (1.2) and using the fact that $a_0 \ge 0$ we get

$$\alpha \|\nabla u_{\varepsilon} - \nabla u\|_{L^{2}(D)} \leq \int_{D} (A\nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_{0}u_{\varepsilon}^{2} dx +$$

$$\int_{D} (A\nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_{0}u_{\varepsilon}^{2} dx - 2 \int_{D} (A\nabla u_{\varepsilon}, \nabla u) + a_{0}u_{\varepsilon}u dx,$$

Since $\lambda_{\varepsilon} > 0$ and $p'_{\varepsilon}(r)r \geq 0$, it comes from (4.9) that:

$$\int_{D} (A\nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_{0}u_{\varepsilon}^{2} dx \leq \int_{D} f u_{\varepsilon} dx.$$

Then the weak convergence implies that

$$\int_{D} (A\nabla u, \nabla u) + a_0 u^2 dx \le \liminf_{\varepsilon \to 0} \int_{D} (A\nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_0 u_{\varepsilon}^2 dx,$$

$$\limsup_{\varepsilon \to 0} \int_{D} (A\nabla u_{\varepsilon}, \nabla u_{\varepsilon}) + a_{0}u_{\varepsilon}^{2} dx \le \int_{D} f u dx = \int_{D} (A\nabla u, \nabla u) + a_{0}u^{2} dx.$$

The last equality is the equality in Lemma 3.3 with $\varphi = u$. Thus $\nabla u_{\varepsilon} \to \nabla u$ in $L^2(D)$. Finally remark that, because of (4.1), $u_{\varepsilon} \to u$ in $L^2(D)$ is equivalent to $w_{\varepsilon} \to u$ in $L^2(D)$ where $w_{\varepsilon} = (u_{\varepsilon} - \varepsilon)^+ - (u_{\varepsilon} + \varepsilon)^-$. Note that we have also $\nabla w_{\varepsilon} \to \nabla u$ in $L^2(D)$. But $|\Omega_{(w_{\varepsilon}-u)}| \leq 2m$; therefore inequality (2.2) implies that

$$||w_{\varepsilon} - u||_{L^{2}(D)} \leq C_{0}(2m)^{\frac{1}{N}} ||\nabla w_{\varepsilon} - \nabla u||_{L^{2}(D)} \xrightarrow[\varepsilon \to 0]{} 0.$$

The next lemma gives another formulation of the necessary condition of optimality.

Lemma 5.2. Let u_{ε} be a solution of $(\mathcal{P}_{\varepsilon})$, and assume that D is of class $C^{1,1}$ and that the coefficients of A are in $C^{0,1}(\overline{D})$. Then, for every $\Phi \in (C_0^{\infty}(\mathbb{R}^N))^N$, we have:

$$\int_{D} ([D\Phi A] \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, dx - \frac{1}{2} \int_{D} (A \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, div \, \Phi \, dx - \frac{1}{2} \int_{\partial D} (A \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, \Phi \cdot \nu \, d\sigma - \frac{1}{2} \int_{D} ([A'\Phi] \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, dx - \int_{\partial D} a_{0} u_{\varepsilon} \nabla u_{\varepsilon} \cdot \Phi \, dx = \int_{D} f \nabla u_{\varepsilon} \Phi \, dx + \lambda_{\varepsilon} \int_{D} p_{\varepsilon}(u_{\varepsilon}) \, div \, \Phi \, dx, \tag{5.1}$$

where $D\Phi$ is the Jacobian matrix of Φ and $[A'\Phi]$ is the matrix defined by $[A'\Phi] = (\nabla a_{ij}\Phi)_{1\leq i,j\leq N}$.

Proof. Let $\Phi = (\Phi_1, \dots, \Phi_N) \in (C_0^{\infty}(\mathbb{R}^N))^N$, and $\varphi_0 \in C^{\infty}([0, \infty[, \mathbb{R}) \text{ such that:}$

$$0 \le \varphi_0 \le 1$$
 and $\varphi_0(t) = \begin{cases} 1 & \text{if } t \in [0, 1], \\ 0 & \text{if } t \in [2, \infty[.]] \end{cases}$

For $k \in \mathbb{N}^*$, consider the function φ_k defined on D by $\varphi_k(x) = \varphi_0(\frac{|x|}{k})$. Thanks to Corollary 4.8, $u_{\varepsilon} \in W_{loc}^{2,2}(D)$; thus we can choose $\Phi_l \varphi_k \partial_l u_{\varepsilon}$ as a test function in (4.9), with $l \in \{1, \ldots, N\}$. Integrating by part and taking the limit as $k \to \infty$, we get:

$$\frac{1}{2} \int_{\partial D} (A \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, \Phi_{l} \nu_{l} \, d\sigma - \int_{\partial D} (A \nabla u_{\varepsilon}, \nu) \, \Phi_{l} \partial_{l} u_{\varepsilon} \, d\sigma + \\
\int_{D} (A \nabla u_{\varepsilon} \nabla \Phi_{l}) \, \partial_{l} u_{\varepsilon} \, dx - \frac{1}{2} \int_{D} (A \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, \partial_{l} \Phi_{l} \, dx - \\
\frac{1}{2} \int_{D} ([\partial_{l} A] \nabla u_{\varepsilon}, \nabla u_{\varepsilon}) \, \Phi_{l} \, dx - \int_{D} a_{0} u_{\varepsilon} \Phi_{l} \partial_{l} u_{\varepsilon} \, dx = \\
\int_{D} f \Phi_{l} \partial_{l} u_{\varepsilon} \, dx + \lambda_{\varepsilon} \int_{D} p_{\varepsilon}(u_{\varepsilon}) \partial_{l} \Phi_{l} \, dx,$$

where $[\partial_l A] := (\partial_l a_{i,j})_{1 \leq i,j \leq N}$. Hence, the lemma follows by taking the sum on l going from 1 to N.

In the following lemma, we give another expression of λ_{ε} .

Lemma 5.3. In addition to hypothesis of Lemma 5.2, suppose that (2.5) holds. Then

$$\lambda_{\varepsilon} = \frac{1}{mN} \left(\frac{2 - N}{2} \int_{D} \left(A \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \right) dx - \frac{1}{2} \int_{\partial D} \left(A \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \right) \nu \cdot x d\sigma - \frac{1}{2} \int_{D} \left([A'x] \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \right) dx - \int_{D} a_{0} u_{\varepsilon} \nabla u_{\varepsilon} \cdot x dx - \int_{D} f \nabla u_{\varepsilon} \cdot x dx \right).$$
 (5.2)

Moreover, if $f \in L^q(D)$ with q > N and if D satisfies (2.6) then there exists a constant λ^* independent of $\varepsilon \leq \varepsilon_0$ such that

$$0 < \lambda_{\varepsilon} \le \lambda^*. \tag{5.3}$$

Proof. To proof (5.2), we put $\Phi = x\varphi_k$ in (5.1), where φ_k is as in the proof of the Lemma 4.3. Then, under the condition (2.5), we take the limit as $k \to \infty$. Now, to prove (5.3), remark first that from (5.2) we have:

$$0 < \lambda_{\varepsilon} \leq \frac{1}{mN} \left(-\frac{1}{2} \int_{D} \left([A'x] \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \right) dx - \int_{D} a_{0} u_{\varepsilon} \nabla u_{\varepsilon} \cdot x dx - \int_{D} f \nabla u_{\varepsilon} \cdot x dx + \int_{\partial^{-}D} \left(A \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \right) \nu \cdot x d\sigma \right).$$

Hence (5.3) follows from (4.5) and the hypothesis (2.5) and (2.6).

6. A uniform Lipschitz estimate

The aim of this section is to prove a uniform L^{∞} -gradient estimate for a solution u_{ε} of $(\mathcal{P}_{\varepsilon})$. Following an idea from [1], and using standard elliptic estimates, we prove such

estimate for any solution u_{ε} , of the equation (4.9), which does not change its sign. Namely the Harnack inequality compels us to assume the non negativity of u_{ε} . Note that if u_{ε} is a negative solution of $(\mathcal{P}_{\varepsilon})$, then $-u_{\varepsilon}$ is a solution of the same problem with -f instead f.

Since we are assuming that the coefficients of the matrix A are in $C^{0,1}(\overline{D})$, we shall consider a more general form of the equation (4.9):

$$Lv = f + g_{\varepsilon}(v) \text{ in } D, \tag{6.1}$$

where L is the elliptic operator:

$$Lv = \sum_{i,j=1}^{N} a_{ij}(x)\partial_{ij}v + \sum_{i=1}^{N} b_{i}(x)\partial_{i}v + c(x)v,$$
(6.2)

where the coefficients a_{ij} , b_i and c are functions defined on D. The functions a_{ij} satisfy $a_{ij} = a_{ji}$ for all i, j = 1, ..., N and the ellipticity condition (1.2). The function f is in $L^q(D), q > N$, and the nonlinear term g_{ε} is a nonnegative L^{∞} function satisfying:

$$g_{\varepsilon} \leq \frac{B}{\varepsilon}$$
 and support of g_{ε} is in $[0, \varepsilon]$, (6.3)

where B is a constant independing on ε . We always assume that D is of class $C^{1,1}$ and that:

$$\begin{cases}
 a_{ij} \in C^{0}(\overline{D}), \ b_{i} \text{ and } c \text{ are measurable, and} \\
 \|a_{ij}\|_{C^{0}(D)}, \|b_{i}\|_{L^{\infty}(D)}, \|c\|_{L^{\infty}(D)} \leq K \ \forall i, j = 1, \dots, N,
\end{cases}$$
(6.4)

and

$$c < 0. (6.5)$$

Remark 6.1. Under the considerations in Lemma 5.3, the equation (4.9) comes from

(6.1) by taking
$$g_{\varepsilon} = \lambda_{\varepsilon} p'_{\varepsilon}$$
 (so that $B = \lambda^* ||p'||_{L^{\infty}(\mathbb{R})}$), $b_i = \sum_{j=1}^{N} \partial_j a_{ij}$ and changing f in $-f$.

The main result of this section is the following:

Theorem 6.2. Let $v \in C^1(\overline{D})$ be a nonnegative solution of (6.1), and suppose that (6.3) – (6.5) are satisfied and that D is of class $C^{1,1}$. Then there exists a constant C, independing on ε , such that:

$$\forall x_0 \in \overline{D}, \ |\nabla v(x_0)| \le C \left(\|v\|_{L^{\infty}(D)} + \|f\|_{L^q(D)} + B \right). \tag{6.6}$$

Remark 6.3. This result is analog to Theorem 3.1 in [1] where the studied problem is $Lv = g_{\varepsilon}(v)$ in D, $\mu \cdot \nabla v = 0$ on ∂D , with $\mu(x)$ is non tangent vector to ∂D .

An immediate consequence of this theorem is

Corollary 6.4. Under the hypothesis of Theorem 2.1, any non negative (or equivalently non positive) solution u_{ε} of $(\mathcal{P}_{\varepsilon})$ satisfies:

$$\forall x \in \overline{D}, \ |\nabla u_{\varepsilon}(x)| \le C \left(\|f\|_{L^{2}(D)}^{2} + \|f\|_{L^{q}(D)} + 1 \right)$$

where C is some constant idepending on u_{ε} and on $\varepsilon \leq \varepsilon_0$.

Moreover if there exists a sequence (ε_n) such that $\varepsilon_n \to 0$ and $u_{\varepsilon_n} \geq 0$ (or equivalently $u_{\varepsilon_n} \leq 0$), then the problem (\mathcal{P}_0) admit at least one solution $u \in C^{0,1}(\overline{D})$ satisfying:

$$\forall x \in \overline{D}, \ |\nabla u(x)| \le C \left(||f||_{L^2(D)}^2 + ||f||_{L^q(D)} + 1 \right).$$

Proof. The first estimate follows from Theorem 6.2 by the considerations in remark 6.1. Indeed, using (4.5) and (5.2) we see that $\lambda^* \leq C(\|f\|_{L^2(D)}^2 + 1) + c_{\varepsilon}$. Recall also that from Corollary 4.7 it comes that $\|u_{\varepsilon}\|_{L^{\infty}} \leq C\|f\|_{L^q(D)} + \varepsilon$.

The second statement in Corollary 6.4 follows from the first one by Theorem 5.1 and Ascoli Theorem. \Box

Remark 6.5. Thanks to maximum principle, the condition of the second statement in Corollary 6.4 is in particular satisfied if $f \ge 0$ or $f \le 0$.

The main tool of the proof of Theorem 6.2 is the interior gradient estimate for the solutions of the equation Lu = f in $B_r := B(0, r)$:

$$|\nabla u(0)| \le C \left(\frac{1}{r} \sup_{B_r} |u| + ||f||_{L^q(B_r)}\right),$$
 (6.7)

where C is a constant depending on N, α , K and on the moduli of continuity of the coefficients a_{ij} , i,j=1, ..., N, but does not depend on u and $r \leq 1$. This follows from the $W^{2,p}$ -estimates, with p > N, and embedding theorem in [4]. An other important property of the nonnegative solution of the equation Lu = f in B_1 is:

$$\sup_{B_{\frac{1}{4}}} u \le C \left(u(0) + ||f||_{L^{N}(B_{1})} \right), \tag{6.8}$$

where C is a constant depending on N, α and K. This follows from Hölder and Harnack estimates, of Krylov and Safonov. See [4], chapter 9. We need also the following lemma which is a particular case of Theorem 2.2 in [1]:

Lemma 6.6. Let $u \in C^1(B_1) \cap C^0(\bar{B}_1)$ be a nonnegative solution of Lu = 0 in the unite ball B_1 of D, and assume that

$$u(\bar{x}) = 0$$
 and $0 \le \lim_{t \to 0} \frac{u(t\bar{x})}{1-t} \le 1$,

for some $\bar{x} \in \partial B_1$. Then, there exists a constant M depending on N and the operator L such that:

$$u(0) < M$$
.

Remark 6.7. To prove Theorem 6.2, we have to show that $|\nabla v(x_0)|$ satisfies (6.6), for every $x_0 \in \overline{D}$. We shall distinguish three cases. In the first case, we consider $x_0 \in \Omega_{\varepsilon} := \{x \in D; v(x) > \varepsilon\}$, and we prove that the estimate of $|\nabla v(x_0)|$ follows from the second case where $x_0 \in \Omega_{\varepsilon}^C = \{x \in D; 0 \le v \le \varepsilon\}$. In this case we prove also that the estimate of $|\nabla v(x_0)|$ follows from the last case where we have to estimate $|\nabla v|$ on ∂D .

If L is the Laplace operator and f is sufficiently smooth, then the first step is a simple consequence of the following argument: Let E_N denotes the fundamental solution of the Laplace's equation, and consider $w = E_N * f$ its convolution with f. Obviously, we have $\Delta(v-w) = 0 \in \Omega_{\varepsilon}$, and therefore $|\nabla(v-w)|^2$ is a subharmonic function in Ω_{ε} , i.e. $\Delta(|\nabla(v-w)|^2) \geq 0$. Then,

$$\sup_{\Omega_{\varepsilon}} |\nabla(v - w)|^2 = \sup_{\partial \Omega_{\varepsilon}} |\nabla(v - w)|^2,$$

and consequently,

$$\sup_{\Omega_{\varepsilon}} |\nabla v|^2 \le \sup_{\partial \Omega_{\varepsilon}} |\nabla v|^2 + 2 \|\nabla w\|_{L^{\infty}(D)}^2.$$

Note that $\|\nabla w\|_{L^{\infty}(D)}$ is bounded by a constant depending on f and N, and that $\sup_{\partial\Omega_{\varepsilon}} |\nabla v|$ is bounded by $\sup_{\Omega_{\varepsilon}^{\mathcal{E}}} |\nabla v|$.

Proof of Theorem 6.2. First case $x_0 \in \Omega_{\varepsilon}$:

As in the proof of Corollary 4.9, we can assume $x_0 = 0$. Let B_{δ} the ball centred at the origin with radius $\delta := d(0, \Omega_{\varepsilon}^C)$, the distance of the point 0 to Ω_{ε}^C , so that $B_{\delta} \subset \Omega \subset D$ and v satisfies: $v \geq \varepsilon$ on \bar{B}_{δ} , and

$$Lv = f$$
 in B_{δ} .

Hence, if $\delta > 1$, then (6.6) follows from (6.7) with r = 1.

Now, for $\delta < 1$ we consider the scaled function: $w(x) := \frac{v(\delta x) - \varepsilon}{\delta}$, and see that w satisfies the scaled equation:

$$L_{\delta}w = f_{\delta}$$
 in B_1 and $w \geq 0$ on \bar{B}_1 ,

where f_{δ} is the function defined as $f_{\delta}(x) := \delta f(\delta x) - c(\delta x)\delta \varepsilon$, and L_{δ} is the operator defined as L with the coefficients: $a_{ij}^{\delta}(x) := a_{ij}(\delta x), b_i^{\delta}(x) = \delta b_i(\delta x)$ and $c^{\delta}(x) = \delta^2 c(\delta x)$, for i, j = 1, ... N. Note that, since $\delta < 1$, L_{δ} satisfies the condition (1.2) and (6.4). Consider now the decomposition $w = w_1 + w_2$ on B_1 , where w_1 and w_2 are given by:

$$\begin{cases} L_{\delta}w_1 = f_{\delta} \text{ in } B_1, \\ w_1 = 0 \text{ on } \partial B_1, \end{cases} \text{ and } \begin{cases} L_{\delta}w_2 = 0 \text{ in } B_1, \\ w_2 = w \text{ on } \partial B_1. \end{cases}$$

From standard elliptic estimates, it comes that:

$$||w_1||_{C^1(\bar{B}_1)} \le C(||f||_{L^q(B_1)} + \varepsilon), \tag{6.9}$$

where C is a constant independent of w_1 and δ (recall that $\delta < 1$). On the other hand, from the definition of δ , there exists $x^* \in \partial B_{\delta} \cap \Omega_{\varepsilon}^C$ such that $v(x^*) = \varepsilon$. So $w_2(\bar{x}) = 0$, with $\bar{x} = \delta x^* \in \partial B_1$. Moreover, by the maximum principle we have $w_2 \geq 0$ on \bar{B}_1 ; thus using (6.9) and writing $\nabla w_2 = \nabla w - \nabla w_1$, we get:

$$|\nabla w_2(\bar{x})| \le C||f||_{L^q(B_1)} + |\nabla w(\bar{x})|.$$

Hence the Lemma 6.6, applied to w_2 normalized by the right hand side of the above inequality, gives:

$$0 \le w_2(0) \le M\left(C(\|f\|_{L^q(B_1)} + \varepsilon) + |\nabla w(\bar{x})|\right),\tag{6.10}$$

where M is the constant in the Lemma 5.5. Writing $w(0) = w_1(0) + w_2(0)$, we get:

$$0 \le w(0) \le C \left(\|f\|_{L^q(B_1)} + |\nabla w(\bar{x})| + \varepsilon \right),\,$$

where C is another constant as before. Now, writing (6.7) and (6.8) for w with $r = \frac{1}{4}$, we get:

$$|\nabla w(0)| \le C \left(\sup_{B_{\frac{1}{4}}} w + ||f||_{L^{q}(B_{\frac{1}{4}})} + \varepsilon \right),$$

$$\sup_{B_{\frac{1}{4}}} w \le C \left(w(0) + ||f||_{L^{q}(B_{1})} + \varepsilon \right).$$

Here we use the fact that $||f||_{L^{N}(B_{1})} \leq \omega_{N}^{\frac{q-N}{qN}} ||f_{\delta}||_{L^{q}(B_{1})}$ and $||f_{\delta}||_{L^{q}(B_{1})} \leq ||f||_{L^{q}(B_{r})} + \omega_{N}^{\frac{1}{q}} \varepsilon$ (where $\omega_{N} = |B_{1}|$). Then, since $\nabla w(0) = \nabla v(0)$ and $\nabla w(\bar{x}) = \nabla v(x^{*})$, we have:

$$|\nabla v(0)| \le C \left(||f||_{L^q(D)} + |\nabla v(x^*)| + \varepsilon \right).$$

Thus, since $x^* \in \Omega_{\varepsilon}^C$, the gradient estimate in $x_0 \in \Omega$, with $d(x_0, \Omega_{\varepsilon}^C) < 1$, will follow from the gradient estimate on Ω_{ε}^C .

Second case $x_0 \in \Omega^C$:

As before, assume $x_0 = 0$, and consider the scaled function: $w(x) := \frac{v(\varepsilon x)}{\varepsilon}$, satisfying:

$$L_{\varepsilon}w = f_{\varepsilon} + \varepsilon g_{\varepsilon}(\varepsilon w)$$
 and $w \ge 0$ on \bar{B}_1 ,

where L_{ε} is defined in the same way as for L_{δ} in the first case, and f_{ε} is given by $f_{\varepsilon}(x) = \varepsilon f(\varepsilon x)$. By (6.3), we have:

$$||f_{\varepsilon} + \varepsilon g_{\varepsilon}(\varepsilon w)||_{L^{q}(B_{1})} \leq \varepsilon^{1-\frac{N}{q}} ||f||_{L^{q}(B_{\varepsilon})} + \omega_{N}^{\frac{1}{q}} B.$$

Then, proceeding as in the first case and taking into account that $w(0) \leq 1$, $\varepsilon \leq 1$ and $\nabla v(0) = \nabla w(0)$, we get:

$$|\nabla v(0)| \le C \left(1 + ||f||_{L^{\infty}(D)} + B\right).$$

This finishes the proof if $d(x_0, \partial D) \geq \varepsilon$.

Now if $x_0 \in \Omega_{\varepsilon}^C$ and $\delta = d(x_0, \partial D) < \varepsilon$, the function $w(x) = \frac{v(\delta x)}{\delta}$ satisfies

$$L_{\delta}w = f_{\delta} + \delta g_{\varepsilon}(\delta w)$$
 in B_1 and $w \geq 0$ on B_1 .

Note that here $f_{\delta}(x) = \delta f(\delta x)$ so that

$$||f_{\delta} + \delta g_{\varepsilon}(\delta w)||_{L^{q}(B_{1})} \leq \delta^{1-\frac{N}{q}} ||f||_{L^{q}(B_{1})} + \frac{\delta}{\varepsilon} \omega_{N}^{\frac{1}{q}} B \leq ||f||_{L^{q}(B_{1})} + \omega_{N}^{\frac{1}{q}} B,$$

since $\delta < \varepsilon < 1$. Using the same decomposition $w = w_1 + w_2$ as in the first case (with $f_{\delta} + \delta g_{\varepsilon}(\delta w)$ instate of f_{δ}) we get

$$|\nabla v(0)| \le C \left(\|f\|_{L^q(B_\delta)} + \omega_N^{\frac{1}{q}} B + |\nabla v(x^*)| \right),$$

where x^* is some point of ∂D where $d(x_0, \partial D)$ is achieved.

Third case $x_0 \in \partial D$:

Here also assume that $x_0 = 0$ and consider the unite ball $B_1 = B(0, 1)$ of center $0 \in \partial D$. Let w be the unique solution of

$$\begin{cases} Lw = -f^- & \text{in } B_1 \cap D, \\ w = v & \text{on } \partial(B_1 \cap D), \end{cases}$$

where f^- is given by $f = f^+ - f^-$ with $f^+, f^- \ge 0$. Note that, since $g_{\varepsilon}(v) \ge 0$, $Lw = -f \le f + g_{\varepsilon}(v) = Lv$. Thus an argument similar to that in the proof of Corollary 4.9 gives the desired estimate:

$$|\nabla v(x_0)| \le C(||v||_{L^{\infty}}(D) + ||f||_{L^q(D)}).$$

Remark 6.8. In [5], it is shown that if u is a continuous solution of (\mathcal{P}) such that the open set Ω_u has a sufficiently smooth boundary $\partial\Omega_u$. Then (u, Ω_u) solves the following free boundary problem analog to (1.5):

$$\left\{ \begin{array}{rcl} -\Delta u &=& f \ in \ \Omega, \\ u &=& 0 \ on \ \partial \Omega, \\ \frac{1}{2} |\nabla u|^2 &=& \Lambda \ on \ \partial \Omega \cap D, \end{array} \right.$$

where the constant Λ is an unknown of the problem. Indeed Λ is the limit, up to a subsequence, of λ_{ε} .

Acknowledgements. This work is a part of my Ph.D. thesis which was supervized by Professor Michel Pierre. I would like to express him my sincere gratitude for his guidance and constant encouragements.

References

- [1] H. Berestycki, L. A. Caffarelli, L. Nirenberg: Uniform estimates for regularization of free boundary problems, Analysis and Partial Differential Equations, Coll. Pap. dedic. Mischa Cotlar, Lect. Notes Pure Appl. Math. 122 (1990) 567–619.
- [2] G. Buttazzo, G. Dal Maso: An existence result for a class of shape optimization problems, Arch. Ration Mech. Anal. 122 (1993) 183–195.
- [3] M. Crouzeix: Variational approach of magnetic shaping problem, Eur. Jour. of Mechanics 10(5) (1991) 527–536.
- [4] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
- [5] M. Hayouni: Existence et régularité pour des problèmes d'optimisation de formes, Thèse de l'Université Henri Poincaré Nancy 1, 1997.
- [6] L. I. Hedberg: Spectral synthesis in Sobolev space and uniqueness of solutions of the Dirichlet problem, Acta Math. 147 (1981) 237–264.
- [7] J. Heionen, T. Kipelanen, O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations, Calderon press, 1993.
- [8] A. Henrot, M. Pierre: About existence of equilibria in electromagnetic casting, Quarterly of Applied Math. 49(3) (1991) 563–575.
- [9] X. Pelgrin: Etude d'un problème à frontière libre bidimensionnel, Thèse de l'Université de Rennes I, 1994.
- [10] E. Sperner: Symmetrisierung für Funktionen mehrerer Variablen, Man. Math. (1974) 159–170.