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We consider a nonlinear convex program. Under some general hypotheses, we prove that approximate
solutions obtained by exponential penalty converge toward a particular solution of the original convex
program as the penalty parameter goes to zero. This particular solution is called the absolute minimizer
and is characterized as the unique solution of a hierarchical scheme of minimax problems.

Keywords: Convexity, minimax problems, penalty methods, nonuniqueness, optimal trajectory, conver-
gence

1991 Mathematics Subject Classification: 90C25, 90C31

1. Introduction

Let us consider a mathematical program of the type:
() min {/o(x) | file) <0, i=1,..,m},

where for each : = 0,...,m, f; is a convex function. The exponential penalty method
consists in solving for 7 > 0 small enough the unconstrained problem

m
(P) min {fo(w) +r ; exp[fi(2)/ T]} :
We denote by z(r) an optimal solution of (P,) and we regard it as an approximate solution
of the original problem (P). Generally speaking, the convergence as r — 07 of z(r)
is well determined when (P) has a unique optimal solution. We are interested in the
convergence of the whole optimal path {z(r) : r — 07} when (P) admits a multiplicity of
optimal solutions. It is proved in [6] that for linear programs, z(r) converges toward the
centroid, a sort of analytic center of the optimal polytope. A similar situation occurs for
linear-quadratic minimax problems (see [1]).

The aim of this paper is to extend the convergence results of [1, 6] to a more general
nonlinear setting. Under some conditions on the functions f;, we prove that the approx-
imate solution z(r) converges to a “distinguished” solution of (P), which is called the
absolute minimizer and is characterized as the unique solution of a recursive hierarchy of
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reduced minimax problems. A similar selection of a particular solution appears in the L?
approximation of L* problems (see [2] and references therein). See [3, 7, 11] for other
path-following methods in linear and convex programming.

Exponential penalty methods have been widely applied since the pioneering work of
Motzkin [12]. For constrained problems, it was introduced in [10] an ezponential mul-
tiplier method (see also [4]); under uniqueness and second order sufficiency conditions,
the convergence of this kind of algorithms can be established for several penalty func-
tions (see [5, 14, 15]). Although it is possible to obtain dual convergence without these
restrictive hypotheses (see [16]), primal convergence is not well understood in the case of
multiple optimal solutions. For an implementable algorithm for solving convex programs
by applying an exponential penalty technique, we refer the reader to [9]. A different ap-
proach is given in [13], where convergence is forced by combining the exponential penalty
with a proximal regularization.

2. Absolute minimizer for convex minimax.

From now on, I = {1,...,m} and f; : R* — R is convex for each i € I. Set f(z) :=
max;e{ fi(z)} and consider the minimax problem

(P) p* = min f(x).

where F' C R” is a closed convex set. We denote by S (13) the set of optimal solutions
of (ﬁ), and we assume that S (ﬁ) is nonempty and compact. The question is how to

distinguish a best optimal solution among all the elements in S(P). To this end, we
define the set of optimal active indices by

In:={iel|VzeS(P), fi(z)=p"}

It is easy to see that Ip is nonempty. For each i € Iy the corresponding f; is constant on
S(P) and for such an f; all the solutions are in some sense equivalent. If Iy = I there is
nothing else to do. Otherwise, there exist ig € I\Iy and an optimal solution Z such that
fio(Z) < p*; we consider

(P') pi = min max{f;(z)},

zeS(P)i€l\Io
in order to select the minimizers of max;c\s,{fi} among all the minimizers of max;¢,{ f;}
Of course, pt < p* and S(P') is nonempty and compact. Let A := {i € I\I, | Vz €
5(131), fi(x) = wi}; it is a simple matter to verify that A is nonempty. If the set

I, := Iy U A is not equal to I, we can proceed recursively and consider the following
minimax problem
(P?) pp= min max{fi(z)}.

zeS(P1) €\
We continue in this manner obtaining a sequence of problems of the type:

(P pi= min max {fi(z)}.
zeS(Pt—1) i€I\I¢—1
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By construction, we have a strictly increasing sequence of sets Iy C Iy C .... Therefore,
Iy1 =A{1,...,m} = I for some p < m. For each ¥ € S(PP)

max{f;(Z)} = u;., = min max{f;(z)},
max (i)} = pia = min max(/(2))

for all t € {0,...,p}, where I\I,_; = {i € I | Va € S(PY), f;(z) = pi} is the set of active
indices for the problem (P'~!). We consider S(PP) as the set of best optimal solutions of
the original minimax problem (P). Similar constructions can be found in [2, 3, 6].

The final optimal set S (ﬁp) depends on the analytical representation of f = max;er{f;}.
For instance, define f(z) = || if || > 1 and f(z) = 1 otherwise. Then S(P) = [—1, 1].
Setting f; := 1/2 and f, := f, we can write f = max{fi, fo} to obtain S(ﬁl) =[-1,1].
But if we set fi(z) := 1 and fo(z) := |z|, then S(ﬁl) = {0}. As this trivial example
illustrates, in general we cannot ensure uniqueness of the solution generated by the hi-

erarchical process defined above. Nevertheless, we may overcome this disadvantage by
restricting our analysis to a suitable class of max-type representations.

Definition 2.1 ([2]). A function f : R* — R is said to be quasi-analytic if whenever f
is constant on the segment [z, y] with z # y, then f is constant on the whole line passing
through x and y.

Affine, quadratic and analytic functions are quasi-analytic. If we assume that for each
i € I, f; is quasi-analytic then there exists a unique solution z* of the recursive hierarchy
of minimax problems; to see this, fix z1,2s € S(P?) and note that each f; is constant on
[1, z9] so that zo — x4 is a constancy direction for every f; and then zo = z; (recall that

S(P) is bounded). We call such z* the absolute minimizer of (P).

3. Convergence toward the absolute minimizer

Let us return to the convex program

a = min{fo(z) | fi(z) <0, i€ l}. (P)

T€ER™

We assume that f; : R* — R U {400} is a closed proper convex function, and f; :
R" — R are all convex. We tacitly assume that « is finite and we consider the penalty
approximation

a(r) := min {fo(ﬂﬁ) + rZexp[fi(x)/r]} : )

zeR? -
el

When the optimal set S(P) is nonempty and compact, it is well-known (see for instance
[3]) that: (i) for every r > 0, the optimal set S(P,) is nonempty and compact; (ii) given
ro > 0 there exists a bounded set U such that S(P,) C U for every r € ]0,r¢]; (iii) each
cluster point of {z(r) :  — 07} with z(r) € S(P,) belongs to S(P), and a(r) — « as
r — 0. Certainly, this gives us the convergence of z(r) when (P) has a unique solution.
In the case of multiple optimal solutions, we have:
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Theorem 3.1. If S(P) is nonempty and compact, and for all i = 0,...,m, f; is quasi-
analytic, then for each r > 0 there exists a unique solution x(r) of (P,), and furthermore

li =z
ety =2

where x* is the absolute minimizer of

min max{ f;(z)}. (3.1)

zeS(P) i€l

Proof. To establish the uniqueness of z(r), fix » > 0 and z;,2, € S(P,). For every
t €]0,1[ set z; := (1 — t)x1 + txo. If there exists ig € I such that fi (z1) # fi,(x2) then

exp(fi(z¢) /1] < (1 —t) exp|fio (x1)/r] + t exp[fig (2) /7],
and for f(x,7) := fo(x) + 7> ,c exp[fi(x)/r] we have
fl@er) < (L=1) f(z1,7) + tf (22,7) = a(r),

which is impossible. Therefore, for each i € I the function f; is constant on S(P,); hence
fo is also constant on S(P,). The boundedness of S(P,) implies zo = x; as claimed.

The task is now to prove the convergence of z(r). It suffices to show that {z(r): r — 07}
has as unique cluster point the absolute minimizer of (3.1). Let r, — 0" and & € S(P) be
such that z(ry) — T as k — +o0. Let T € S(P) be arbitrary and set xy := z(ry) + 7 — Z.
Thus z, — T as k — +00. The optimality of z(r;) for (P,,) gives

fola(re)) +re Y explfi(w(re)/ri] < folzk) + i Y exp|filze) /re). (3.2)

el el

As S(P) is convex, for all ¢ € [0, 1] we have fo(T+t(ZT — 7)) = . It is simple to see that if
a quasi-analytic convex function f is constant on a segment [z, y] then f(z+z—vy) = f(z)
for every z € R™ (see [2]). Then the convexity and quasi-analyticity of fy yields

fo(z(ry)) = folz(ry) + T — Z).

Therefore, (3.2) gives

Z exp|fi(z(re))/re] < Z exp(fi(zk) /7]

i€l i€l

Since for all y € R™ we have that

lim rln (Z exp[zi/r]> = I?gx{yi},

r—0t,2—
Y i€l

we can let k¥ — +o00 in the last inequality to obtain

I?gx{fi(f)} < Iglgx{fi(f)}-
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Since T € S(P) is arbitrary, we have that Z solves

(P) [ zgg(rlg)rgng{f (=)}

Denote Iy :={i € I |Vz € S(ﬁ), fi(z) = p*} and assume that Iy # I. Let now T € 5(13)
We have that for all i € I and ¢ € [0,1] f;(Z + ¢t(T — Z)) = p*; hence

fia(ry)) = file(ry) +T - 2).

Thus
Z exp[fi(z(rg))/ri] < Z exp[fi(zx)/Tx)-

i€\ Io i€\ Io

Letting £k — 400 in the last inequality, we obtain

max {f;(7)} < max {f;(z)}.

iel\Io ieI\Io
We deduce that 7 solves
p; = min max{f;(x)}.

zeS(P) iel\Ip

Repeated application of these arguments enables us to prove that Z solves the recur-

sive hierarchy of minimax problems that define the absolute minimizer z* of (P), which
completes the proof. O

Remark 3.2. In practice, (P,) is solved only approximately. An interesting open ques-
tion is the extension of this result to the case of inexact solutions.
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