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We define p-rank-one connections at infinity for an unbounded set K in M™*™ and show that the
quasiconvex hull Q,(K) may be bigger than K if K has a p-rank-one connection, where Q,(K) is the
zero set of the quasiconvex relaxation of the p-distance function to K. We examine some examples and
compare Q,(K) with Q,(K) - a more restrictive quasiconvex hull of K.

1. Introduction

For a compact set K C M™*" the quasiconvex hull records the locations of all possible
microstructures generated by K in the variational approach to martensitic phase trans-
formation [8, 9, 23, 27, 33, 38]. Related notions such as the rank-one convex hull are also
useful for the study of microstructures. There are three different but connected definitions
of the quasiconvex hull and the rank-one convex hull.

Definition 1.1 ([27]). Let K C M™*" be a non-empty closed set. The quasiconvex
hull Q(K) of K is defined by

QK)={X e MV*", f(X) < sup f(Y), f: M¥*™ = R quasiconvex}.
Yek

The rank-one convex hull R(K) is defined by

R(K)={X € M"*", f(X) < sup f(Y), f: M"*™ — R rank-one convex}.
YeK

Definition 1.2 ([38]). For any 1 < p < oo, the p-quasiconvex hull and p-rank one convex
hull of K are defined by

Qp(K) = {X € MV*", Qdist’(X, K) = 0},
R,(K) ={X € MM*" Rdist’(X, K) = 0},

where dist(-, K) is the Euclidean distance function to K and @ dist”(-, K) and R dist”(-, K)
are the quasiconvex relaxation and rank-one convex relaxation of dist?(-, K) respectively.

It was established in [38] that for 1 < p < 00, Q(K) = @Q,(K) whenever K is compact.
The advantage of Definition 1.2 is that the quasiconvex hull is determined by the zero set
of a single quasiconvex function.

When K is bounded, quasiconvex hulls arise naturally from the study of singular solutions
of certain elliptic systems [28], the stability problem of the conformal set [32, 33|, and the
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study of minimizing problems with linear growth quasiconvex functions [14]. However,
for unbounded K the the situation is quite different [32, 33, 35, 39, 24, 11]. In [33], Yan
defined the p-quasiconvex hull for an unbounded set as

Definition 1.3 ([33]). Let K C M"*" be non-empty and closed. The p-quasiconvex
hull Q,(K) of K is defined by

Q,(K) = {X € MM, f(X) < sup f(V),

YeK

f: MM*" — R quasiconvex, and 0 < f(X) < C;(1+ |X[?)}

The p-rank-one convex hull R,(K) of K is defined by

R,(K) = {X € M, f(X) < sup f(Y),

YeK
f: MY — R rank-one convex, and 0 < f(X) < Cy(1 + |X[?)}

where C; > 0 is a constant depending on f.

It is well-known that when f is quasiconvex, it is rank-one convex [21, 4, 10], while the
converse is not true [29]. Therefore we have

R(K) CQ(K),  Rp(K)CQp(K), Ry(K)C QpK).
From the definitions above, we also see that
QIK) C Qp(K) C Qp(K),  R(K) CRy(K) C Ry(K),
forall1 <p< o0.

Since quasiconvex hulls arise naturally from minimizing problems, let us examine briefly
how they might otherwise be defined. Consider the minimizing problem inf I(u) subject
to certain boundary conditions, where

I(u) = /Q F(Du(z))dz. (1.1)

We are interested in the situation when inf I(u) = 0 with F satisfying F'(P) =0, P € K
and F'(P) >0, P ¢ K. The quasiconvex hull of (K, F') could be defined as

Qp(K)={P e M"* inf / F(Du)dz = 0}. (1.2)

ulpo=Pz

Therefore, we see that Q(K), given by Definition 1.1, is the smallest quasiconvex hull while
Q,(K) is the smallest among all Qr(K) with F(P) has p-th order growth at infinity.
However, for general K, it is hard to find enough quasiconvex functions to estimate
Q(K) or Q,(K), while the p-distance function dist?(-, K) characterizes the geometry of
K and can always be defined. The study of (),(K) depends only on the behaviour of the
quasiconvex function @ dist?(-, K). This function has a very interesting property which is
not shared by other type of nonnegative quasiconvex functions vanishing on K, manely:

Qdist?(-, K) = Qdist”(-, Q,(K)),
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for all 1 < p < oco. A matrix P is in Q,(K) if there is a sequence (¢;) in Cg°, such that

lim [ dist’(P + D¢;(z), K)dz = 0.

J]—00 0
Hence for every ¢ > 0, P + D¢;(z) stays in the e-neighbourhood of K except on a small
set H; whose measure tends to 0 as 5 — 0. For functions F other than those of distance
type, if F(P) = 0, P € K and F(P) > 0, P ¢ K, the behaviour of the minimizing
sequences is more difficult to characterize. Therefore, the study of Q,(K) could also be
considered as the first step toward the understanding of Q(X) and Q,(K).

In this paper, we define the notion of rank-one connections at infinity, and use it as a
tool to study the quasiconvex hull @,(K) without knowing too many details of K. It is
well known that rank-one connections are the simplest type of algebraic conditions on a
closed set K which are sufficient to ensure a nontrivial quasiconvex hull @,(K). Rank-
one connections at infinity are a natural generalization of the notion of the rank-one
connection. We have

Definition 1.4. Suppose K C MY *" is closed and unbounded. K has a p-rank-one
connection at infinity if there exists a sequence (A;) in K with eigenvalues of AJTAJ-

A <A < A\ < Z g
f— f— V] *

7 =77 —= ¥l K

such that
(i) A — ooasj— oo;
(i) Let Aj =AY + -+ A7), then
Aj
(Aj)H/e

— 0, as j — oq;

(iii) There exists a rank-one matrix Ay such that
A
VA

When p = 1 and K has a 1-rank-one connection at infinity, we simply say that K has a

rank-one connection at infinity. For simplicity we say ‘p-rank-one connection’ rather than
‘p-rank-one connection at infinity’.

— Ay, as j — oo.

Intuitively, a rank-one connection at infinity just means that the greatest eigenvalue of
AT A; goes to infinity faster than all other eigenvalues. Hence the limit of A;//A; is a
rank-one matrix.

Before we give examples of sets with rank-one connections at infinity, we state the main
theorem of this paper.

Theorem 1.5. Suppose K is closed, unbounded and has a p-rank-one connection at in-
finity. Then

{P+tAy; Pe K, t >0} C R,(K) C Q,(K), (1.3)

where Aqg is the rank-one matriz given by Definition 1.4.
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This result shows what type of extra points will be in R,(K) and Q,(K). If K already
contains the set in (1.3), this theorem does not provide any information on R,(K) or
Qp(K). The following result is a direct consequence of the proof of Theorem 1.5.

Proposition 1.6. Let Sy, S_ and S be given by

S, ={P e M*? P" =P, det P =1, and P is positive definite}
S_={Pe M*? P =P det P=1, and P is negative definite},
S = S_|_ U S,.

Then

Ry(S1) = Qp(S:) = C(S,), Ry(S.) = Qy(5.) = C(S.),  Ry(S) = QylS) = C(8)
for all p > 1, where C(K) is the closed convex hull of set K.

Remark 1.7. Since the structure of S, is simple, we can show that at least for p > 2,
Qy(S1) = Sy Let

f(P) = dist*(P,C(S,)) + | det P — 1.
Then F is quasiconvex (in fact, polyconvex), F > 0 and F~'(0) = S,.

Theorem 1.5 does not apply to the quasiconformal set R,;SO(n) where the eigenvalues
do not satisfy assumption (ii) of Definition 1.4 [32, 33, 22].

We also have

Proposition 1.8. Let SEL”) be given by

={P e M™" PT = P det P =1, and P is positive definite},

Then

Ry(5{) = Qy(5)
=C SSF")) {P e M™", P" = P, det P > 1, and P is positive definite}

for all p > 1.

We establish Theorem 1.5 by using an upper bound of the rank-one convex relaxation of
the p-distance function from a two point set, @ dist?(-, {A, B}) based on the translation
method [13]. The bound recovers the explicit quasiconvex relaxation when p = 2, obtained
by Kohn [17].

In Section 2, we give some preliminaries and establish an upper bound of the quasiconvex
relaxation of dist?(-,{A, B}) which is essential for the proof of Theorem 1.5. We prove
Theorem 1.5 and Proposition 1.6 in Section 3. In Section 4, we apply Theorem 1.5 to var-
ious situations. We will study quasiconvex hulls for closed, connected and unbounded sets
in M?*? without rank-one connections. We will also study the quasiconvex hulls related
to singular solutions of elliptic systems proposed in [28], and quasimonotone mappings.
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2. Preliminaries

Throughout the rest of this paper €2 is a bounded open subset of R®. We denote by M¥*x"
the space of real N x n matrices with the RY™ metric; hence the norm of P € MNx"
is defined by | P |= (tr PTP)/?, where tr is the trace operator and P’ is the transpose
of P. We denote by diag(ai,as,--- ,a,) an n X n diagonal matrix with diagonal entries
ai,as, -+ ,a,. The inner product of two matrices in MV*" is P - Q = tr PTQ. For an
n X n matrix P, denote by adj P the transpose of the cofactors of P. O(n) is the set of
all n x n orthogonal matrices while SO(n) C O(n) is the set of all orthogonal matrices
with determinant 1. For a compact subset K C MY*" let C(K) be the convex hull of
K. We write Cy(2) for the space of continuous functions ¢ : Q — R having compact
support in €, and define Cj(Q2) = C*(Q) N Cy(R2). If 1 < p < oo we denote by LP(;RY)
the Banach space of mappings u : Q@ — R, u = (uy,--- ,uy), such that u; € LP(Q2) for
each 4, with norm ||u||ps(rv) = SN |willLe(q)- Similarly, we denote by W'?(Q, R") the
usual Sobolev space of mappings u € LP(Q;RY) all of whose distributional derivatives

oo = Dju;, 1 < i < N, 1< j <n, belong to LP(2). W(Q,R") is a Banach space

under the norm

”u”Wl’P(Q,RN) = ”u”LP(Q;RN) + ||Du||LT’(Q;MN><")a
where Du = (D;u;), and we define, as usual, W, (€; RY) to be the closure of C$°(Q; RY)
in the topology of WP (Q; RY).

Weak and weak * convergence of sequences are written as — and —, respectively. If
H c M¥*" P € MN*" then we write H + P to denote the set {P +Q : Q € H},
jH = {jQ, Q € H} for an integer j > 0. We define the distance function for a set
K Cc MN*" by
P) =dist(P,K) := inf | P — .
f(P) = dist(P, K) == inf | P~ Q|

Definition 2.1 ([21, 4, 10, 1]). A continuous function f : MV*" — R is quasiconvex
if

| 5P+ Dola)) ds > f(P) meas(V)
U
for every P € MN*" ¢ € C}(U;RY), and every open bounded subset U C R" .

For a given function, we can consider its quasiconvexification (quasiconvex relaxation):

Definition 2.2 ([10]). Suppose f : M¥*™ — R is a continuous function. The quasi-
convexification of f is defined by

sup{g < f; g quasiconvex }
and will be denoted denoted by Q) f.

Proposition 2.3 ([10]). Suppose f: MN*" — R is continuous, then

QF(P)= imf

pecge (RN) meas(§2)

wa+0m@m% (2.1)

where @ C R™ is a bounded domain. In particular the infimum in (2.1) is independent of
the choice of €.
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We use the following theorem concerning the existence and properties of Young measures
from Tartar [30]. For results in a more general context and their proofs, the reader is
referred to [5, 31].

Theorem 2.4. Let (2\9) be a bounded sequence in L= (S;R*). Then there exist a sub-
sequence (z™)) of (29)) and a family {vy}zeq of probability measures on R®, depending
measurably on x € 0, such that

FE) 2 (v, F) in L®(Q)

for every continuous function f:R® — R.

We say that v, is a trivial Young measure at x € Q if v, = §4 for some A € R®, where 4
is the Dirac mass at A.

Suppose that Q C R*. A family of parametrized measures {v,},cq is called a Young
measure limit of gradients [7, 18, 19], if it is generated by a sequence of gradients Du;
with (u;) bounded in WHP(Q,RY).

We will need a consequence of the following theorem, but will not introduce the more
general notion of normal integrals to which it applies (see [12, page 234]).

Theorem 2.5 (The measurable selection theorem (see [12, page 236])).
Let B be a compact subset of RP and g a Carathéodory function of 2 x B. Then, there
exists a measurable mapping @ : 2 — B such that for all x € Q.

(2, (@) = min{g(z,0)}.

A direct consequence of Theorem 2.5 is the following:

Proposition 2.6. Let B C RP be a compact subset and let u : 2 — RP be an integrable
mapping. Then there exists a measurable mapping u : 0 — B such that for all x € €2

lu(z) — a(x)| = dist(u(x), B).
The following simple result will provide us with a guide for the estimates in the proof of
Theorem 1.5.
Lemma 2.7. Let a <0< b and 0 < A <1 be fized numbers. Define
f(z) = min{|z — al?, |z — b]P} + A|z|P.
Then

bla|? — a|bP
<A—.
Cf(0) <A P

Proof. The proof is very simple. Let # = b/(b—a), then, 0 < # < 1 and fa+ (1—0)b = 0.
We then have

Cf(0) <0Cf(a) + (1= 0)Cf(b) < Of(a)+ (1—0)f(b)
blaP — a|b|”.

=0Aaf’P + (1 —-0)[b" = A
aP+ (1= )y —
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We conclude this section by examining the structure of closed connected sets in M?2*2
without rank-one connections.

It was established in [26] that if K C M?*? is closed, connected and has no rank-one
connections, then det(A — B) > 0 for all A, B € K, A # B, or det(4A — B) < 0 for all
A, B € K, A # B. Such sets are characterized in [36].

Let Ey = span{E;, Ey}, E5 = span{ E3, F;} be the pair of two dimensional subspaces of
M?*2 where

1 1 1 1
0 0 0 0
El—_(%5 1), Ez—_(_1 \6§>, ]53—_<\65 1), E4=<1 ‘65)
V2 V2 V2 V2

Notice that Ey and Ej5 are orthogonal to each other and FEi,..., E; is an orthonormal
basis of M?>*?. Let Pg, and Pg, be the orthogonal projections from M>** to E and Ej
respectively. It is easy to check that for any ¢ € C§°(Q2, R?), with Q C R? open,

[Z|PE@(D¢($))‘2dz:L‘PEB(D¢($))‘2dx-

The following was established in [36, Theorem 3.2].
Lemma 2.8. Suppose K C M?*?, and det(P — Q) > 0 for all P, Q € K, P # Q. Then

K={A+ f(A), A€ Pg,(K)}

where Ejy is the two dimensional subspace defined in Lemma 3.1, Pg,(K) is the image of
K under Pg, and f : Pg,(K) — Ej satisfies

| f(A) = f(B) [<|A-B| (2.2)
forall A, Be K, A# B.

We call the mapping f obtained in Theorem 3.2 the Lipschitz mapping associated to K.
Notice that without loss of generality, we may assume that det(P —@Q) > 0 for P, Q € K,
P # @ by multiplying K by J if necessary, where

1= (é —01) '
Lemma 2.9 (see [37, Lemma 2.9] and its proof). Suppose f : Ey — Ej is a Lips-
chitz mapping with Lipschitz constant k < 1. Let K = {P + f(P), P € Ey}. Then
|Pr,y(A) = f(Pr,(A)| < V2dist(4, K)
for all A € M?*2,

3. Proof of the main results

Proof of Theorem 1.5. Since for any P € M™*" and f : MV*" — R+, we have

Rf(P) < inf{0f(P+A)+(1—0) f(P+B), 0< 0 < 1, 0A+(1—6)B = 0, rank(A—B) = 1}
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Let K; = {P, A;}. Since an everywhere finite rank-one convex function is continuous, we
estimate the value of Rdist?(-, K;) at B; = P+t(A; — P)/|A; — P| instead of at P +tA,,
because it is easy to see that B; — P +tA, as j — oo. This follows from the facts that
|A;| = oo, P is fixed and A,/|A4;| = Ag as j — oo.

We consider two different situations.

Case (1) If there exists a sequence of A;, such that rank(A; — P) = 1. then obviously
Rdist?(P + t(A; — P)/|A; — P|,K) < Rdist?(P + t(A; — P)/|A; — P|, K;) = 0.

Passing to the limit j — oo, we have P + t(4; — P)/|A; — P| — P + tA,;. Hence,
Rdist? (P + tAp, K) = 0.

Case (2) If for sufficiently large j, rank(A; — P) > 1 we choose
Ui=a(A; — P)v®uv, Vi=B(A; — P)v®v

with «, § to be determined, where v is a unit eigenvector corresponding to the greatest
eigenvalue p; of (A; — P)T(A; — P) . Obviously, rank(U; — V;) = 1. Let us estimate
dist”(B; + U;, Kj).

dist?(B; + U;, K;) = min{|B; + U; — P|, |B; + U; — A,["}

t(A; — P) \ — Plo & g
. ‘ |A; — P ol e (3.1)
1 t(A; — P) P
j
M) o (A —_P
A, =P +a(4; — Plv@uv — (4 )

Now, let E; be the one dimensional subspace of M"*™ spanned by A; — P. We denote by
Pg; and Pp. the orthogonal projection from M "N to E; and its orthogonal complement
J

E;- respectively. We have, in (3.1) that

— A, — P
. |Aj—P| +a( J )U®’U )
. t(A; — P) P
w4, - o (A _P
|4 = P| +aldj = Plv@v—(4;-P)
(|t(A; — P p
ﬁ + Pr;(@(4; = P)v ®v) + Py (a(4; = Po@v)|
= min < J
t(Aj_P) P
ﬂ+PEj(a(Aj_P),U®U)+PE4_(04(A]'—P)’U®’U)—(Aj—P)
\ Y Jj
t(A; — P p
M —{—PE(Q(AJ — P)’U@’U) ,
: |Aj — P| g
< 277! | min 4 _p i
M"‘PEj(a(Aj—P)U@v)—(Aj—P)
|Aj — P|

+ |Po(0(4; = P o)

J

(3.2)
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Let us calculate Pg, ((A; — P)v ® v) and |Pg.((4; — P)v ® v)|. We have
J

(A; — P) (A4 — P)
Pg.((A; — Pv®@u) = <7-(A-—P)v®v
e |4, =P T |4; — P|
- M A _p
|AJ _P|2( J )'
Since
[(4; = P)v@v|* = |Pp,((4; — P)v@v)[* + [Py ((4; — P)v @ v)[%,
while
12
(4 =Pwev*=p;  and  |[Pg((4; - Poev)f’ = m'
J
Consequently,
2 2
1] i (|45 — PI* — py)
Py.((A;— P =gy - — L= ’
| E]J-(( j Jv®v)|° = A, — PP |A; — PJ?

Therefore
(JA;—P|2—p;
P (4 = Poov)P B 4 PPy

Po (4= PP A b

We then have

|4 — PP — p

Pt~ P = (=

Now we substitute (3.6) into (3.2),

diStp(Bj + Uj, KJ)

HA; — P »
M‘FPEJ-(O&(AJ'—P)U@’U) ;
<2p—1 . ‘A]_P‘
=7 Y 1, - p) »
=) L Py (a(A; — P (A, —P
R e fala; - Poe o) - (4;- P
4op ‘pEjL(a(Aj —Puev)|
{4, — P) 8
=) | Py (a(A, - P
‘|Aj—P| + Pg, (a(A; o @w)|

= 9P~ 1 i
2 min »

t(A; = P)

Aj— P2 =\
+2p1<| j ,u.| :“J) |pEj(a(Aj—P)v®U)‘p
j

/2
) Pu,(4; — Pl @ v).

27

(3.3)
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p

(A; —P)

J

‘t(Aj—P)+ a;
|A;—P| |4 — PP
WA = P) any
|A;—P| |4 - PP

2
Lopl (|Aj — P|” - Ma')p/
14

= 27" min

(4;—P)—(4; - P)

p

7% (A~—P)
|4; — P2

e ()
|Aj — PJ? |A; — P|

%JML__(L__J;_)
|Aj — PJ? |Aj — P

+ (|Aj ~ PP —Mj>p/2 ap; [
g |4; — PJ?

» (3.7)

I

=2""14; — P|P |min »

If we replace a by (3, we can obtain a similar estimate of dist?(B; +V}, K;). Now for large

7 >0,
/2
(\Aj — PP - M)p 1
Hj
We may use Lemma 2.7 to estimate R dist?(B;, K;) by careful choice of o, § and 0; .

We choose «, such that

&_(_#> _ 0
|A; — PJ? |A; — P| ’

that is,
t|A; — P|
= _T’
so that
Uj = i (45— Plo®w.

Hj
Similarly, we take (3, such that

Bu; ¢
(1= =
A, — PP A, —r) ="

ﬂ=<1— t )'Aj_PP,
|A; — P 14

which gives

Similarly, we choose

2
b= (- o) e
We see that 0 is a convex combination of U; and Vj if
1-— _t > 0, or, equivalently _t < 1.
|4 — P |4 — P
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This is possible for large j > 0 because |A;| = oo as j — oo and ¢t > 0 is fixed. For U;
and V; given above, let us find 6;, such that 0 < 6; < 1 and 6,;U; + (1 — 6;)V; = 0. This

is equivalent to

t|A; — P ( t ) |A; — P)?
—— 10, +(1-06;)(1- =0
w7 (=6) |4; — P 11

which implies
t t

i=1— —, 1—-0,=———.
’ |A4; — P T[4, - P
Obviously, 0 < 6; < 1 for large j > 0. Now we have

(9]' diStp(Bj + U]’, KJ) + (1 — 0]) diStp(Bj + ‘/j, KJ)

A'—P|2—,LL' p/2 Qi
S 2p_1|A'—P|p 9 (| ] ] | J |P
’ ’ 11 |4 — P2
A — P12 _ 4. p/2 )
s - o) (B P
1 |Aj — P
/2
:2p—1\A._P|p<|Aj—P|2—Mj>p ( 1z >p
’ 11 |A; — P?

(05l + (1 = 0;)|5")

p/2 P
- 1 |A; — PJ?

[(t\Aj—P|)p+ t }
1L |A; — P|

2
_ gr=1yp <|Aj — PP - Ma')p/

Hj
—~1)/2 p/2
L or-ly A, — PP\ V2 (14, - P2 —
J
/2
T (\Aa’ — PP - ﬂj>p
g
/2
A= P2 =\
+ 2P /2 (‘ ! 1/‘p “J) =L+ I,
i

where we have used the facts that 1 — t/|A; — P| < 1 and % < n. The second
inequality follows from the fact that p; is the greatest eigenvalue of (A; — P)T(A; — P).
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From (3.8) we see that the conclusion will follow if we can prove that

i 1A = PP =

= 0. (3.9)

Let us consider the polar decomposition of A; as

where R is a max{N,n} X n matrix with columns orthogonal to one another and with

the norm of each column 1, A; is the greatest eigenvalue of AT A;, |A;| = (/AT A; and Q

is an n x n orthogonal matrix such that

4] = QT diag(y/ A, -, /AT, VA)Q

NOW, |A] — P|2 = |AJ|2 — ZtI(A?P) + |P|2 and

tr(ATP) = tr(Q” diag(1/ A\, -+, /A" Y, /A))QRTP)
= tr(diag(\/ A", -, /A", V/A)QRT PQT).

Here we have used the simple fact that tr Q’CQ = trC when Q is orthogonal and C
is a square matrix. If we let QRTPQT = B and let b; be the (i,7) entry of B for
1=1,2,--- ,n, we have

n—1
tr(ATP) = tr(diag(y/ A", -+, /A" Y, V/A;)B) = (Z Agi)bii> + /Ajb.  (3.10)
=1

Now we estimate p; from below. Letting v = Q7(0,---,0,1), we have

pi > (45 = Pyvf* = [Ajf — 2(vTATPv) +|Pol?
= A; —2(0, 1)QQT diag(y/ A, -+, /A V V/A)QRTPQT (0, -+ ,0,1)T + | Pu?

= A;—2(0,-,0, 1)diag(\//\j1, \/ " /A,)B T+ |Pu)?
= Aj — 2\/*/T]bnn + ‘P’UP 2 Aj — 2\/71)7”1,

so that

i > Ay = 2/Asban, (3.11)
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and |b,,| < |P|. Combining (3.10) and (3.11), we see that

[4j = PI* = p;
Hjl_/p
42 =2 (S5 AP0 ) + /1P = (4, = 2/
<
= (A; — 21/A; byn) V7
A2 — A, A, v
< 14 j i (3.12)
AP\ Ay = 2/AP)

2 A2 (T b2y 2 | P

J

(Aj = 2¢/A5|P|) P

1
- ( A 2A;/2|P|+|P|2> ( A, ) ”
A AP Aj —2y/A| P|

s
lim A; = 400, lim TJ =0 and
j—o0 j—o0 Aj/p

Since

A
lim J =1,
Jj—roo Aj — 21/Aj|P|

we see that (3.9) follows. Therefore in (3.8), Iy — 0, as j — oo, where

p/2
I, = op—1pp(p=1)/2 (|Aj - P‘Q — ru’j) .

1
Mj/p

From (3.11) we also see that p; — 0o as j — oo. This together with (3.9) implies

|[Aj = PI* — p;

p/2
) — 0, as j — o0.
Hj

Il - 2p*1tp (
therefore, finally we have,

A;j—P
Rdist? (P + tAy, K) < lim sup Rdist?(P + t—2

T8 gy=o.
=00 |Aj — P i)

The conclusion follows. U

Proof of Proposition 1.6. For A € S, there is a rotation R € M?*2, such that A =
RT diag(), 1/X\)R. Let us first examine diagonal matrices in S,. We have, for every ¢ > 0,
A(t) = diag(t,1/t) € S.. When t > 1, the greatest eigenvalue of A7 ()A(t) is ¢?, the
other eigenvalue is 1/t2. We see that for every ¢t > 1, and p > 1,

1 2
lim A 0, and lim A(t)/V#2 = diag(1,0).

t—o00 (t2)1/p o t—o0
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From Theorem 1.5, we see that
{P + sdiag(1,0), P € Sy, s >0} C R,(S4).
Similarly, we see that for every rotation R,
{P + sR" diag(1,0)R, P € Sy, s > 0} C R,(S,).

Therefore C(Sy) C R,(S4), since we always have R,(Sy) C Q,(S;) C C(S4). The first
conclusion follows. The proof for S_ is similar.

Now for R,(S). Since S; and S_ are subsets of S, the p-rank-one connections of S and
S_ are also p-rank-one connections of S and therefore

{P + sRT diag(£1,0)R, P € S, s > 0} C R,(5),
for every orthogonal matrix R. Therefore C(S) C R,(S). The proof is complete. O
Proof of Proposition 1.8. Let

K ={P¢c M P"=P/detP>1, and P is positive definite}.

We first prove that K C Rp(SEL")). Then we show that K is convex so that C (SEL")) C K.
Since R,(S™) c C(S{™), the conclusion then follows.

In a similar manner to the proof of Proposition 1.6, if we take
A(t) = diag(t, 1/t1/(n—1)’ e l/tl/(”_l))’

we see that det A(¢t) =1 for all ¢ > 0, and if we apply Theorem 1.5 and follow the proof
of Proposition 1.6, we see that

{P + sR” diag(1,0,--- ,0)R, P € S s> 0,R € O(n)} C R,(S™).

Now, for every A € K \ SEL”), let \y > ---,> )\, be its eigenvalues. There is a rotation
Ry, such that A = RT diag(\,+ -+, A\n)Ro. Since Mg+ Ay, > 1, Ay > 1/(Xg---A\p). Let
A=1/(Aa---Ap) and s = Ay — 1/(Aa--- A\p) > 0, we have

A = R} diag(\, Ay -+, A\y) Ro + sRj diag(1,0,---,0)Ry,
hence

A € {P + sRT diag(1,0,--- ,0)0R,P € S™,s > 0,R € O(n)} C R,(5™).

It is well known that K is convex. In fact, let A, B € K, and we let
a” =det A > 1, b"=detB>1

and we assume that 1 < a <b. Let 0 <t < 1, and let oy > --- > 0, be the eigenvalues

of C = vA-'BVA~!, we see that

detC =01 0,0" [a™ > 1,
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. det(tA+ (1 —t)B) = a"det(t] + (1 —t)C) > det(tf + (1 —t)C).
We see that tA+ (1 —t)B € K if det(¢t] + (1 — ¢t)C) > 1. This follows essentially from
the arithmetic-geometric inequality. We have

det(tI + (1 — t)C) = det[diag(t + (1 — t)o1,--- ,t + (1 — t)o,)]

=[(t+ (1 —=1t)or]---[(t + (1 —t)o,]

n (3.13)
=0 \1<i; <-<ix<n
From the arithmetic-geometric means inequality,
1
S ooy > <k> ( 11 UU)
1< <<ip<n 1< <-<ip<n (3.14)

which follows from the fact that oy -- -0, = det C > 1. Combining (3.13) and (3.14), and
applying the binomial theorem, we have

det(tI + (1 —t)C Z()t”’“ ) =0t+0-t)" =1

Hence tA+ (1 —t)B € K, K is convex. The proof is complete. O

Remark 3.1. For p > n, we know that Qn(SSr")) = SEL") because the following quasicon-

vex function f : M™*"™ — R, vanishes only on Sin)
F(P) = dist™(P,C(S™)) + | det(P) — 1.

4. Connected sets in M?*? without rank-one connections

In this section, we study quasiconvex hulls for connected, closed, and unbounded subsets
of M?*? which do not have rank-one connections. We give conditions such that the cor-
responding quasiconvex hulls are larger than the sets themselves. We consider this type
of sets because they have very simple representations [36] so we can translate the condi-
tions for rank-one connections at infinity into conditions on the assymptotic behaviours
of certain Lipschitz mappings at infinity.

Theorem 4.1. Let K C M?*? with 0 € K be an unbounded closed set without rank-
one connections and f : Pg,(K) — Ej be its associated Lipschitz mapping (the case
[ : Pg; — Ejy is similar) satisfying

If(A) = f(B)|<|A-B|, A BE€ Pg(K), A#B.
Then Khas a p-rank-one connection at infinity if and only if
Pl —|f(A
s 71—
A0, AePpy (k) |P[VP

When (4.1) holds for some 1 < p < 00, Q,(K) # K.

=0. (4.1)
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Remark 4.2. The condition 0 € K is a normalization assumption for the function f
which does not affect the generality of the result because Q,(K + A) = Q,(K) + A for all
1 < p < co. However, the condition 0 € K implies |f(A)| < |A].

In [37], the Lipschitz condition |f(A) — f(B)| < ¢(p)|A — B| for a certain constant 0 <
c(p) < 1, was assumed to ensure that Q),(K) = K [37]. This Lipschitz condition also
implies

£(A)]

lim sup <c(p) <1
|A]—00, AEPE, (K) |A|
so that
Al —|f(A
lim sup ||—|1f()‘ = 400
Al 00, AcPpy (K) |4 /p

However, since ¢(p) is obtained as a bound of a certain singular integral, we do not know
the value of ¢(p) explicitly (except for p = 2 where ¢(2) can be chosen as any positive
number strictly less than 1). I do not know whether Q2(K) = K if there exists a > 0
such that

lim sup [Pl = f(A)] o

_ 4.2
A o0, AcPry (k) [PV T (4.2)

Notice that when p =1, (4.1) is equivalent to

lim sup — =1.
|A|—o00, A€ P, (K) ‘A|

We would like to know whether
|f(A)]

lim sup — <1,
|Al—00, AP, (K) | A

would imply Q1(K) = K. In [39], @1(K) = K was established under the condition that
f =0, or, equivalently, K C E3. However, we have the following result for p = 2.

Theorem 4.3. Let K C M?*? with 0 € K, be an unbounded, closed and connected set
without rank-one connections. Let f : Pg,(K) — Ej be its associated Lipschitz mapping
(the case f : Pg, — Ej is similar) satisfying

|f(A) - f(B)| < |A-B|
Then

lim sup ()] =a<l (4.3)
|Al00, A€ Py () |4

implies Q2(K) = K.

Remark 4.4. Theorem 4.3 improves upon Theorem 4.1 in [37] where a much stronger

assumption
f(A) = f(B)| < k|A - B|

with 0 < k£ < 1 is used.
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Proof of Theorem 4.1. Let us find the eigenvalues A, A (with A < A) for a general
element (A + f(A))T(A + f(A)) and noticing that A and f(A) are orthogonal to each
other. We have

A(A) + A(A) = tr(A+ f(A)T(A+ f(A) = [AP + [f(A)P,

A(A)A(A) = det(A + f(A))T (A + f(A)) = (det(A + f(A)))* = i(\z‘ll2 — [F(A)P)*

Therefore,
M) = 5 (148 + 7R + (A7 + 77 - (AR~ 7C?)
= £ (Al + £
Similarly,
M) = 5 (14 = (A
so that
(A )
)T~ \TAT+ 7(4)) 7
:<|A\—|f(A)|)2 L (44)
AT ()

From Definition 1.4, we see that K has a p-rank-one conncetion at infinity if

, A(A)
lim sup —— =0. 4.5
|A| 300, A€ Pr, () (A(A))1/P (45)

Since 1 <14 |f(A)|/|A] <2, we have, combining (4.3) and (4.5) that

ey AL

=0.
|Alvo0, AcPp,y (k) |A[MP

Hence we have a sequence (A; + f(4;)), such that

A=A
jlg:go |A| 1P =0,
A A
J+f( J) = Ao + By,

1m
700 \/A(Aj)

where Ay € Ey, By € Ej respectively, rank(Ag + Bg) = 1 and |Ag + By| = 1. From
Theorem 1.5, we have

{A+ f(A) +t(Ao+ By), A+ f(A) € K, t > 0} C Q,(K).
Therefore @,(K) has rank-one connections, which implies that Q,(K) # K. O
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Proof of Theorem 4.3. We extend f to be defined on Ej such that |f(A) — f(B)| <
|A — B|, while on Pg,(K) we have the strict inequality |f(A) — f(B)| < |A — B|. Let
P € Qo(K). There exists a sequence ¢; € Cs°(U, R?) such that

lim [ dist’(P + Dg;, K)dz = 0,
Jj—=oo Jir
where U C R? is the unit square.

As in the proof of [37, Th.4.1], we first consider
L= /U[|PE3(D¢J')|2 — |f(Pg, (P + Dg¢,)) — f(Pg,(P))|}dz, (4.6)

to show that D¢; is bounded in L*(U). Since |f(A)|/|A] = a < 1 as |A| — oo, there
exists M > 0, whenever |A| > M, |f(A)|/|A] < (1 + «)/2. Now, on the one hand, since

/ |Ps, (D;)[2dz = / Py, (Dé;)%da, (4.7)
U U
we have

I = / 1Py (D)) — |f (Pay (P + D)) — f(Pey(P)) 2l

>

/ [ Pe,(D)* = | f(Pry (P + Dé;)) — f(Pr,(P))[’]dz
{2€0,|Pr, (D)) (@) > M+ P[}

>

/ Py, (D) %da
{z€l, |Ppy (Do; ) ()| >M+|P|}

_/ ((1+a)2(1+6)
{2€U, | Pr, (Dé;)(z)|>M+|P|} 4

(|Pg, (P)| + |f (Pr, (P))I)’ da

|PE6(D¢J-)|2) da
(4.8)

~ct [
{z€U, [Py (D) (z)| 2 M+|Pl}

_ (1 1+ +e)) /
4 {2€U, |Pry(Dg;)(@)|>M+|P|}

|Pg, (Dg;)|?da

— C(&)(|Pr, (P)| + |f (P, (P))])?

—u [ Pe,y (D) Pz = C(e, P),
{z€U, |Ppy (D) (z)|2M+|P[}

where € > 0 is a positive integer such that y = 1 — (1 + a)?(1 +¢€)/4 > 0; C(e) > 0,
C(e, P) > 0 are positive constants.

On the other hand, we may extend f to be defined on Ejy such that |f(A)—f(B)| < |A-B|.

From Lemma 2.9 we have

| Pry(A) = f(Pr,y(A))] < V2dist(A, K) (4.9)
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for every A € M2*2, so that
Iy = [ 1Pr(Dés) = |1 (P, (P + D) = f(Pry(P) Pl
= [ 1P, (Do) P
— [ 15 (Peq(P+ Do) = Pe, (P + D) + [Pe, (D6,)] + [Pe, (P) = F(Pr, (P da

<- /[][PEg(D¢j)] + ([f (P, (P + Dgj)) — Ppy(P + Déj)] + [Py (P) — f(Pr,(P))]) dz

<23 [ |Pey (D) [0t (P -+ Doy, ) + dist(P, K)o
U
<3 / |Pe; (D5)[*dz + C(p) / [dist’(P + Dy, K) + dist>(P, K)]dx (4.10)
v U

-y / |Pg,(Dg¢;)?dz + C (1) / [dist?>(P + D¢, K) + dist?(P, K)]dz
2 U U

o
<5/ |Pry(Dg;)da
{z€U, |Pry (D¢;)(2)| > M+|P|}
+g/ (M + |P|)da
{z€U, |Pry (D¢;)(z)|<M+|P|}

+C(p) [distQ(P, K) + / dist*(P + D¢;, K)| dz,
U

where we have used (4.9) and the inequality ab < ea® + C(€)b? for real numbers a, b and
e > 0 and C(e) is a constant. Combining (4.8) and (4.10), we obtain

/ Pe, (Do) (@) ds < €
{z€U,|Pgy(D¢;)(2)| 2 M +|P[}

for some constant C' > 0 independent of j, because [, dist’>(P+D¢;, K)dx — 0 as j — oo.
Therefore Pg,(D¢;) is bounded in L*(U, M?*?). Then (4.7) implies that D¢, is bounded
in L2(U, M?"?).

We may assume, up to a subsequence, that ¢; — 0 in W?(U, R?) because we can extend
¢; periodically outside U and then define ¢; = %(b(_]iﬁ) It is then easy to see that ¢; — 0

in W'2(U, R?) and
lim [ dist’(P + Dv;, K)dz = 0,

Jj—=o Jir
so that (v;) satisfies our requirements.

Now we show that D¢; — 0 almost everywhere in U. Similar to the proof of the bound-
edness of D¢; in L?, we introduce

L= /U[IPEB(D% — Déy)|” = |f(Pg, (P + D¢;)) — f(Pg, (P + D¢y))[*]dz,
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motivated from [26]. We use the so-called ‘biting’ Young-measures [19] to study the limit
of I; ;. Since D¢; is bounded in L?, there exists a sequence of measurable sets Uy, C U,
Unt1 C Uy, and meas(U,) — 0, a subsequence of D¢, (we still denote it by using
subscript j) and a family of Young measures {v;},cr, such that for every Carathéodory
function f: U x M?*? satisfying |f(x, A)| < a(z) + C|AJ?,

Jhﬂrgo . f(z,Doj(z))dz = /U\Um (/1\/[2x2 f(:L',)\)dl/w> dx.

for each fixed m > 0.

For I;;, we have, on the one hand,

Ij,k = /[|PE3(D¢j - D¢k)|2 _ |f(PE6(P + DQSJ)) — f(PEa(P-F D¢k))|2]d$
) (4.11)
2 /U\U |Pg,(D; — Doy)|* — | f(Pr, (P + Dg¢;)) — f(Pg, (P + Déy))|*]dz,

because f is a 1-Lipschitz function. If we pass to the limits, ; — oo, then k£ — oo, we
have

liminfliminf I;
k—oo j—oo ’

> lim lim |Pg,(Dé; — Doy)|?
k—00 j—00 U\Upm
— |f (P, (P + Dé;)) = f(Pr,(P + D)) |*|dz (4-12)

N /U\Um /]\/[2><2 /]\/[2><2HPEB(P + )\) — Pr, (P + 7_)|2
— |f(Pg,(P 4+ X)) = f(Pg,(P + 7)) dva(\)dvy(1)dz.

On the other hand (c.f. the calculations in (4.10)), we can estimate I;; from above by
Iy < 22 [ |Pey(Dé; = Dou)|[dist(P + Do, K) + dist(P + Db, K)lds
U

<22 ( | 1Pe,(0; - D¢k>|2dx) " (413)

1/2 1/2
( / dist*(P + D¢;, K)dm) ( / dist?(P + D¢y, K)dm) :
U U

Since [, |Pgy(D¢; — D¢y)|*dz is bounded and

lim [ dist>(P + D¢;, K)dz =0, lim [ dist*(P + Déy, K)dz = 0,

we let 5 — oo, then £ — o0,

limsup limsup 7, < 0.
k—o00 j—o0
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Combining (4.12) and (4.13) we see that

// / [Py (P + \) = Pry (P + 7))
Mm2x2 J prex2 (4.14)
1F(Pay(P+ N)) = (P (P + 7)) Pldus (N () = 0

Since the integrand in (4.14) equals 0 if and only if Pg, (\) = Pg,(7), we see that
Pg,(D¢;) — 0 almost everywhere. Now, since

0 < |Pgy(P+ D¢;) — f(Pg,(P + D¢;))| < V2dist(P + D¢;, K) — 0,

almost everywhere, we see that Pg,(D¢;) converges almost everywhere in U. The limit
is 0 almost everywhere because Pg,(D¢;) — 0 in L.

The conclusion follows from the fact that

0= lim [ dist>(P + D¢;, K)dx

]—)OO U
> lim dist’>(P + D¢, K)dx = / dist?*(P, K)dz,
I JU\U, U\Un,
for each fixed m, hence dist*(P,K) =0, P € K. O

Remark 4.5. The second part of the proof of Theorem 4.3 shows that if we do not
assume condition (4.3), and instead we require that the sequence D¢; is bounded, we can
still show that up to a subsequence D¢; converges almost everywhere. In the terminology
of Yan [33], the set is W?-weakly stable. However, when we study quasiconvex hulls, the
sequence comes from a minimization problem. Therefore we have to establish boundedness
of the sequence separately.

5. Quasiconvex hulls of some graphs in M?"*?

In this section, we examine the quasiconvex hulls for a class of sets in M?"*? proposed
in [28] for the study of singular solutions for elliptic systems in two-dimensional spaces.
We examine two cases. The first one is when the system is of sublinear growth, so that
the quasiconvex hull contains extra matrices. The second is when the system is of linear
growth and the corresponding constitutive functions are strongly quasimonotone. In this
case we can prove that Q2(K) = K.

We examine the quasiconvex hulls of the unbounded set designed by Sversk [28] in search-
ing of singular solutions of the Euler-Lagrange equations of variational problems with qua-
siconvex integrands. Let F': M™*? — R be smooth and quasiconvex, then the weak solu-
tion of div DF'(Du) = 0 is equivalent to a system of first order equations Dv = DF(Du)J

where
0 1
(0.

The method suggested in [28] is to find nontrivial Young measures for the nx2 dimensional
graph K C M?? defined by

Gr = X X € M™*? 5.1
PTANDRX)T )’ < ' (5.1)
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Let us examine a simple example first, which connects the Lipschitz graphs in M?*? with-
out rank-one connections studied earlier in this section and monotone gradient mappings
from R? to R2.

A mapping f : R — R? is strictly monotone increasing (decreasing) if for all z, y € R?,
z#y, (flx) = f(y) - (x—y) >0 ((f(z) = f(y)) - (z — y) <O respectively). We have

Proposition 5.1. Suppose F' : R? — R is of class Ct. Then DF : R? — R? is a strictly
monotone mapping if and only if Gp C M**? defined in (5.1) with n = 1 does not have
rank-one connections.

The following result is a simple application of Theorem 1.5.

Theorem 5.2. Suppose F : M™? — R is of class C' and |DF(X)| < C(1 + |X1°) for
some 0 <o < 1. Then

Y X, Y € M™*? G
DF(X)J ]’ < C Qi(Gr).

If we further assume that 0 < o < 1/2, then

Y X, Y € M™? G
DF(X)J ) ™ < C Q:(Gr).

In the next result, we use the notion of strong quasimonotonicity of a gradient mapping
to study quasiconvex hulls. We give conditions such that Q2(GFr) = Gr. An important
class of mappings in the study of existence problem for elliptic equations and systems are
the so-called pseudo-monotone mappings [25]. Let A : W,* — (W,*)* be a continuous
map. If u; — u in W, and
lim inf (A(u;),u; —u) <0

j-)OO
imply that u; — u strongly in WO1 ’2, the operator A is called pseudo-monotone. For elliptic
systems, a class of mappings A : MN¥X? — MN*" called quasimonotone mappings was
introduced to solve elliptic systems under a weaker monotonicity condition [34] (also see
[15]) for the regularity problem). Recently, R. Landes [20] showed that for elliptic systems,
quasimonotonicity is also a necessary condition for pseudo-monotonicity. For a gradient
mapping DF(P) with F : MY*" — R, quasimonotonicity of DF implies quasiconvexity
of F' while the converse is not true [16].

Theorem 5.3. Suppose F : M™*? — R is of class C' such that
IDF(X) - DF(Y)| < C|X -]

for some ¢y > 0 and DF is strongly quasimonotonic in the sense that
/ DF(P + Dé(x)) - Dé(x)dz > ¢, / Dé(x)da,
Q Q

for some constant ¢ > 0 and for every open set Q C R?, for every P € M™? and every
€ CH(Q,R"). Then
Q2(Gr) = Gr

and G can only support trivial gradient Young measures.
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Proof of Proposition 5.1. The statement that Gz is closed, unbounded and does not
have rank-one connections is equivalent to the statement that G is a Lipschitz graph
from Pg,(Gr) to Ej, or from Pg,(GFr) to Es. Without loss of generality, we may assume
that the first situation occurs. The statement is also equivalent to

Py, ((DF)((X)J>) 1 ((DF)((X)J>)‘

i ((ore1s)) =75 (o))
This is equivalent to

[(m - <8F(X) B aF(Y))}2 N [(x2 ) <8F(X) B 8F(Y))r

<

0x1 011 O3 s
<[ (52 ) e (52452

which is equivalent to
(DF(X)-DF(Y))-(X-Y) >0,

hence DF' is monotone increasing. O

Proof of Theorem 5.2. Let us calculate the eigenvalues A(X) > A(X) of

<DF)((X) J) T <DF)((X) J) '

We obtain

A(X)

- % (\X\Q +|DF(X)? + (X + [DF(X)]?) — 4det(X7X + JTDF(X)TDF(X)J)) ,
A(X)

We have
(XTX+JTDF(X)TDF(X)J)
MX) _ det( (XEFDF(X) )
A(X) B XTX+JTDF(X)TDF(X)J .
1+ /1~ dden (AT R D)

Noticing that |[DF(X)| < C(1+ |X|?) and 0 < o < 1, we have, for any rank-one matrix
Xo with unit norm | X,| =1,

T
M) det(XTX,) 0

t—+o0 A(tXp) 1+ /1 — 4det(X] X,)
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From Theorem 1.5 we see that

X X,
X eM™? s> :
{(DF(X)J>+S<O), € ,S_O}CRl(GF)
Since for any closed set K such that Gp C K C R,(GF), we have R,(K) = R,(GF), we

see that for any Xi,---, X, with X; a rank-one matrix and |X;| =1,7=1,---,m, we
have

{(DF)((X)J> + 2::3 <)é> X e M™2, 5, >0} C Ry(Gp).

Notice that for any X, Y € M™*2 Y can be represented by
m
Y=X+) 5X
i=1
for some rank-one matrices X; with norm 1 and s; > 0, 0 < m < 2n. Therefore

{(DF}(/X)J)’ XY e M””} C Ri(Gr).

The proof is complete.

If o < 1/2, we have

det ((XTX+JTDF(X)TDF(X)J)>

AX) 1 (X[2+|DF(X)2)3/4
AX)2 32"
(XTX+JTDF(X)T DF(X)J)
[Hw_met( 1 DF )" D) )]

As in the above proof, let X, be a rank-one matrix with norm 1, we see that

if and only if

lim det

t—o0

(tXTtXy + J'DF(tXo)"DF (tX,)J) _0
(ItXo[? + [DF(tXo)[?)%/*

This follows from the growth condition |[DF(X)| < C(1+|X|?) with0 <o < 1/2. O

Proof of Theorem 5.3. Let (4) € Qo(Gr) and let (%) be a minimizing sequence in

Cg° such that
. . A+ D¢,
1 2 J = 0.
]1}11010 Ddlst <(B+ij),Gp)dx 0

Since for each fixed j, D¢; and Dw; are bounded in L*, we can apply the measurable
selection lemma to find an measurable mapping X; : D — M?*™ such that

.o (A+ Do;(x) _ () — X ()2 () — () |2
dist (<B+ij(x)),GF)—|A+D¢J(> X; ()| + |B + Diyj(z) — DF(X;(2))J|
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and

lim [ A+ D6(a) ~ X,(o) Pz =0,
D

J—0o0

Let A+ D¢;(z) — X;(z) = n;(z), B+ Dyj(z) — DF(X,(z))J = m;(z), then n; — 0,
m; — 0 strongly in L?.

Now we have X;(z) = A+ D¢;(z) — nj(z) so that
B+ Dyj(xz) = DF (A + D¢j(x) — nj(x))J + m;(x).

lim / B+ D, () — DF(X,(2))J dz = 0.
—00 D

J

Applying the curl operator on both sides of the above equality in the sense of distributions

we have
—divDF(A+ D¢;(z) — nj(x)) + curlmj(z) = 0.

Since n;, m; € L?, we have

/D[DF(A + Dej(x) — nj(2)) - Doj(x) — my(x) - D(w)]dz = 0, (5.2)

where

YU 8(}5]-1 a¢j1 3¢j2 . a¢j2
D¢; = <m12 1, — My Bz, + | Mmoo Bz, Moy 92y )

Since DF is strongly quasimonotone and satisfies Lipschitz condition, we have in (5.2)
/ DF(A+ Do, (x)) - Dé;(x)
D
= / [DF(A+ D¢;(x)) — DF(A+ D¢;j(z) — n;(x))] - Dg;(z)dx
D

+/ij(x) - Doi(z)]dz,
so that
o [ 1D9fde < C [ n|Dg;(a)ido + [ ml|Dsda.
Hence there exists a constant C'; > 0 depending only on ¢y and C, such that
[ 1Dosfd < G [ (ny? + mf?)z = 0
D D

as j — oo. Therefore D¢; — 0 strongly in L?. Since

B + Dyj(x) = DF(A+ D¢j(x) — nj(x))J + mj(z),
we may pass to the limit 7 — oo in this equality, so that

Dy; — DF(A)J — B.

Since 1; has compact support in D, we see that B = DF(A)J. Thus

(4) <

The proof is complete. U
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Remark 5.4. Instead of requiring that DF is a Lipschitz mapping, we could require that
DF(X) is coercive in the sense that DF(X) - X > C|X|? — C,. In that situation one
could apply the method used in [34] to establish a similar result.

Acknowledgements. I would like to thank Z. Igbal, S. Miiller and J. Kristensen for helpful
discussions and suggestions. This work was completed during my visit to Max-Planck Institute
for Mathematics in the Sciences, Leipzig. I would like to thank Stefan Miiller for invitation.

References

[1] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations, Arch. Rational
Mech. Anal. 86 (1984) 125-145.

[2] E. J. Balder: A general approach to lower semicontinuity and lower closure in optimal
control theory, STAM J. Control and Optimization 22 (1984) 570-597.

[3] H. Berliocchi, J. M. Lasry: Intégrandes normales et mesures paramétrées en calcul des
variations, Bull. Soc. Math. France 101 (1973) 129-184.

[4] J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ra-
tional Mech. Anal. 63 (1977) 337-403.

[6] J.M. Ball: A version of the fundamental theorem of Young measures, in: Partial Differential
Equations and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and
M. Slemrod, Springer-Verlag (1989) 207-215.

[6] J. M. Ball: Sets of gradients with no rank-one connections, J. Math. Pures et Appl. 69
(1990) 241-259.

[7] K. Bhattacharya, N. B. Firoozye, R. D. James, R. V. Kohn: Restrictions on microstructures,
Proc. Royal Soc. Edinburgh A 124 (1994) 843-878.

[8] J.M. Ball, R. D. James: Fine phase mixtures as minimizers of energy, Arch. Rational Mech.
Anal. 100 (1987) 13-52.

[9] J. M. Ball, R. D. James: Proposed experimental tests of a theory of fine microstructures
and the two-well problem, Phil. Royal Soc. Lon. 338A (1992) 389-450.

[10] B. Dacorogna: Direct Methods in the Calculus of Variations, Springer-Verlag, 1989.

[11] B. Dacorogna: On rank one convex functions which are homogeneous of degree one, Preprint
(1994).

[12] I. Ekeland, R. Temam: Convex Aanlysis and Variational Problems, North-Holland, 1976.

[13] N. B. Firoozye: Optimal use of the translation method and relaxation of variational prob-
lems, Comm. Pure Appl. Math. 44 (1991) 643-678.

[14] I. Fonseca, S. Miiller: Relaxation of quasiconvex integrals in BV (Q,RP) for integrands
f(x,u, Du), Arch. Rational Mech. Anal. 123 (1993) 1-49.

[15] M. Fuchs: Regularity theorems for nonlinear systems of partial differential equations under
natural ellipticity conditions, Analysis 7 (1987) 83-93.

[16] C. Hamburger: Quasimonotonicity, regularity and duality for nonlinear systems of partial
differential equations, Ann. Mat. Pura Appl. 169 (1995) 321-354.

[17] R. V. Kohn: The relaxation of a double-well energy, Cont. Mech. Therm. 3 (1991) 981-1000.

[18] D. Kinderlehrer, P. Pedregal: Characterizations of Young measures generated by gradients,
Arch. Rational Mech. Anal 115 (1991) 329-365.



K. Zhang / Rank-one connections at infinity and quasiconvezr hulls 45

[19] D. Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in Sobolev
spaces, J. Geom. Anal. 4 (1994) 59-90.

[20] R. Landes: Quasimonotone versus pseudomonotone, Proc. Royal Soc. Edin. 126A (1996)
705-717.

[21] C. B. Morrey jun.: Multiple Integrals in the Calculus of Variations, Springer, 1966.
[22] S. Miiller, V. Sverdk, B.-S. Yan: Sharp stability results for almost conformal maps, preprint.

[23] S. Miller: Variational Models for Microstructure and Phase Transitions, Max-Planck Inst.
Leipzig, Lecture Notes No. 2, 1998.

[24] S. Miiller: On quasiconvex functions which are homogeneous of degree one, Indiana Math.
J. 41 (1992) 295-300.

[25] J. Necas: Introduction to the Theory of Nonlinear Elliptic Equations, Wiley, 1986.

[26] V. Sverdk: On Tartar’s conjecture, Ann. Inst. H-Poincaré, Anal. Non Lin. 10 (1993) 1405
1412.

[27] V. Sverdk: On the problem of two wells, in: Microstructure and Phase Transitions, IMA
Vol. Math. Appl. 54, edited by D. Kinderlehrer, R. D. James, M. Luskin and J. L. Ericksen,
Springer (1993) 183-189.

[28] V. Sverdk: Lower semicontinuity of variational integrals and compensated compactness, in:
Proc. ICM 1994 (2), edited by S. D. Chatterji, Birkhduser (1995) 1153-1158.

[29] V. Sverék: Rank one convexity does not imply quasiconvexity, Proc. Royal Soc. Edin. 120A
(1992) 185-189.

[30] L. Tartar: Compensated compactness and partial differential equations, in: Nonlinear Anal-
ysis and Mechanics: Heriot-Watt Symposium Vol.IV, edited by R. Knops, Pitman (1979)
136-212.

[31] M. Valadier: Young measures, in: Methods of Nonconvex Analysis, Springer Lecture Notes
in Math. 1446 (1990) 152-188.

[32] B.-S. Yan: Remarks on the set of quasi-conformal matrices in higher dimensions, Preprint
(1994).

[33] B.-S. Yan: Remarks on W!P-stability of the conformal set in higher dimensions, Ann. Inst.
H-Poincaré, Anal. Non Lin. 13 (1996) 691-705.

[34] K.-W. Zhang: On the Dirichlet problem for a class of quasilinear elliptic systems of PDEs
in divergence form, in: Partial Differential Equations, Proc. Tianjin, 1996, edited by S. S.
Chern, Springer Lecture Notes in Math. 1036 (1988) 262-277.

[35] K.-W. Zhang: A construction of quasiconvex functions with linear growth at infinity, Ann.
Sc. Norm. Sup. Pisa Serie IV, 19 (1992) 313-326.

[36] K.-W. Zhang: On connected subsets of M?*? without rank-one connections, Proc. Royal
Soc. Edin. 127A (1997) 207-216.

[37] K.-W. Zhang: On non-negative quasiconvex functions with unbounded zero sets, Proc.
Royal Soc. Edin. 127A (1997) 411-422.

[38] K.-W. Zhang: Quasiconvex functions, SO(n) and two elastic wells, Ann. Inst. H-Poincaré,
Anal. Non Lin. 14 (1997) 759-785.

[39] K.-W. Zhang: On some quasiconvex functions with linear growth, J. Convex Anal. 5 (1998)
133-146.



