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We show that Dykstra’s algorithm with Bregman projections, which finds the Bregman projection of
a point onto the nonempty intersection of finitely many closed convex sets, is actually the nonlinear
extension of Bregman’s primal-dual, dual coordinate ascent, row-action minimization algorithm. Based
on this observation we give an alternative convergence analysis and a new geometric interpretation of
Dykstra’s algorithm with Bregman projections which complements recent work of Censor and Reich,
Bauschke and Lewis, and Tseng.
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1. Introduction

The Dykstra algorithm is an iterative procedure which (asymptotically) finds the nearest
point projection (also called the orthogonal projection) of any given point onto the inter-
section of a given finite family of closed convex sets. It iterates by passing sequentially
over the individual sets and projecting onto each one a deflected version of the previous
iterate. The algorithm was first proposed and analyzed by Dykstra [26] and rediscov-
ered by Han [31]. Published work on Dykstra’s algorithm includes: Boyle and Dykstra
[5], Gaffke and Mathar [30], Tusem and De Pierro [37], Crombez [20], Combettes [17],
Bauschke and Borwein [1], Deutsch and Hundal [25], Hundal and Deutsch [32], Han and
Lou [33], and Escalante and Raydan [29]. See also Robertson, Wright and Dykstra [43],
and Dykstra [27].

Recently Censor and Reich [14] proposed a synthesis of Dykstra’s algorithm with Breg-
man distances and obtained a new algorithm that solves the best approximation problem
with Bregman projections. However, they established convergence of the resulting Dyk-
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stra algorithm with Bregman projections only when the constraints sets are half-spaces.
Shortly thereafter Bauschke and Lewis [4] provided the first proof for general closed con-
vex constraints sets. Their analysis relies on some strong properties of Bregman distances
corresponding to Legendre functions which were treated earlier by Bauschke and Borwein
[3]. Bauschke and Lewis [4] also discovered the close relationship between the Dykstra
algorithm with Bregman projections and the very general and powerful algorithmic frame-
work of Tseng [46], namely the Dual Block Coordinate Ascent (DBCA) methods.

There is, however, a completely different point of departure which leads exactly to the
same Dykstra algorithm with Bregman projections. This is Bregman’s optimization al-
gorithm for the solution of the problem

min f(z),
Az < b, (1.1)
z €S,

where A is a given real m x n matrix, b € R™, the m-dimensional Euclidean space,
is a given vector, and S is the closure of the set S which is the zone of the, so-called,
Bregman function f(z). Bregman’s optimization algorithm was originally proposed in
[6]. It is a row-action (see Censor [9]) algorithm of the primal-dual type which achieves
dual coordinate ascent by performing, sequentially, Bregman projections with respect to
f onto the half-spaces in (1.1) or onto certain well-defined hyperplanes parallel to them.
See Bregman [6], Censor and Lent [12] or Censor and Zenios [16, Algorithm 6.3.1]. For
the special choice f(z) = 3||z||* the algorithm coincides with Hildreth’s algorithm [35]
and D’Esopo’s [24]; see also Lent and Censor [41]. Bregman’s optimization algorithm was
further studied and generalized in several directions; see, e.g., Censor and Lent [12] (a
storage-efficient adaptation to linear inequalities interval constraints, modeled after the
work of Herman and Lent [34]), De Pierro and Iusem [23] and Tusem and Zenios [38]
(introduction of underrelaxation parameters), and Iusem [36] (dual convergence and rate

of primal convergence). See also Censor and Zenios [16].

However, all these studies handled only linear (equalities, inequalities, or intervals) con-
straints in (1.1) and an extension of Bregman’s optimization algorithm to general closed
convex sets remained elusive.

We claim here that Dykstra’s algorithm with Bregman projections is precisely the nonlin-
ear extension of the above-mentioned Bregman’s optimization algorithm. This recognition
goes beyond the fact that the two algorithms coincide in the linear constraints case, as
was shown by Censor and Reich [14]. It enables us to present here a new proof and
convergence analysis of Dykstra’s algorithm with Bregman projections, for almost cyclic
control sequences, which rests on Bregman’s original work [6]. Our new analysis differs
from the approaches of Bauschke and Lewis [4] and of Tseng [46] in two fundamental
ways. Firstly, it offers an intuitive geometric interpretation of the iterative steps of the
algorithm, helping to better “understand” its action. Secondly, it results in a convergence
theorem in which the conditions on f and on the constraints sets {C;}7, are different
from those in [4] and [46], extending the applicability of the algorithm.

The present paper is laid out as follows. In Section 2 we present the algorithm and
present several preliminary lemmas. The convergence theorem is proven in Section 3.
We conclude by showing, in Section 4, the precise relation of the algorithm with the
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problem of finding the projection onto the intersection of closed convex sets, giving our
new geometric interpretation, and describing the differences between the conditions in
our convergence theorem and those in Bauschke and Lewis [4] and Tseng [46].

Projection methods have been studied intensively. They are applicable and useful in
best approximation theory, optimization, statistics, partial differential equations, image
reconstruction from projections, signal processing and other fields. See, e.g., the review
and tutorial of Bauschke and Borwein [2] or Combettes [18, 19] and the references therein.

The use of Bregman projections, which seek to minimize some generalized distance other
than the Euclidean, has in the past two decades propagated into a variety of problem
areas, generating theoretical as well as practical consequences. These include: proximal
point algorithms, e.g., Eckstein [28], Censor and Zenios [15], Kiwiel [40], and Teboulle
[45]; variational inequalities, see, e.g., Censor, Iusem and Zenios [11] or Burachik and
Scheimberg [8]; multiprojections, see Censor and Elfving [10]; paracontractions and other
operators, see Censor and Reich [13]. Csiszdr presented in [21] an axiomatic theory
which leads to Bregman distances; in that connection see also Bregman and Naumova [7].
Bauschke and Borwein [3] introduced the Legendre/Bregman functions. Some of these
developments are included also in Censor and Zenios [16], but the above list is by no
means exhaustive.

Notions and notations from convex analysis are as in Rockafellar [44]. For any set C' in R",
C, int(C), ri(C) and bd(C) denote the closure, interior, relative interior and boundary of
C, respectively. For any closed proper convex function f on R", dom f = {z € R" |f(z) <
oo} and V f(z) denotes the gradient of f at x. A proper closed convex function f on R"
with int(dom f) # () is said to be Legendre if it is strictly convex and differentiable on
int(dom f), and

Jim (Vf(z +t(y = 2)),y =) = —o0

for every z € bd(dom f) and y € int(dom f). A proper closed convex function f on R" is
called co-finite if

tginoof(tx)/t = 400

for every z € R", x # 0.

2. The algorithm and preliminary results

Let f be a proper closed strictly convex function on dom f C R™ where dom f is a closed
set and int(dom f) # (. The function f is further assumed to be continuous on dom f

and differentiable on int(dom f). Set Dy (z,y) 2 f(z)—f(y) —(Vf(y),z —y), defined for
allz € dom f , y € int(dom f), where (-, -) denotes the inner product in R". The function
Dy has a metric property: Dy(z,y) > 0, and Df(z,y) = 0iff z = y. See, e.g., [16, Lemma
2.1.1].

Assume also that Dy satisfies the following conditions:

D1 For every a € R and for every z € dom f the partial level set of Dy
L(z,a) = {z € int(dom f) | Ds(z,z) < a}

is bounded.
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D2 If 2* € dom f, zF € int(dom f), limy_,o, Dy (2%, 2%) = 0,

limg o 7% = z* and {z*} is bounded, then lim;_,., 2¥ = 2*.
D3 If 2* € int(dom f) and z*¥ — z, then limy_,o, D;(z, 2*) = 0.
Functions f that fulfill all the above conditions were termed in [12] Bregman functions
with zone S = int(dom f) and their class was denoted by f € B(S). (In [12] and several
subsequent publications this definition included an additional condition, concerning the
boundedness of the second partial level set of Dy, first observed by Kiwiel [39] to be
superfluous). See also [16, Chapter 2| or Bauschke and Borwein [3] for comprehensive
analyses of the properties of Dy.

Let C; C R", i = 1,2,...,m, be closed convex subsets of R", and let C = (>, C; be
nonempty. We assume that C' Ndom f is not empty, and that C; Nint(dom f) # @, for all
i (but C Nint(dom f) may be empty).

Consider the following problem, which generalizes (1.1):

min f(z),
x € CNdom f. (2.1)

The best approximation problem, in the sense of Bregman’s generalized distance Dy, from
a point z° to the set intersection C' is:

min Dy (z, z%),
z€Cndomf. (2.2)

However, we choose to make the additional assumption that f has a global minimum at
7% € int(dom f). Thus we assume that

D4 There exists an z° € int(dom f) for which V f(z°) = 0.

Sufficient conditions for this usually involve certain coercivity assumptions on f, see, e.g.,
Peressini, Sullivan and Uhl [42, Section 1.4]. When D4 is imposed, the problem (2.2)
reduces to (2.1), which looks somewhat more generic, and the subsequent presentation
and treatment become simpler. However, there is no loss of generality involved because it
is possible to treat (2.2) directly without assumption D4 along the same lines of reasoning,
but at the expense of complicating the presentation.

To guarantee that Algorithm 2.4 below is well-defined we need also the following condition:
D5 The function f is Legendre.

Assumption D5 implies the, so called, zone consistency, see, e.g., [16, Definition 2.2.1]
and [3, Section 3.

Consider some examples of functions satisfying D1 — D5. In each one of these examples
we suppose the function f on R" is of the form f(x) = 22:1 g(z;), where g is a function
on R!. It is not difficult to verify that the functions f satisfy D1 — D5, for the following
g:

Example 2.1. g(z) = %|x|p, for 1 < p < oo; domg = R

Example 2.2. g(z) = —ixp +ax,for 0 <p<1, a>0; domg=[0,+00).
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Example 2.3 (negative Shannon entropy). g(z) = xzlnz — z, (with the definition
0log0 = 0); dom g = [0, +00).

Some more examples of functions satisfying D1 — D3 and D5 can be found in [3, Section
6] which appeared recently in this journal.

The nonlinear extension of Bregman’s optimization algorithm is as follows.

Algorithm 2.4.
1. Data at the beginning of the k-th iterative step:
1.1. Current approximation z¥ € int(dom f);
1.2. m vectors af € R™ and m real numbers o, i = 1,2,... ,m, such that each pair
(ak, o) deﬁnes a supporting hyperplane H : for C,, ie.,

={z € R"| (a},7) = o/},

such that <a x> < aF, for all z € C;, and <az,x> = af, for some 7 € C;.
2. Initialization:
2.1. z¥ is the (global) minimum point of f(z) on R, i.e.,

Vf(z®) =o0. (2.3)
2.2. Seta) =0and o? =0, foralli =1,2,...,
3. Iterative step:
3.1. Choose an operating control index iy € {1,2,... ,m};
3.2. Construct the function Fy(z) 2 f(z) — (Vf(z*) +ak ,z) and solve the sub-
problem:

min Fy(z),

z € C;, Ndom f. (2.4)

We show below (Lemma 2.7) that this problem has a solution z**! € int(dom f).

For ¢ # iy, put ak+1 = a¥ and ak+1 aF; for i = i let
afk“ =a} +Vf(z*) - V") (2.5)
k+1 <0,k+1 k+1> ) (26)
4. Control sequence:
Suppose the indices iy are chosen in an almost cyclic order, i.e., there exists an
integer T' > m such that {1,2,... ,m} C {i,11,... ,ip47}, for all r.

Remark 2.5. In the cyclic case, i.e., if i — 1 = k£ mod m, this algorithm produces the

same sequence {z*} as the Dykstra algorithm with Bregman projections of Censor and
Reich [14] and Bauschke and Lewis [4].

Remark 2.6. If the function f is co-finite, then the mapping y = V f(z) is a one-to-one
mapping of int(dom f) onto R"; see, e.g., Rockafellar [44, Theorem 26.5]. Thus there
exists a point zF € int(dom f) such that Vf(z*) = Vf(z*) + a;,, and z*!, defined in
Step 3.2 of Algorithm 2.4, solves the problem Milgec;, ndom f Dy (z, 2%).



324 L. M. Bregman, Y. Censor, S. Reich / Dykstra’s algorithm

The lemma below shows that Algorithm 2.4 is well-defined.
Lemma 2.7. Let the conditions D1 — D5 hold. Then

(i)  The problem (2.4) has a unique solution z**! € int(dom f);
ii)  The point 2% and the pairs (a¥,aF), i =1,2,...,m, satisfy the conditions of Step 1
(2 3
of Algorithm 2.4, for every k.

Proof. By D4, z° € int(dom f); hence the statement (ii) is true for ¥ = 0. Suppose
(ii) is true for some k > 0. We show that the problem (2.4) has a unique solution z**!
which satisfies the condition of Step 1.1, and af“ and af“, defined in Step 3.2, satisfy
the conditions of Step 1.2 of Algorithm 2.4.

Choose Z € C;, Nint(dom f) (this intersection is assumed to be not empty), and let

v E Fi(Z). Denote @ = {z € R" | Fi(z) < v} NC;,. It is clear that @ is nonempty and
closed. Further,

Dy(z,2") = f(z) — f(a*) = (Vf(@"),z — a*) = Fi(2) + (af ,z) + B,

where 8, = (Vf(z),z*) — f(z*).

For every z € (), we have Fi(z) < 7, and <afk,ac> < afk because, by the induc-
tion hypothesis, the pair (afk,afk) defines a supporting hyperplane for C;,. Therefore
Dy(z,2%) < v+ of + Bk, and Q is contained in the level set L(z*,v+ of + ;) = {z €
dom f | Dy(z,2*) < v+ af + Bi}. Since L(z*,r) is bounded for every r (see, e.g., [3,
Theorem 3.7]), the set @ is also bounded. Hence the function Fy(z) attains its minimum
on @ at some point z**! which is also its minimal point on Cj;,. The minimal point
zF1 is unique because the function Fy(z) is strictly convex; z¥*! € int(dom f) because

Ci, Nint(dom f) # @, and the function Fy(z) is Legendre.

Next we verify that the pair (afljl, afk“) defines a supporting hyperplane Hz'12+1 for C;, at
the point z# 1.
Indeed, since z*! is the minimum point of Fi(z) on C;,, we have:
(V@) = V(") —af ,z —2"") >0, for all z € Cy, (2.7)
or
(aft,z) < aft! forall z € Cj,. (2.8)
This completes the proof. O
Lemma 2.8. For all k > 0,
V(") +) af=o0. (2.9)
i=1

Proof. This is true for £ = 0 by initialization and remains true, by induction, in accor-
dance with (2.5). O
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3. Convergence

Theorem 3.1.  Let all the assumptions made in Section 2 hold. Let the set I =
{1,2,...,m} be composed of two subsets: Iy C I such that (dom f) N C N ((;cp, 11C5) 4s

not empty, and Iy = I\ I, such that C; are polyhedral for i € I,. Then any sequence {z*}
generated by Algorithm 2.4 converges to the solution of (2.1).

Proof. Our proof consists of the following six steps.

Step 1. Introduce the numbers ¢y, defined by

o 2 @)+ 3 (ak %) — o). (31)

We show that the sequence {¢y} is increasing. Let dy 2 ©r+1 — Pk- We have

m m
d, = f(-Tk_H) _ f(:Ek) + Z(<aé€+1’ k+1 k—|—1 Z k:> _ Oéf)
=1 i=1
Since af+ = a¥ and oz k for i # i), we can write

dy = [ = %) + X, (af, "t —a*)

From the definition (2.6) of /" we have

di = f(*) = f(@*) + ) (af, ¥t = o) — (], 2*) - o).

170
Taking into account (2.9), we get

dp = f(2") = f(z*) - <Vf(xk),xk+1 — IEk> + osz - <a’~“ xk+1>

1%

or

dy = Dy (2", 2%) + of — (af ,2*1). (3.2)

(K

Since *! € C;,, and the pair (af

(2%

osz) defines a supporting hyperplane for C; , we have

1k
dp > Dp(z"t!, %) >0, (3.3)

and so the sequence {py} is increasing.
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Step 2. Let y € C Ndom f. Then
Dy(y,a¥) = fly) — f(aF) = (VF(2F),y — 2)
= fly) - f@@") + (C afy —2*)
= fy) = f@*) = XL (af,2") — af) (3.4)
+ 3200 (afy — at) + 3L, ((af, 2F) — of)

= f) — e + 270 (af, y) — of).
Since y € C', we have <af,y> —a¥ <0, for all i. Hence, by Step 1,

Dy(y,2*) < f(y) — ¢x < f(y) — o, (3.5)
and the sequence {z*} is bounded, by assumption D1. Also,

or < f(y), for all y € CNdom f, (3.6)

i.e., {¢r} is bounded, and limy_ ,. @ exists. This, together with (3.3), implies that
Dy (zFtt 2%) — 0 as k — oc.

One more inequality which we can deduce from (3.4) is

m

Z(af —{af,y)) < f(y) — o, for all y € C N dom f, (3.7)

i=1
or, because the numbers of — <af, y> are nonnegative, for all 7,

af — <af, y) < f(y) — o, for all y € C N dom f and for all 4. (3.8)

Step 3. Since the sequence {z*} is bounded, it has cluster points. We show that all such
cluster points belong to C'.

Let {z**} be a convergent subsequence of {z*} and z* = lim;_, o, z**. Since D;(z**!, z*) —
0, we have, by assumption D2, that the subsequence {z**1} converges to the same point

z*. Repeating this, we get that the subsequences {z**2} ... {z**T1} all converge to
x*. Therefore, the union of these sequences also converges to z*, and according to the
almost cyclic choice of the operating control index, for each i € {1,2,... ,m}, there exists

an infinite sequence of integers {5 (i, ) };>0, such that 0 < j(i,t) < T—1, and 2%+ € C;,
for all ¢+ > 0. Hence, lim;_,o zF 170 = 2* and 2* € C;. So z* € C.

Step 4. Take i+ € I;. Let L; be the subspace which is parallel to the affine hull aff C;.
Then there exists a unique representation a¥ = h¥+ g, where h¥ € L; and gF is orthogonal
to L;. We show first that {h¥};>o are bounded sequences, for i € I;.

Denote by z¥ the vector z!, where | < k is the maximal index for which 4, ; = 7. It is
clear that z¥ € C; and that of = (af, z¥).

171
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Let y € C Ndom f. Then
<af,y>—af=<af,y—$f>=<hf,y—xf>. (39)
The latter equality is valid because both y and z¥ belong to C;, y — ¥ € L; and
ko, ok —
<gi Y xz> =0.
Take a vector y € (dom f) NC' N (N, 1i Ci). Then there exists a positive € such that
for every r € L;, i € I, with ||r|| < &, we have y +r € C;. Let r 2 eh¥/||h¥||. Then
@égj—i-r € C;, and since af = h¥ + gF,
0> (af, ) — of = (a;,7) — of +e(af, hi/||Ih][]) = (ai,7) — of +ellh]].

Since § € C, we get, by (3.8),

ellbill < of = (ai, 7) < f(7) — ¢o,

implying that the sequences {h¥} are bounded, i.e., there exists a real number 7 such that
|h¥|| < 7, for all k> 0 and i € I;. Hence, by (3.9),
[{ai,y) — il = | (hf,y — i) | < 7lly — =], (3.10)

2

Step 5. Take ¢ € I,. Then ()} is polyhedral, i.e., an intersection of a finite number of
half-spaces,

Ci={zeR"| 0,z <P, p=12,..., P}

Consider the linear programming problem:

max <af, a:> ,

zed, (3.11)

This problem has z¥ as a solution, and max (a¥,z) = af. By the duality theorem (see,
e.g., Dantzig [22, Chapter 6]), there exist nonnegative numbers )\’;z-, p=1,2,..., P, such
that

P;

af =) AW, (3.12)
p=1
P

ok = YA, 313
p=1

A ({0, ) = ) = 0. (3.14)
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Divide the set of indices {1,2,..., P;} into two subsets:

Pz-lé{pe{l,Q,... JP Y| (B, y) < (7, for some y € C'Ndom f},
and

PPE{pe{1,2,...,P}| (,y) =, forally € CNdom f}.

Let y € CNdom f. Using (3.12) and (3.13), we obtain

(af,y) —of = i:/\'p“i(@f,y) —B7) =D M ((E,y) — BD). (3.15)

There exist ; > 0 and §* € C'Ndom f such that 87 — (¥, §*) > &;, for all p € P}. Defining
£ = min; &; and § 2 >ien ﬁg" we conclude that ¢ > 0 and ¥ € C Ndom f are such that
B — (b, 5y > €, for all p € P! and all i € I,.

Using (3.8) and (3.15) and taking into account that AY; and B — (b, ) are nonnegative,
we have, for all p € P},

F@) — o> af —(af,g) = > A(87 = (B1, 7)) > A(8F — (00, 9)) > ey

1
pEPz’

Hence \¥; are bounded by (f(%) — ¢o)/e.
Further, (3.14) implies that (57, %) — 87 = 0 if Ak, > 0, so we obtain, from (3.15),

Rk}

af,y) —af = Y Ay (by—xf). (3.16)
V4 7

1
pEPi

Since \¥; are bounded for p € P/, there exists a real number p such that

[{af,y) — afl < plly - 2fl, (3.17)
for all y € C Ndom f.
Comparing this with (3.10), we see that the inequality (3.17) is valid for all s = 1,2,... ,m.
Note that we may take a common value 7 = p for both (3.10) and (3.17).

Step 6. Let * be a cluster point of {*}, and let {z*} be a subsequence converging to
x*. According to Step 3 of the proof, z* € C' and z* € dom f because dom f is closed.
As we have seen in Step 3, the subsequences {z**7/} where 0 < j < T, converge to z*
as well. Since the set {ig,, %k, 41, - ,ik,+7—1} contains the set of all indices {1,2,... ,m},

the subsequence {z*:} 2 {x*+T=1} is such that the subsequences {z%*} converge to z*,
forevery 1 =1,2,... ,m.

Applying (3.17) for y = z*, we get

[ o, 2") — of| < plla” — a].
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Since the subsequences {z¥*} converge to z*, we have

lim |{(af*,z*) — of*| =0, (3.18)

§—00

for every 1.

Applying (3.4) for y = x*, we have
Dy(z*,2%) = f(a*) — ¢ + Z(<af;$*> - o).
i=1

According to Step 2 of the proof, limy_, o ¢, = lim,_,, ¢, exists. Hence, by assumption
D3 and (3.18),

m

— 1 * ks : ks _ ]f}s * — *\ 13
0= lim Dg(z", 2 )+sllglo Z(ai (af*,z*)) = f(z*) — lim @,

§—00 - §—00
=1
ie.,

lim g, = f(z°).
k—o00

Since, by (3.6), limy_,o0 ¢k < Milgecndom f f (), we have

z*) = min x

fa) = _min  f(z),

and because f is strictly convex and has a unique minimum on C'Ndom f, it follows that
the whole sequence {z¥} converges to z*. This completes the proof. U

4. Connections, comparisons and interpretation

In this section we compare our Theorem 3.1 with the convergence theorems previously
obtained by Censor and Reich [14, Theorem 3.1] and by Bauschke and Lewis [4, Theorem
3.2], as well as with the result that can be obtained by applying Tseng’s general framework
[46]. We first note that although, at first glance, the problem considered in [14] and in [4],
namely the minimization of D;(-, z%) over C Ndom f, differs from our problem (2.1), they
are, in fact, equivalent. This is because, on the one hand, D;(-,2°) is a strictly convex
function on dom f, and on the other hand, it coincides with f itself when V f(z°) = 0.
We also remark that although Algorithm 2.1 in [14] employs a double iteration, it actually
generates, in the cyclic order case, the same sequence which is generated by Algorithm
2.4 in the present paper.

The assumptions and the proofs of these four convergence results are all different. As
mentioned in the Introduction, Censor and Reich used Bregman’s original method to
establish convergence only when the constraints sets are half-spaces. Bauschke and Lewis
used a non-trivial extension of Boyle and Dykstra’s proof [5], as well as the tools developed
by Bauschke and Borwein in [3]. Their control sequence is cyclic, and their constraint
qualification condition is

int(dom f) N C # 0. (4.1)
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A convergence result for our Algorithm 2.4 can be derived from Tseng’s very general
framework by extending his derivation of Han’s [31] theorem in [46, Section 4]. The
resulting constraint qualification condition is

int(dom f) N C N ([)riC;) # 0. (4.2)

1€lh

Finally, our condition (see Theorem 3.1) is

domfﬂCﬂ(ﬂ i C;) # 0. (4.3)

i€ly

Condition (4.2) is clearly more restrictive than (4.3), but this does not mean that our
result contains Tseng’s result. This is because Tseng’s framework is more general in other
respects, not addressed in our study. He also has some results on dual convergence.

All the above-mentioned results also impose different requirements on the objective func-
tion f. Both Bauschke and Lewis [4] and Tseng [46] require co-finiteness of the function
f, but we do not need this condition. For example, the function f in Example 2.2 satisfies
the condition D1 — D5, but it is not co-finite.

The proof of our Theorem 3.1 is in the spirit of Bregman’s original approach [6]. It
offers the following useful geometric interpretation (cf. Lemma 2.7): At each step of our
algorithm, having chosen an index i, € {1,2,...,m}, we replace the set C;, with one
particular half-space drawn from the (in general, infinite) family of all the half-spaces
the intersection of which equals Cj,. Note, in particular, that if, at the k-th stage, the
problem (2.1) is replaced by the problem

min f(z),
<af;$>§a§,i=1,2,...,m, (4.4)

A= (A, Ag, ..., Ap) is the Lagrange multipliers vector, and

Li(x,3) £ f(@) + Y Nil(ak,z) — af)
i=1
is  the corresponding Lagrangian  function, then  (2.9) shows that

ViLg(2*,1) = 0, where 1 = (1,1,...,1). Moreover, ¢z = L(x*, 1) by (3.1).

It is clear that [14, Theorem 3.1] is a special case of Theorem 3.1 in the present paper.
However, the two other results mentioned above neither contain nor are they contained
in Theorem 3.1. For example, for non-polyhedral sets, (4.1) is, in some sense, the weakest
constraint qualification, but the conditions imposed on f in [4] are rather strong. Further-
more, our condition (4.3) covers, for instance, the case when f is the negative Shannon
entropy function (Example 2.3) and C' does not contain any positive vector (in this con-
nection see the discussion in [14, Section 4]), while (4.1) and (4.2) do not. On the other
hand, (4.1) covers the case when f = J||z||* and (), 1iC; = 0, but (4.2) and (4.3) do
not.
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