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Piecewise polyhedral multifunctions are the set-valued version of piecewise affine functions. We investigate
selections of piecewise polyhedral multifunctions, in particular, the least norm selection and continuous
extremal point selections.

A special class of piecewise polyhedral multifunctions is the collection of metric projections Ilx p from
R" (endowed with a polyhedral norm || - ||p) to a polyhedral subset K of R™. As a consequence, the two
types of selections are piecewise affine selections for Ilx p. Moreover, if IIx o and i ; are the metric
projection onto K in R® endowed with the {-norm and the ¢;-norm, respectively, we prove that Ilx
has a piecewise affine and quasi-linear extremal point selection when K is a subspace, and that the strict
best approximation sbag(z) of z in K is a piecewise affine selection for g .

1. Introduction

Let R™ be the n-dimensional vector space (of column vectors). Piecewise affine functions
from R™ to R™ are useful in many applications. Early interest in this topic came from
study of resistive networks [1, 27] and numerical solutions of nonlinear equations [6]. For
recent work and references, see [5, 19, 30, 12, 13, 14]. Piecewise polyhedral multifunc-
tions are the set-valued version of piecewise affine functions. One special class of such
multifunctions is the one of metric projections Ilx p from R* (endowed with a polyhedral
norm || - ||p) to a polyhedral subset K of R*. In many cases continuous selections of
metric projections Ilx p inherit the polyhedral structure of the projections, in particu-
lar, they are piecewise affine. That is why we first study piecewise affine selections for
piecewise polyhedral multifunctions. Our research was motivated by Mangasarian’s least
norm solution of a linear programming problem [23] as well as by special piecewise affine
selections constructed for the metric projection ITx ; in R* with the ¢;-norm, [8].

We will focus our attention to two types of piecewise affine selections of a piecewise
polyhedral multifunction: the least norm solution introduced by Mangasarian [23] and
continuous extremal point selections. The tools of Convex Analysis allow one to construct
a continuous and piecewise affine selection of the extremal point mapping of a piecewise
polyhedral mapping. Since the extremal point mapping of a piecewise polyhedral mapping
has discrete image which is not convex at all, the construction of such a selection is not
easy. Our construction leads to a linear programming problem. Moreover, the general
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theory on piecewise affine selections allows us to prove that the strict best approximation
sbag(z) of z in K is a piecewise affine selection for Il , extending the main results in
[8] and [7], respectively.

In order to describe our results more precisely, we first give the necessary notation. Recall
that a subset K of R" is called a polyhedral subset of R” if K is the intersection of finitely
many closed halfspaces of R”. In other words, K is a polyhedral subset of R" if and only
if there exist a real [ x n matrix A and a vector b € R such that K = {z € R* : Az > b},
where y > z means that each component of y is greater than or equal to the corresponding
component of z. The interior, the boundary, the closure, and the extremal points of a
subset K of R" will be denoted by int K, bd K, cl K, and ext K, respectively. A subset
K of a closed set X in R" is said to be nowhere dense in X if cI(X \ clK) = X (or K
has no relative interior point of X) [18, p. 4]. The nowhere dense sets we will use here
are the boundary of a closed set and hence nowhere dense in R" [18, p. 4]. These sets
are also boundary sets in the sense of Kuratowski [20, p. 138]: A subset Y of a closed set
X is said to be a boundary set with respect to X if its complement is a dense set in X,
i.e., if cI(X \ ' Y) = X. However, in general, a boundary set in R™ is not necessarily the
boundary of another set!

For a polyhedral subset D of R" a collection of polyhedral subsets {D;, ..., Dy} is called
a polyhedral subdivision of D if the subsets D; satisfy the following three conditions:

k
D=|]JD;,
=1

dim(D;) = dim D for each i, and
dim(D; N D;) < dim D for i # j,

where the dimension dim D is the dimension of the affine hull of D.

A function f : D — R™ is called piecewise affine on D if there exists a polyhedral
subdivision {D;, ..., Dy} of D such that f is affine on each D; (cf. [5]).

In applications, it is not practical to verify that a function is piecewise affine on D by con-
structing a polyhedral subdivision of D. Scholtes [30] proved that a continuous function
f from R" to R™ is piecewise affine if and only if there exist affine functions fi,..., f.
from R"” to R™ such that

fl@)e{fi(x):1<i<r} forzeR" (1.1)

An analogue characterization holds if we replace R" by a polyhedral subset D of R*. That
is, any continuous “patching” of affine functions on D gives a piecewise affine function on
D. As a consequence, f is a continuous and piecewise affine function on D if and only if
there exist a polyhedral decomposition Dy, ..., D, of D such that f is continuous on D
and affine on each D;. Moreover, a piecewise affine function is Lipschitz continuous.

Set-valued functions which correspond to point-valued affine functions are so-called poly-
hedral multifunctions. A mapping F : R* — 28" is a multifunction if it maps each point
z in R™ to a subset F'(z) of R™. Here 2*" denotes the power set of R™, the collection of
all subsets of R™. In particular, F'(x) might be empty.



M. Finzel, W. Li / Piecewise affine selections for piecewise polyhedral multifunctions 75
A multifunction F : R* — 28" is said to be Hausdorff continuous on a subset D of R", if

lim H(F(z),F(y)) =0 forxze D,

y—z,yeD

where H(S,T) denotes the Hausdorff distance of two subsets S and T of R™:
H(S,T) = max < sup inf ||z — y||, sup inf ||z — ,
(5.7) = maax {sup inflle — ol sup i o o]

and || - || is the Euclidean 2-norm on R™. Here we assume H(S,0) = H((,T) = 0.

A multifunction F : R* — 28" is called a polyhedral multifunction if its graph {(z,y) :
x € R" y € F(z)} is a polyhedral subset of R* x R™. In particular, for each x € R",
the image F'(x) is either empty or polyhedral. A polyhedral multifunction F is Lipschitz
continuous on its domain D = {z : F(z) # 0} [33] (cf. also [16]), i.e., there exists a
positive constant A (depending on F') such that

H(F(z), F(y)) < A-[lz —yl| for z,yeD.

See [24] and [22] for explicit estimates of X\. Note, it is an immediate consequence of the
definition of polyhedral multifunctions that its domain is a polyhedral subset of R". Simi-
lar to piecewise affine functions, we define piecewise polyhedral multifunctions in terms of
polyhedral multifunctions. A multifunction F : R* — 28" is called piecewise polyhedral
if its domain D := {x : F(z) # (0} has a finite polyhedral subdivision {D;, ..., Dy} and
F' is a polyhedral multifunction on each D;. If the domain D of a piecewise polyhedral
multifunction F' is a polyhedral set, then F'is Lipschitz continuous on D (cf. the remark
following Lemma 3.5).

One special class of piecewise polyhedral multifunctions is the collection of metric projec-
tions in (R", || - ||p), where || - || denotes a polyhedral norm. Recall that a norm || - ||p on
R™ is called polyhedral if the corresponding unit ball {x € R™ : ||z||p < 1} is polyhedral.
A norm || - ||p on R" is polyhedral if and only if there exist vectors Ei, ..., E, in R” such
that

lz||p = Imax (E;,z)y for z € R". (1.2)

The metric projection from (R, ||-||p) to a polyhedral subset K in R” is the multifunction
defined by
i p(z) ={y € K : ||y — z||p = dist(z, K)} forz € R",

where

dist(z, K) := min ly — z||p (1.3)

is the distance of a point z in (R", || - ||p) to K. The metric projection IIx p maps each
z in R" to a bounded and nonempty polyhedral subset IIx p(z) of K. Moreover, it is
Lipschitz continuous [21].

Special polyhedral norms on R” are the ¢;-norm, ||z||; := |21+ - -+ |2x|, and the £y -norm
|2||co := max{|z1],...,|2,|}, where z; denotes the i-th component of a vector z in R".
The corresponding metric projections are denoted by Ilx; and Ik , respectively.
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Next let us introduce some selections of a multifunction F' : D C R* — 28", A selection
of a multifunction F' is a mapping s : D — R™ such that s(z) € F(x) for all z € D. See
[2, 4] for surveys on various selections of multifunctions and metric projections. If F is a
multifunction such that F(z) is a nonempty closed convex subset of R™ for every x in D,
then the least norm selection for F', denoted by Ins, is defined by

1
Ins(z) := arg min =arg min —||y||*> for z € R". 1.4
(@) i=arg min [yl = arg min Iy (14)
Since F'(z) is a closed convex subset of R", there exists a unique solution of the strictly
convex quadratic programming problem (1.4). Thus, Ins(z) is well-defined.

Another type of selections of F' is given by the extremal point selections s of F', which
satisfy s(z) € ext F(z) for x € D. In contrast to the least norm selection, there exists
a Lipschitz continuous multifunction F' such that F' has no continuous extremal point
selection (cf. Example 3.1). One central result in this paper is the existence of a contin-
uous extremal point selection for a piecewise polyhedral multifunction. Moreover, each
continuous extremal point selection of a piecewise polyhedral multifunction is piecewise
affine. This leads to piecewise affine and continuous selections, and to linear selections
[3]. The later exist only if the metric projection satisfies very strong additional conditions
2, 4].

The paper is organized as follows. Section 2 contains some characterizations of piecewise
affine functions. The central result of Section 3 is that the least norm selection of a piece-
wise polyhedral multifunction F' is a piecewise affine selection of F'. Section 4 is devoted
to the study of continuous extremal point selections of a piecewise polyhedral multifunc-
tion F. Any continuous extremal point selection of F' is a piecewise affine selection of
F. Moreover, for any § € ext F(z), there is a continuous extremal point selection s of F’
such that s(z) = y. The main result of Section 5 is that the metric projection Ilx p from
(R™, || - |lp) to a polyhedral subset K of R" is a piecewise polyhedral multifunction, and
the corresponding distance function is piecewise affine. In the last section, we apply the
results of piecewise affine selections of piecewise polyhedral multifunctions to the metric
projection IIx p and obtain piecewise affine selections thereof. By the characterization
of piecewise affine functions, the strict best approximation is a piecewise affine selection
of Il .. Moreover, there exists a continuous, piecewise affine, and quasi-linear extremal
point selection of Il ;, where G' is a subspace of R*. However, for the general metric pro-
jection Ilg p, one cannot expect a continuous, piecewise affine, and quasi-linear extremal
point selection for IIx p. We give a simple counterexample in (R?, || - ||o0)-

To conclude the introduction, we give some matrix and vector notations used in this
paper. For a matrix A (or a vector z) AT (or #7) denotes the transpose of A (or z). For
an index set J, let A; (or z;) be the submatrix (or subvector) of A (or z) consisting of
the i-th rows (or the i-th components) of A where i € J. If J = {i}, we also write A; (or
x;) instead of A; (or z;).

2. Piecewise Affine Functions

In this section, we provide and establish several characterizations of piecewise affine func-
tions (cf. Corollary 2.4). As an application, we recover a result of Sun [32] on the structure
of differentiable piecewise quadratic functions.
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First we prove that for each continuous function f satisfying (2.1) a polyhedral subdivision
of D exists such that f is affine on each of these polyhedral subsets of D. Moreover, for
given affine functions fi,... , f. the polyhedral subdivision can be chosen independently
of the particular function f.

Lemma 2.1. Let D be a polyhedral subset of R* and let fi,..., f, be affine functions
from R™ to R™. There exists a polyhedral subdivision {D1, ..., Dy} of D such that any
continuous function f from D to R™ satisfying

flx) ed{filx):1<i<r} forxeD, (2.1)
is an affine function on each D;, 1 < j <Kk.
Proof. First, we may assume dim D = n. Otherwise an affine isomorphism 7" : R* — R"

exists such that T(D) C {x e R* : z; =0, dimD + 1 < i < n}, and we can reduce the
problem to R4 D,

Next we assume f; # f; for 1 <14 < j <r. Otherwise we may delete functions until this
condition holds true.

Let fi1(x),-..., fim(z) be the m components of f;(z). For 1 <i < j<rand1<I[<m,
we divide D into two closed polyhedral subsets:

D}y :={z € D: fiy(z) — fju(z) > 0} and Dy, :={x € D : fiy(x) — f;(x) <0}
Note that
fiz) = fj(z) ifandonlyif ze () (Df;nDg). (2.2)

il
1<I<m

Since f; # f;, the set [, SlSm(D;;l N D;;) is polyhedral and of dimension less than n. For

each sign-mapping o : {(7,7,0) : 1 <i<j<r1<I<m}— {-1,1}, the set

o(,7,l
D(o) := ﬂ Dij(l i)
1<i<j<k,1<I<m
is either empty or polyhedral. For each z € D, we have x € D(o) with o(i,7,1) = 1 if
fii(x) > fiu(x) and o(i, 4,1) = —1 otherwise. Thus,

D= JD(o). (2.3)

Since D is a polyhedral set with nonempty interior, D(o) is nowhere dense in D whenever
dim D(o) < n. By Baire’s Theorem [18, p. 28] the complement of a countable union of
nowhere dense sets is dense. Hence,

d|D\ |J D()|=D.

dim D(o)<n

Thus

D=d|D\ |J D@|cal |J D@|= | D) =D

dim D(o)<n dim D(o)=n dim D(o)=n
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where the second equality holds true because all the polyhedral sets D(o) are closed. So
we obtain a decomposition of D:

D= |J D).

dim D(0)=n

Without loss of generality, we may assume that all sets D (o) above are pairwise distinct,
since we can delete some redundant subsets D (o) until the remaining subsets are pairwise
distinct. Now let D(o) and D(o’) be two distinct polyhedral sets such that dim D(o) =
dim D(¢") = n. Since they are distinct, there exists a triple (i, jo, lo) of indices such that

DZ)(;((]JI,(Z‘OJO) 75 DZ);;?(;J.O’IO). This implies that O(io,jo,lo) = —O'I(i(),j(),lo) and fio,lo 75 fjo,lO'
Therefore,

DS DI € {2 € R figua(@) = fiota(@)},

i0jolo 0Jolo

which is a hyperplane. Therefore,

dlm(D(O’) N D(O’I) < dim (DU(io,jo,lo) N D"’UOJOJO)) <n-—1.

i0Jolo tojolo

Thus, {D(0) : dim(D(c)) = n} is a polyhedral subdivision of D.

It remains to show that any continuous function f : D — R™ satisfying (2.1) is affine on
each D(o) with dim D(¢) = n. Choose D* = D(o) with dim D* = n, i.e., int D* # ().
Next we claim that f;j(z) # f;j(z) for 1 <i < j <r and z € int D*. Assume there exists
an z* € int D* such that f;(z*) = f;(z*) for two indices 7 # j. But by (2.2) and by the
construction of the sets D(o), dim D(o) = n, the point z* belongs to the boundary of
D*, which stands in contradiction to x* € int D*.

By (2.1) and by the continuity of f there exists exactly one index i* € {1,...,r} such
that f(xz) = fi«(z) for all z € int D*. Using the continuity of f once more we have
f(z) = fi(z) for z € D*. Consequently, f is affine on each D(o) with dim D(o) =n. O

Note that if fi,..., f, are linear functions (instead of affine functions) and D is a poly-
hedral cone (instead of a polyhedral set), then each D, in the above proof is a polyhedral
cone. As a consequence, we have the following variation of Lemma 2.1.

Corollary 2.2. Let C be a polyhedral cone in R*, let f : C — R™ be a continuous
function, and let fi,..., f. be linear functions from R™ to R™ such that f(x) € {fi(z) :
1 <i<r} forx € C. Then there exist polyhedral cones Cy, ... ,Cy such that

i) C= Uf:1 Ci;

(ii) dim(C;NC;) < dim D for i # j;
(iii) dimC; =dimC for each i,

(iv) f is a linear function on each C;.

Lemma 2.1 can also be rephrased in terms of continuous selections.

Theorem 2.3. Let F : R* — 28" be a multifunction such that D := {x : F(z) # 0} is a
polyhedral set and F(z) C {fi(z) : 1 < i <r} forx € D, where f; : R* — R™ are affine
functions. Then there exist at most finitely many continuous selections for F' on D and
each continuous selection of F' is a piecewise affine function.
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Proof. By Lemma 2.1, there exists a polyhedral subdivision {D,..., Dy} of D such
that each continuous function f : D — R™ satisfying (2.1) is affine on each D;. As a
consequence, each continuous selection of F' is piecewise affine.

Let o be a mapping from {1,... ,k} to {1,...,r} and define

fo(z) = foy(x) forxze Dy, j=1,... k.

If f: D — R™ is a continuous selection for F', then it is affine on each D;. Since f(z) €
{fi(z) :i=1,...,r}, there is an index i(j) (depending on f) such that f(z) = fi;) ()
for z € D;. Defining o(j) :=i(j) for j = 1,... ,k implies f = f,. Since there are at most
r* different mappings o, F has at most r* continuous selections. O

Finally, we give a list of characterizations of piecewise affine functions.

Corollary 2.4. Let D be a polyhedral subset of R* and let f : D — R™ be a continuous
function. Then the following statements are equivalent.

(i)  f is a piecewise affine function on D.

(ii)  There ezist polyhedral subsets Dy, ... , Dy of D such that D = Ule D; and f is an
affine function on each D;.

(iii) There ezist affine functions fi,..., f, from R* to R™ such that f(z) € {fi(z) : 1 <
i<r} forzeD.

(iv) There exist piecewise affine functions gi,..., g, from R* to R™ such that f(z) €
{9:(z) : 1 <i<r} forzeD.

(v)  There exist polyhedral subsets D1,..., Dy of D such that D = Ule D; and f is a
piecewise affine function on each D;.

Proof. It is obvious that (i) implies (ii). Assume that (ii) holds. Let f; be an affine
function such that f = f; on D;. Thus, (iii) holds (with » = k). This proves that (ii)
implies (iii). It is trivial to see that (iii) implies (iv). Now we prove that (iv) implies (i).
By the definition of piecewise affine functions, for each fixed ¢, there exist affine functions
9ij1y - 5 9ir; such that

gi(z) € {gij(z):1<j<r} forxeD.
Thus,
f)e{gi(z):1<i<r}cC{gx):1<j<r,1<i<r} forzeD.

By Lemma 2.1, f is a piecewise affine function on D.

Finally, we prove the equivalence of (i) and (v). Obviously, (i) implies (v). Now assume
that (v) holds. By the definition of piecewise affine functions, for each fixed i, f satisfies
(iv) for D = D;, and hence for D = |J*, D;. Thus, (iv) holds. By the implication
(iv)=-(i), f is a piecewise affine function on D. O

Related to piecewise affine functions are piecewise quadratic functions. By using (2.1),
one can give the following definition of piecewise quadratic functions [31].
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Definition 2.5. Let D be a polyhedral subset of R* and g : D — R be a continuous
function. We say that ¢ is a piecewise quadratic function on D if there exist quadratic
functions g1, ... , g, from D to R such that

g(z) € {gi(r) : 1 <i<r} forzeD. (2.4)

In general, one cannot get a polyhedral subdivision {Ds,..., Dy} of D such that g
is a quadratic function on each D;. However, for continuously differentiable piecewise
quadratic functions, there is a polyhedral subdivision {D;,... , D} of D such that g is a
quadratic function on each D; [32]. Here we recover the following theorem by Sun [32] on
the structure of differentiable piecewise quadratic functions as an application of Lemma
2.1.

Corollary 2.6. Let D be a polyhedral subset of R* and let g : D — R be a continuously
differentiable function on D. Then g is a piecewise quadratic function on D if and only if
there exists a polyhedral subdivision D+, ..., Dy of D such that g is a quadratic function
on each D;.

Proof. We assume dim D = n. Let {es,...,e,} be the canonical basis of R", i.e., ¢;
is the vector whose ¢-th component is 1 and other components are zero. Let g1,..., g,
be quadratic functions such that (2.4) holds. Fixed z € D. By continuity of g and g;’s,
g(x) # gi(x) implies g(z + te;) # g;(x + te;) for t near 0. By (2.4), for ¢ near 0, we have

g(z +te;) € {gj(x + te;) : gj(z) = g(x)},

which implies

g(z+ tei) —g(z) c {gj(x + tei) — () L gi(z) = g(x)} : (2.5)

By differentiability of g and g;’s, letting t — 0 in (2.5), we obtain

dg(z) _ [ 0gi(z) 9g:(z)
gxi e{ gaxi ga% } (2.6)

Let o be a mapping from {1,...,n} to {1,...,r} and let f,(z) be a mapping from R"
to R* whose i-th component is 0g,(;)(z)/0x;. By (2.6), for each fixed = and i, there is an
index j(¢) such that

0g(x) _ 995 (%)
Let o(i) = j(i) for i = 1,... ,n. Then Vg(z) = f,(z), where Vg(z) denotes the gradient

3g; ;) (x)
oxr;

of g at x and f, is an affine mapping from R" to R" whose i-th component is
Thus,

Vy(z) € [J{fol@)}-

Since Vg is continuous and f, are affine, by Lemma 2.1, Vg is a piecewise affine function.
Hence a polyhedral subdivision { Dy, ... , Dy} of D exists such that Vg is an affine function
on each D;. As a consequence, g is a quadratic function on each D;. The converse is
trivially true. O
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3. Extremal Point Selections
3.1. Remarks on Continuous Extremal Point Selections

In this section we study extremal point selections of piecewise polyhedral multifunctions.
One reason to do so is that any continuous extremal point selection of F' is a piecewise
affine function. In studying Lipschitz continuity of polyhedral multifunctions, Walkup
and Wets proved Lipschitz continuity of the extremal points of polyhedral multifunctions
(even though they did not explicitly state it) [33]. Since ext F'(z) is a non-convex and
finite point set, there is no general theory about the existence of a continuous selection
for ext F. In fact, even a Lipschitz continuous multifunction F' : R — 2%’ where F(x)
is a line segment in R? for each x and ext F is Lipschitz continuous on R?, does not need
to have a continuous extremal point selection.

However, for a piecewise polyhedral multifunction F with ext F'(z) # ) for all z, we shall
construct a vector which determines for each x a supporting hyperplane for F(z) such that
it intersects with F(x) in a unique point s(z) € F(z), and s(z) continuously moves along
the graph of F'. Therefore, s(x) is an extremal point of F'(z) and s is a continuous function
of z. This allows us to construct a continuous extremal point selection for a piecewise
polyhedral multifunction. That is, we obtain one type of piecewise affine selections of a
piecewise polyhedral multifunction F' by constructing continuous extremal point selections
of F.

Let us start with the counterexample mentioned above.

Example 3.1. Let [z,y] := {6z + (1 —0)y : 0 < 6 < 1} for 2,y € R? and let 0 be the
origin of R?. We denote the projections to the coordinate axis by

P = (7).
Py() := (:?2) .

__J[0,7] ifx>0
F(@):= {[Pl(as),Pg(a:)] otherwise.

For € R?, define

Then the image F(z) is a line segment in R? for each z in R?, and F and ext F' are
Lipschitz continuous on R?, but F' does not have any continuous extremal point selection.

Proof. If x is on the boundary of the first quadrant, then either P;(z) = 0 or Py(x) = 0.
If P,(z) =0, then Py(z) = z; if Py(x) = 0, then P;(xz) = . Note that

- {0, x} if Z 0
ext F(z) := {{Pl (z), Po()} otherwise.

From this it is not difficult to prove that F' and ext F' are Lipschitz continuous. We leave
the details to interested readers.
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However, F' does not have any continuous extremal point selection. Assume to the con-
trary, there is such a selection, say s. Then either s(z) = 0 or s(z) = x for z in the
first quadrant. If s(z) = 0 for x in the first quadrant, it follows from the continuity of s
that s(z) = Pi(z) in the second quadrant, which implies s(z) = P;(z) in the remaining
quadrants. By s(z) = 0 in the first quadrant and s(z) = Pi(z) in the fourth quadrant,
we conclude that s is not continuous. Similarly, we will get a contradiction if s(z) = z in
the first quadrant. O

Remark 3.2. This example demonstrates that in general continuous extremal point se-
lections do not exist.

One should compare this example with Michael’s selection theorem [25]: if @ is a lower
semicontinuous multifunction and @Q(x) is a closed convex set for each z, then @) has a
continuous selection. The above example shows the importance of convexity of Q(x) in
Michael’s selection theorem.

3.2. A Continuous Extremal Point Selection

In this section we study extremal point selections of piecewise polyhedral multifunctions.
Let us first state the central result.

Theorem 3.3. Let F' : R* — 28" be a piecewise polyhedral multifunction such that
D :={xz : F(x) # 0} is a polyhedral subset of R". For any T € D and any § € ext F(z),
there exists a continuous selection s of ext F' on D with s(Z) = §.

In order to prove this theorem, we study polyhedral multifunctions more closely. Let
F : D — 2% be a polyhedral multifunction, where D C R* with F(z) # () for z € D.
Clearly, the graph of F is a polyhedral subset of R**™. In particular, there exist matrices
AcR*" @ e R*™ and a vector b € R, such that

graph(F) = {(z,y):z € D,y € F(z)} = {(z,y) : Az + Qy < b}.

Consequently, the set D C R" is the orthogonal projection of graph(F') to R", and hence
D is a polyhedral subset of R". The representation of graph(F') implies for z € D:

Fz)={yeR":Qy < b— Az};

i.e., the image F'(z) is a polyhedral subset of R™.

Similarly, if F' : D — 2% is a piecewise polyhedral multifunction, where D is a polyhedral
subset of R", by its definition finitely many polyhedral subsets Dy, ... , D, of D exist such
that D = |J,_, D;, and the restriction of F to D; is a polyhedral function, 1 <7 < r. In
particular, there exist matrices A* € Ri*" Q' € Ri*™, and vectors b* € RY, such that
for1<i<r

graph(F|p,) = {(z,y) 1 v € Di, y € F(2)} = {(2,9) : Aw+ Qy < V', v € D;}.

Next we give some characterizations of the existence of extremal points of F(z):

Proposition 3.4. Let F : R* — 28" be a polyhedral multifunction with polyhedral do-
main D C R*. Under the notation given above we have

ext F(z) #0 for z€D <= rank Q =m.
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If F :R* — 28" s piecewise polyhedral with domain D, we have
ext F(z) #0 for €D <= rank Q' =m for an indexi € {1,...,r}.

Proof. First let F' be polyhedral. By Griinbaum [11, p. 162] the extremal points of F'(x)
are exactly the zero-dimensional faces of F(z) = {y € R™ : Qy < b — Az}, z € D,
which are the intersection sets of m of the hyperplanes {y € R™ : Q;y = b; — A;z},1 <
1 < [, where the corresponding normal vectors (); are linearly independent. So we have
ext F'(z) # () for x € D if and only if rank Q = m.

Now let F' be piecewise polyhedral. Using the notation given above, it is sufficient to
show that rank @* = m implies rank 7 = m for all 1 < 4,5 < r. Assume rank Q' = m.
Since D is convex, there exists an index j € {2,...,7} such that D; N D; # 0, say j = 2
and z* € D; N D,. It suffices to prove rank > = m, because for an arbitrary index
j € {2,...,r} by the connectedness of D always a finite sequence j; = 1,7j2,... ,jk = Jj
of indices in {1,...,7} exists such that D;, , N D;, # 0 for I = 2,...,k, and hence
rank (Q%-1) = m implies rank (Q’) = m, 2 < s < k. Consider

Fiz')={yeR":Q'y <b' — Alz*} = {y e R™ : Q*y < b* — A%z*}.
By rank @' = m and the first statement of Proposition 3.4 we have ext F(z*) # 0.
Consequently, by the same argument, we have rank Q? = m. O

The following lemma is due to Walkup and Wets [33].

Lemma 3.5. Let F : R* — 28" be a polyhedral multifunction and ext F(x) be the set of
extreme points of F(x) for x € R*. Then there exists a positive constant A such that

H(ext F(z),ext F(y)) < A||lx — y|| for z,y € R".

Remark 3.6. Obviously, the statement of Lemma 3.5 holds also true for piecewise poly-
hedral multifunctions with polyhedral domain D. So the extremal point mapping of any
piecewise polyhedral multifunction F : R® — 2®" is Lipschitz continuous on each D; of
the polyhedral subdivision of D, and by the convexity of D, on D.

Dealing with extremal points of F'(z), z € D, makes sense only if ext F'(x) # (). So under
the notation given above we assume rank Q =rank Q' =m, 1 <i <.

The representation of F' given above shows that the extremal point mapping of F' satisfies
the conditions of Theorem 2.3. Consequently, each continuous extremal point selection of
F behaves quite nicely as shown in the following theorem.

Theorem 3.7. Let F : R* — 28" be a piecewise polyhedral multifunction with polyhedral
domain D C R*. Then each continuous extremal point selection of F' is piecewise affine
on D. There are only finitely many continuous extremal point selections of F on D.

Proof. Since the multifunction F' is piecewise polyhedral, there exists a subdivision
{D,...,D.} of D such that the graph of F' on D; x R™ is a polyhedron. The nota-
tion given above gives a representation of the multifunction F(z) = {y € R™ : Qy <
b — Aiz} forx € D;, 1 <4 <r, and a representation of its extremal points:

ext F(x) = {y € R™ : there exists J € J; with
hy=(b'— Alz);, Qy < b — Az}, (3.1)
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where J; is the collection of index sets J C {1,...,[;} for which Q% is an m x m square
nonsingular matrix. For each J € J;, define

(@) = [Q)] (¥ — A'z),.
Then f% is an affine mapping and from (3.1) we obtain
ext F(z) C {fi(z): J € T;, 1<i<r} forzeD. (3.2)

By Theorem 2.3, any continuous selection of ext F' is piecewise affine on D, and there
exist only finitely many continuous selections of ext F' on D. O

Now we are going to prove Theorem 3.3 in two steps. First we prove the statement for a
polyhedral multifunction F':

Theorem 3.8. Let F' : R* — 28" be a polyhedral multifunction with domain D C R”.
For any T € D and any y € ext F(Z) a continuous selection s : D — R™ of F' ezists such
that s(Z) =g and s(z) € ext F(x) for all x € D.

Proof. Using the notation given above, by § € ext F'(Z), an index set J C {1,...,l}
exists such that J contains m indices, rank (); = m, and

7=Q7" (by — AsZ).
In particular, rank @) = m. The cone
K(z)={yeR":Q,y <b;, — Az}
contains F'(z) and has the vertex

v(z) = Q' (by — Ayz).

The corresponding normal cone N of K(z) at the point v(x) is given by

N:cone{QiT:iEJ}:{ZaiQiT:aiZO, iEJ},

icJ
i.e., we have
Zy—v(x) <0 forzeN, ye K(x). (3.3)

Because of rank Q; = m we see that int N # (). Now we are going to choose a vec-
tor u € int N such that it is not a normal vector of any proper face of K(z) of di-
mension at least one. In other words, any supporting hyperplane of K(z) with nor-
mal vector u will support K(z) in a single point. So we consider the set of index sets
M :={M cC {1,...,l} : M contains m — 1 indices}. Since span{Q7 :i € M} is a sub-
space of dimension at most (m — 1), it has no interior point (i.e., it is nowhere dense). So
the finite union |J,,c . span{@7 : 7 € M} has no interior points [18, Baire’s Theorem, p.
27]. Consequently, a vector u exists with

0#u€int N\ U span{Q; :i € M}.

MeM
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Let us assume u to be a unit vector, i.e., ||u|| = 1. Note that this vector u does not
depend on the particular x € D we fixed. So for each x € D we have

v(z) € Hy(z) = {y e R" : u'y = v v(z)}
and by (3.3)
F(z) c K(z) c {y e R™ : vy < uTw(z)}. (3.4)

Now we deﬁne an extremal point selection s on D with s(Z) = . By (3.4) we have
uly < uTv(z) for all y € F(x). Because of this and since F(z) is a polyhedral set,
a(x) > 0 exists such that

— T, —
ax) = yIélF@()af) Uy = ergl?xmu Y. (3.5)

Let S(z) denote the solution set of the above linear programming problem for any fixed

x. Then S(z) is not empty. Note that S(z) is the intersection of F'(z) and its supporting

hyperplane H(z) := {y € R™ : uTy = a(x)}. If S(z) is a face of F(x) of dimension at

least one, then u is a normal vector of this face, which stands in contrast to the way u was
chosen. Thus, S(z) contains only one point s(z). Then it is well-known that the solution
set of (3.5) is Lipschitz continuous with respect to the right-hand side perturbations (for
example, see [24, 22]). Thus, s(z) must be an extreme point of F'(z) and is Lipschitz
continuous. From the choice of u, we also have s(z) = 7. O

Remark 3.9. Geometrically speaking, the normal vector u, introduced in the proof,
determines the selection s as follows: It is the normal vector of the hyperplane H,(Z) in
the y-space R™ and it supports the cone K(Z) as well as the polyhedron F(Z) at their
joint vertex v(Z) such that the corresponding set of intersection contains the single point
v(Z). Embedded in R**™  H,(z) is an (m — 1)-dimensional affine subspace. If we move
H,(z) parallel to itself along the polyhedral graph of F it intersects F'(x) in the single
point s(z) for z € D — the way u was chosen makes sure that this set of intersection
contains exactly one point.

Remark 3.10. The idea of using a normal vector u for determining a continuous extremal
point selection of a polyhedral multifunction F : D — 28" may also work in a more general
situation. The assumption that finitely many normal vectors exist such that for all z € D
the set F'(z) is given as intersection of certain corresponding halfspaces determined by
these normal vectors is not necessary.

It is sufficient to make sure that F' is Hausdorff continuous and that a normal vector u
exists such that a corresponding hyperplane supports F'(z) in a single point for all x € D.
For example, if F' is Hausdorff continuous and if F'(x) is strictly convex for all z € D such
a normal vector defines a continuous extremal point selection of F'. However, we cannot
expect the selection to be piecewise affine if F' is not piecewise polyhedral.

Let us now complete the proof of Theorem 3.3. The idea of the second part of the proof is
to start with the subpolyhedron D; of D with x € D;, where by Theorem 3.8 an extremal
point selection s of F' with s(Z) = ¢ exists, and to extend s successively to neighboring
subpolyhedra D; of D via common points x € D; N D;. In order to ensure that s is
well-defined on the entire set D, a minor modification of the choice of the determining
normal vector u is necessary.
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Proof of Theorem 3.3. Using the notation given above, an index i € {1,... ,r} exists
such that *x € D,;, say x € D;. By Theorem 3.8 a continuous selection s : D; — R™
exists with s(Z) = g and s(z) € ext F(x) for all x € D;. By the proof of Theorem
3.8 this selection is determined by a normal vector u of F(zZ) at y. In detail, u belongs
to the interior of the normal cone N of F(z) at g, but not to the nowhere dense set
Narers span {[QF]T : i € M} where M denotes the collection of all subsets of {1,... 11}
which contain m — 1 elements.

The minor modification of the choice of u mentioned above is to substitute the exceptional
set given above by a bigger exceptional set which is still a nowhere dense set in R™. In
order to do this, define index sets M; := {M C {1,...,l;} : M contains exactly m —
1 indices}, ¢ = 1,...,r. Again the finite union (J_; Uy ey, sPan{[@5]" : j € M} is a
nowhere dense set of R™ (cf. [18, Baire’s Theorem, p. 27]. So a vector u exists with

0#uecint N\ J (J span{[Q}]":j € M}.

=1 MeM;

By an analogue argument used in the proof of Theorem 3.8 u cannot be a normal vector
of any face of the polyhedron F(z) = {y e R™ : Q'y < b — Az}, z € D;, 1 <i<r.

Next we extend s to D and determine so a continuous extremal point selection on D with
s(Z) = g. Since D is convex, an index i € {2,...,r} exists such that D; N D; # 0, say
z' € D; N Dy. By z' € Dy, s(z!) is an extremal point of F(z'), and by the construction
of s on Dy, u is a normal vector of F(z') at s(z'). By z! € D, and by Theorem 3.8, u
determines a continuous selection §: Dy — R™ of F with §(x) € ext F(z) for all z € Dy
and 3(z!) = s(zt).

Since both selections are determined by the same normal vector u, we have §(z) = s(x)
for all x € Dy N Dy. In other words, s continuously has been extended to D; U Ds, u is
a normal vector of F(z) at s(x) and the corresponding supporting hyperplane intersects
with F'(x) in the single point s(z) for all z € D; U D,. Repeating this process iteratively
extends s to the entire set D. O

4. Least Norm Selections

It is well-known that for a Hausdorff continuous multifunction F' the least norm selection
is continuous, cf. [10, Theorem 1].

Lemma 4.1. Let F : R* — 28" be a Hausdorff continuous multifunction with closed
domain D C R™ such that F(x) is a closed conver subset of R™ for every x € D. Then
the least norm selection for F' is continuous on D.

When F' is a piecewise polyhedral multifunction, the least norm selection is actually a
piecewise affine and Lipschitz continuous function (cf. Theorem 4.4 below). In order to
prove this we need the following well-known Karush-Kuhn-Tucker characterization of an
optimal solution of a convex minimization problem with linear constraints.

Lemma 4.2 ([29, Corollary 28.3.1]). Let g : R* — R be a convex differentiable func-
tion and consider the following convexr minimization problem:

inf ¢(z) subject to Az > b, (4.1)
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where A is an | x n matriz and b € R'. Then z is a solution of (4.1) if and only if there
erist an index set J and w € R such that

Aizb, Vg(Z)zA?u;J, wJZO, AJZ_bJZO. (42)

Remark 4.3. The index set J is called the active set (of constraints) and w is the La-
grange multiplier corresponding to the inequality constraints Az > b.

Theorem 4.4. Suppose that F : R* — 28" is a piecewise polyhedral multifunction and
its domain D := {x € R" : F(z) # 0} is polyhedral. Then the least norm selection of F
is a piecewise affine (and Lipschitz continuous) function on D.

Proof. First assume that F' is a polyhedral multifunction on D. So there exist an [ x m
matrix A, an [ x n matrix @, and a vector b in R' such that

Flz)={yeR": Ay >b—Qz} forzeR". (4.3)

Note that F(x) = 0 for z ¢ D. Fix z € D. By the characterization of the least norm
solution (cf. Lemma 4.2), we know that there exist an index set J and a vector w € R’
such that

Ins(z) = A w;,  Ajlns(z) — Qz — by =0,
wy >0, and Alns(z)—Qx—b>0.

Equivalently, we have Ins(z) = A%w;, where w; satisfies the following conditions:
wy >0, AATw;—Qr—b>0, and A;ATw;—Qsz—b;=0. (4.4)
For each index set J, let
Dy ={(z,z,w;) :x € D,z = A w; and (4.4) holds},
D; ={x € D: there exists w; such that (4.4) holds}.

By its definition and (4.4), D; is a polyhedral set. Since D; is the linear projection of
D; onto R*, Dy is also a polyhedral set. Moreover, (4.4) is a characterization of the least
norm solution Ins(z) and, for any z in D, there exist J and w; such that (4.4) holds.
Therefore,

D=|] D,.
J
For J € J and x € Dy, define
F;(z) :== {z € R™ : there exists w; such that (z,z,w;) € D;}.
Note that the graph of F'; has the following form:
graph(Fy) = {(z, 2) : € Dy and there exists wy such that (x,z,w;) € D;}.

So it is the linear projection of the polyhedral set D; onto R* x R™ and, in particular,
it is a polyhedral set. Thus, F} is a polyhedral multifunction on Dj;. Moreover, by the
characterization (4.4) for Ins(z) = ATw;, we obtain

Fj(z) ={lns(z)} forz € D;.
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Since Fj(z) is a singleton, we have F;(x) = ext F;;(z). Since lns is continuous (cf. Lemma
4.1) and Ins(z) € Fy(z) = ext Fy(z), Ins(z) is a continuous extremal point selection for
the polyhedral multifunction F; on D;. By Theorem 3.7, Ins is a piecewise affine function
on DJ.

Now assume that F'is a piecewise polyhedral multifunction. Let Dy,... , Dy be polyhedral
subsets of D such that D = Ule D; and F is a polyhedral multifunction on each D;. By
the previous proof, Ins is a piecewise affine function on each D;. By Corollary 2.4, Ins is
a piecewise affine function on D. O

5. Metric Projections in Polyhedral Spaces

For a linear programming problem with inequality constraints Az > b, the optimal func-
tion value is actually a piecewise affine and convex function of b as shown by Guddat,
Hollatz, and Nozicka [15].

Lemma 5.1 ([15, Theorem 6.7]). Let A be an n x m matriz and ¢ € R™. Define
p(b) = min (c,y)

and
C:={beR": there erists a vector § such that Ag > b and o(b) > —oco} # (.

Then there exist finitely many polyhedral cones C4,--- ,Cy such that

i) C= Uf:1 Ci;

(ii) int(C;) Nint(C;) = O fori # j;
(iii) int(C;) # O for each i;
(

iv) ¢ is a linear function on each C;.

The reader might also prove this lemma using Corollary 2.2.

Theorem 5.2. Let K be a polyhedral subset of R* and ||-||p be a polyhedral norm on R™.
Then the distance function dist(-, K) defined in (1.3) is a piecewise affine function.

Proof. Let K = {y € R* : Ay > b}, where A is an m X n matrix and b € R™. By (1.2),
we can rewrite (1.3) as

dist(z, K) = I%in B subject to Ay > b, and
7y
(Bj,x—yy < pfori=1,...,r

i.e.,

dist(z, K) = min 3 subject to Ay > b, and

By (5.1)
<E17y> +ﬁ > <EZ,$U> for i = 1’ ) T
By Lemma 5.1, there is a piecewise affine function ¢ such that
dist(z, K) = ¢(b, (E1, ), ..., (E,z)) forz e R".

Thus, dist(z, K) is a piecewise affine function of z in R". a
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Using the piecewise affine behavior of the distance function dist(-, K), it is easy to prove
that the corresponding metric projection Ilx p is a piecewise polyhedral multifunction.

Theorem 5.3. Let K be a polyhedral subset of R* and ||-||p be a polyhedral norm on R™.
Then the metric projection Ik p is a piecewise polyhedral multifunction.

Proof. Let K = {y € R* : Ay > b}, where A is an m x n matrix and b € R™. Then, by
(1.2), we have

g p(r) = {2:A2>0b, ||z —z||p < dist(z, K)}
= {z: Az >b,(E;,x — 2z) < dist(z, K) for1<i<r}.

By Theorem 5.2, the distance function dist(z, K) is piecewise affine. Hence there exist
finitely many polyhedral subsets D1, ..., Dy such that R* = U?:1 D; and the restriction

of the distance function to each D, is affine, i.e., there exist v/ € R® and (; € R such
that
dist(z, K) = (u/,z) + 3; forz € D;, 1<j<k.

Consequently, for x € D;, we have

Mgp(z) = {z:A42<b, (B,x—2) < {W/,2)+p;, 1<i<r}
= {2:A2<b, (E;,2) > (B —u),2) - B;, 1 <i<r}.

That is, Il p is a polyhedral multifunction on each D;. Since Il p is Lipschitz continuous
[21], [Tk, p is a piecewise polyhedral multifunction. O

6. Piecewise Affine Selections for Metric Projections
6.1. Least Norm Selections for Metric Projections

In this section we study least norm selections of the metric projection I1x p from (R", ||-||p)
to a polyhedral subset K of R". Recall

1
Ins(z) =arg min |jy|* for z € R".
yEHK’p(l‘) 2

It is easy to see that 0 = Ins(z) for all x € R* with 0 € Il p(z). Niirnberger [26]
calls a selection which selects the origin whenever possible, a selection with null-property
(Nulleigenschaft). He introduced this notion when he characterized lower semi-continuity
of upper semi-continuous metric projections to certain subspaces of a general normed
space. In particular, he proved the existence of a continuous selection with Nulleigenschaft
of the metric projection to a linear subspace of R endowed with an arbitrary norm.
Lemma 4.1 extends this statement to the metric projection Ilg : R* — 2% where G is
a closed subset of R" such that Il is Hausdorff continuous and Ilg(z) is convex for all
r e R".

In particular, if we restrict ourselves to the polyhedral case, by Lemma 4.1 and Theorem
4.4, we can obtain a piecewise affine selection of IIx p by using the least norm selection
of HK,P-
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Theorem 6.1. Let K be a polyhedral subset of R* and || - ||p a polyhedral norm on R™.
Then the least norm selection of Ilg p is piecewise affine, hence it is Lipschitz continuous.

The least norm selection Ins(z) is either 0 (when 0 € IIg p(z)) or a point on the relative
boundary of I p(z) (when 0 & Il p(z)). In general, Ins(z) is not necessarily an extremal
point of ITx p(z), and it is different from any extremal point selection of Il p.

Remark 6.2. Let K be a polyhedral subset of R* and || - ||p be a polyhedral norm on
R". Then there exists a positive constant € such that the least norm selection of Ik p is
the unique solution of the following quadratic programming problem:

. € 2
— = fi R". 1
min (Ilfv ylle + Syl ) orz € (6.1)
This follows from Mangasarian’s characterization of the least norm solution of a linear

program [23]: the least norm solution of the linear programming problem

min ¢’y
yelC

is the solution of the following quadratic programming problem
. T € 2)
min (7 + 2 llyl?)

where C'is a polyhedral set and € > 0 is a small positive constant. By (1.2), for each fixed
z, Ik p(x) is the set of vectors y* which solve the following linear programming problem:

min 7 subject to y € K, (E;,z—y) <tfori=1,...,r

Therefore, by Mangasarian’s characterization, the least norm selection of IIx p is the
vector y* that solves the following quadratic programming problem:

min (T+§||y||2) subject to ye€ K,(Ej,z —y) <tfori=1,...,r,

which is an equivalent form of (6.1).

6.2. Extremal Point Selections for Metric Projections

In this section we investigate continuous extremal point selections for the metric projection
Ik p. By Theorem 5.3, Ilk p is a piecewise polyhedral multifunction. Since IIx p(z) is
bounded, we have ext [Ix p(x) # 0 for all z in R*. By Theorems 3.3 and 3.7, Il p always
has a continuous extremal point selection, which is a piecewise affine selection.

Theorem 6.3. Let K be a polyhedral subset of R and let || - ||p be a polyhedral norm on

R™.

(i) For any z € R* and any y € extllg p(x), there is a continuous extremal point
selection s of the metric projection Ik p on R* with s(z) = y.

(ii) Any continuous extremal point selection for Il p is a piecewise affine (and Lipschitz
continuous) selection.

(iii) There are only finitely many continuous extremal point selections of lk p.

Proof. By Theorem 5.3, Ilg p is a piecewise polyhedral multifunction on R". Since
[Ig p(z) is a bounded polyhedral set in R*, ext IIx p(z) # () for all z € R*. Thus, the
statements in Theorem 6.3 follow from Theorems 3.3 and 3.7. O
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6.3. Quasi-linear Selections for Metric Projections

A multifunction F : R® — 28" is homogeneous, if
F(ar) =aF(z) forall ze€R' acR
For a linear subspace G of R", the multifunction F' is quasi-additive with respect to G, if
Flx+z2)=F(z)+ F(2) forall zeR", z€G.

We call F' quasi-linear with respect to GG, if F' is homogeneous and quasi-additive with
respect to G. A mapping s : R” — R™ is called a quasi-linear selection of F' with respect
to G if s(z) € F(z) for x € R* and if s is a quasi-linear mapping with respect to G.

Two decades ago Niirnberger [26] proved the existence of a quasi-linear selection of a
quasi-linear multifunction F' under some mild assumption on F'.

Lemma 6.4. Suppose that F(x) is a closed conver subset of R™ for every x € R" and
F' is a quasi-linear multifunction with respect to a subspace G of R* such that G is a set
of fir-points of F (i.e., F(z) = {2} for z € G). Then F has a quasi-linear selection with
respect to G.

For a linear subspace G of R", the metric projection IIg from R" (endowed with any
norm) to G is quasi-linear with respect to G. Since IIg p(z) = z for all z € G, Niirnberger
obtained the following as a corollary to Lemma 6.4.

Corollary 6.5. The metric projection Illg onto a linear subspace G' of R* endowed with
any norm has a quasi-linear selection.

For a metric projection Ilg p from (R", ||-||p) to a linear subspace of G of R", by Theorem
6.3, we know that Il p has a continuous and piecewise affine extremal point selection; and
by Corollary 6.5, we know that Il p has a quasi-linear selection. Is it possible to construct
a continuous, piecewise affine, and quasi-linear extremal point selection for II; p? The
next example shows that the answer is negative.

Example 6.6. Consider the linear subspace

1
G=40| 0 ]|:0eRy CR’
0
and || - |lp = || - ||co- Then Ilg o does not have a quasi-linear and continuous extremal

point selection.

Proof. Note that dist(z, G) = max{|z2|, |z3|}. Consider the subset

0
D=RzeR:z=| 2 |,|z]la=17p,
T3
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which is the boundary of the unit square in the hyperplane {z € R® : z; = 0}, and is
orthogonal to G. All points x in D have the same set of best approximants in G:

1
Heoo(z) ={u:—-1<60<1}, where u:=1| 0
0

There are two choices of extremal point selections for Ilg o on D: u and —u. Let s be
a continuous extremal point selection for Il . By the continuity of s, there exists a
constant € = +1 such that s(z) = eu for x € D. Let v € D. Then —v € D. But

s(—v) = eu # —eu = —s(v).
Hence s is not quasi-linear, since the homogeneity is not satisfied. O

However, when G is a linear subspace of R* and || - ||p = || - ||1, Finzel [8] constructed a
piecewise affine and quasi-linear extremal point selection of Il;; by using a perturbation
analysis.

6.4. Strict Best Approximation

The strict best approximation was introduced by Rice [28] as a selection for the metric
projection onto a linear subspace of (R", || - ||o) Which chooses the so-called best element
among the best approximants. This idea can easily be extended to selections for the
metric projection to closed convex subsets of (R, || - ||o). Two years ago, Huotari and
Li [17] gave another characterization of the strict best approximation in terms of mono-
tone rearrangement and lexicographic order of vectors. They proved that the strict best
approximation of z in K, denoted by sbag(z), is a continuous function of z if Ik is
Hausdorff continuous [17]. In this case, the strict best approximation sbag(x) is actually
the limit of best £,-approximations Il ,(z) as p — oo:

sbag(z) = lim Ilg,(z) forz e R”, (6.2)

p—00
where I ,(x) is the unique element in K such that

[ = Tk p(2)[l, = min [lz = 2|, (6.3)

zeK

and ||z][, = (|aP+...+ \zn\p)%. Note that I p is Lipschitz continuous [21] when K
is a polyhedral set. As a consequence, sbag(z) can also be defined by (6.2) if K is
a polyhedral set. Recently, Finzel and Li [9] proved that sbag is Lipschitz continuous
when K is a polyhedral set. In this subsection, we prove that sbag is piecewise affine,

which implies the Lipschitz continuity of sbag, extending the following result proved by
Finzel [7].

Lemma 6.7. Let G be a subspace of R". Then the strict best approrimation sbag is a
piecewise affine function.

Our approach is to represent sbag in terms of sbag,, where G; denote those finitely many
affine subspaces in R" which are the affine hulls of the faces of K. For this purpose, we
need the following lemma on the structure of Ik ,(z) [9].
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Lemma 6.8. Let K be a polyhedral subset of R*. Then there exist vectors z',... ,2" in
R™ and subspaces Gy, ... ,G, of R* such that

Hgp(z) € {2 + Ug, p(x — 2Y), ..., 2" + g, p(z — 27)}

(6.4)
forxr eR*, 1 <p<oo.

Theorem 6.9. If K is a polyhedral subset of R™, then the strict best approrimation sbag
is a piecewise affine selection for Il .

Proof. By Lemma 6.8, there exist vectors z',... , 2" in R* and subspaces G4, ..., G, of
R™ such that (6.4) holds. Since (6.2) holds for any polyhedral set, letting p — oo in (6.4)
we obtain

sbay(r) € {z' +sbag,(z —2'),...,2" +sbag, (v —2")} for z € R" (6.5)
By Lemma 6.7, for each i, g;(z) := z* + sbag,(z — 2') is a piecewise affine function. By
Corollary 2.2, the strict best approximation sbay is a piecewise affine function. O
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