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Bounded linear regularity, the strong conical hull intersection property (strong CHIP), and the conical
hull intersection property (CHIP) are properties of a collection of finitely many closed convex intersecting
sets in Euclidean space. It was shown recently that these properties are fundamental in several branches of
convex optimization, including convex feasibility problems, error bounds, Fenchel duality, and constrained
approximation. It was known that regularity implies strong CHIP, which in turn implies CHIP; moreover,
the three properties always hold for subspaces. The question whether or not converse implications are
true for general convex sets was open.

We show that – even for convex cones – the converse implications need not hold by constructing counter-
examples in R4.
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1. Introduction

Consider the following three properties for two given closed convex sets C1 and C2 with
C := C1 ∩ C2 6= ∅ in some Euclidean space X.

“bounded linear regularityÔ For every bounded set S in X, there exists κS > 0 such
that the distances to the sets C1, C2, and C are related by

d(x,C) ≤ κS max{d(x,C1), d(x,C2)}, for every x ∈ S.
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“strong CHIPÔ For every x ∈ C, the normal cones satisfy

NC(x) = NC1(x) +NC2(x).

“CHIPÔ For every x ∈ C, the tangent cones satisfy

TC(x) = TC1(x) ∩ TC2(x).

These geometric properties are key in the study of various areas in convex optimization and
bordering fields, such as: Fenchel duality [13, 12]; duality for convex cones [19]; systems
of convex inequalities and associated error bounds [22, 23, 9]; projection algorithms and
their rate of convergence [6, 8, 20]; constrained interpolation [15, 14]; the angle between
two subspaces [11]; conical open mapping theorems [7].

It was well-known (see [9, Theorem 3], [23, Proposition 6], [24, Corollary 16.4.2]) that

bounded linear regularity ⇒ strong CHIP ⇒ CHIP,

and that the three properties always hold when C1 and C2 are subspaces [9, Section 6].
It was left open whether any of the implications is reversible, even for convex cones.
Moreover, in this conical setting, the three properties coincide if at least one of the
following conditions is satisfied [9]:

• C is either a singleton or a ray ;

• each cone Ci is “locally smoothÔ on C \ {0};
• C is linear ;

• each cone Ci is polyhedral ;

• the relative interiors of C1 and C2 make a nonempty intersection.

• the space X has dimension 2.

Hence counter-examples are not easy to obtain.

The aim of this paper is to provide counter-examples distinguishing the properties bounded
linear regularity, strong CHIP, and CHIP.

Specifically, we provide in Sections 3–5:

(i) two convex cones in R4 that have strong CHIP but are not boundedly linearly regular
(Corollary 3.2);

(ii) two convex cones in R4 that have CHIP but not strong CHIP (Theorem 4.1);

(iii) the equivalence of CHIP, strong CHIP, and bounded linear regularity for two convex
cones in R3 (Theorem 5.1); and

(iv) two convex sets in R3 that have CHIP but not strong CHIP (Corollary 4.2).

In view of (iii), the conical counter-examples are minimal (in terms of dimension of the
underlying space). It should be mentioned here that two cones even in R3 may fail
to have CHIP, see [9, Example 5]. To make the construction of the counter-examples
more transparent, we modularize our work when possible and give a number of results,
interesting in their own right, in Section 2.

The original version of this paper appeared as the research report “Metric regularity,
strong CHIP, and CHIP are distinct properties,Ô CORR 98-33, University of Waterloo,
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July, 1998. In September 1998, after the submission of the original version, A. Bakan in-
formed us that he had shown in [2] the existence of an example as in (i) and had shown in
[1] the equivalence of bounded linear regularity and a certain “Moreau-Rockafellar equal-
ityÔ for convex cones in R3. Since the latter equality was shown in [15] to be equivalent
to strong CHIP, Bakan’s result implies the equivalence of bounded linear regularity and
strong CHIP for convex cones in R3 (see (iii)). Recently F. Deutsch informed us that, in
a forthcoming paper [4], he and W. Li and Bakan give two convex sets in R3 with strong
CHIP but without bounded linear regularity. They also give an alternative construction
of example as in (i).

We conclude this section by fixing our notation. We adopt mostly standard notation
from convex analysis as can be found in the classical [24] or the more recent [16, 17]. The
nonnegative (resp. nonpositive) reals are denoted R+ (resp. R−). Suppose S is a set in a
Euclidean spaceX. We writeBX for the unit ball {x ∈ X : ‖x‖ ≤ 1}. The relative interior
(resp. closure, boundary, relative boundary, convex hull, convex conical hull, closed convex
conical hull, orthogonal complement) of S is denoted ri(S) (resp. cl(S), bd(S), rbd(S),
conv(S), cone(S), cone(S), S⊥). If S is closed and convex, then S induces a distance
function d(x, S) := inf{‖x − s‖ : s ∈ S} and a corresponding projection PS(x) ∈ S by
‖x − PS(x)‖ = d(x, S). If S is nonempty and R+ · S = S, then we say that S is a cone.
The adjoint of a linear operator T is denoted by T ∗.

Finally, to make the presentation less cluttered, we will loosely write expressions like
“R2 × 0Ô rather than “R2 × {0}Ô.

2. A tool box

Throughout this section, we assume that

X is a Euclidean space with inner product 〈·, ·〉 and norm ‖·‖.

Polar cones

Definition 2.1. Suppose S is a nonempty set in X. Then the positive polar cone (resp.
negative polar cone) of S, written S⊕ (resp. S©), is defined by {y ∈ X : 〈y, S〉 ≥ 0} (resp.
{y ∈ X : 〈y, S〉 ≤ 0}).

Remark 2.2. It is easy to check that S⊕ is a closed convex cone and that S© = −S⊕.

Fact 2.3. Suppose K and L are closed convex cones in X. Then:

(i) (K ∩ L)⊕ = cl(K⊕ + L⊕).

(ii) (K + L)⊕ = K⊕ ∩ L⊕.

Proof. See [24, Corollary 16.4.2].

Proposition 2.4. Suppose S is a closed cone in X and A is a nonsingular linear trans-
formation of X. Then (T (S))⊕ = (T ∗)−1(S⊕).

Proof. y ∈ (T (S))⊕ ⇔ 〈y, T (S)〉 ≥ 0 ⇔ 〈T ∗y, S〉 ≥ 0 ⇔ T ∗y ∈ S⊕ ⇔ y ∈ (T ∗)−1(S⊕)
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Proposition 2.5. Suppose L is a closed convex cone in X, and Z is a subspace of X.
Then PZ⊥((L+ Z) ∩ εBX) = PZ⊥(L) ∩ εBX , for every ε > 0.

Proof. “⊆Ô: let y = PZ⊥(x), where x ∈ (L + Z) ∩ εBX . On the one hand, ‖y‖ =
‖PZ⊥(x)‖ ≤ ‖x‖ ≤ ε, hence y ∈ εBX . On the other hand, x = l + z, for some l ∈ L and
z ∈ Z; consequently, y = PZ⊥(x) = PZ⊥(l) ∈ PZ⊥(L). Altogether, y ∈ εBX ∩ PZ⊥(L).
“⊇Ô: pick y ∈ PZ⊥(L) ∩ εBX , say y = PZ⊥(l), where l ∈ L. Then y = l − PZ l ∈
(L+ Z) ∩ εBX . Since y = PZ⊥(y), we have y ∈ PZ⊥((L+ Z) ∩ εBX), as desired.

Proposition 2.6. Suppose L is a closed convex cone in X, and Z is a subspace of X.
Then the following two statements are equivalent.

(i) There exists ε > 0 such that (L+ Z) ∩ εBX ⊆ (L ∩BX) + (Z ∩BX).

(ii) There exists ε > 0 such that PZ⊥(L) ∩ εBX ⊆ PZ⊥(L ∩BX).

Proof. “(i)⇒(ii)Ô: Suppose (L+Z)∩ εBX ⊆ (L∩BX)+(Z ∩BX). Then, using Proposi-
tion 2.5, PZ⊥(L)∩εBX = PZ⊥((L+Z)∩εBX) ⊆ PZ⊥((L∩BX)+(Z∩BX)) = PZ⊥(L∩BX).
Hence (ii) holds (with the same ε).
“(i)⇐(ii)Ô: Suppose PZ⊥(L)∩ ε′BX ⊆ PZ⊥(L∩BX). Fix an arbitrary x ∈ (L+Z)∩ ε′BX .
Then, using Proposition 2.5, PZ⊥(x) ∈ PZ⊥((L + Z) ∩ ε′BX) = PZ⊥(L) ∩ ε′BX ⊆
PZ⊥(L ∩ BX). Hence there exists l ∈ L ∩ BX such that PZ⊥(x) = PZ⊥(l). Now
x = PZ⊥(x)+PZ(x) = PZ⊥(l)+PZ(x) = l+PZ(x−l). Also, ‖PZ(x−l)‖ ≤ ‖x‖+‖l‖ ≤ ε′+1,
and clearly ‖l‖ ≤ ε′ + 1. Thus x ∈ (L ∩ (1 + ε′)BX) + (Z ∩ (1 + ε′)BX), which yields
x/(1 + ε′) ∈ (L ∩BX) + (Z ∩BX). Since x was chosen arbitrarily, we conclude

(L+ Z) ∩ ε′

1 + ε′
BX ⊆ (L ∩BX) + (Z ∩BX).

Therefore, (i) holds (with ε = ε′/(1 + ε′)).

Tangent and normal cones

Definition 2.7. Suppose C is a closed convex nonempty subset of X and x ∈ C. The
tangent cone (resp. normal cone) of C at x is defined by TC(x) := cone(C − x) (resp.
NC(x) := (C − x)©).

Fact 2.8. Suppose C is a closed convex subset of X and x ∈ C. Then:

(i) y belongs to TC(x) if and only if there exists a sequence (tn) of reals tending to +∞
and a sequence (cn) in C such that y = limn tn(cn − x).

(ii) NC(x)
© = TC(x) and TC(x)

© = NC(x).

Proof. (i): See [16, Definition III.5.1.1 and Proposition III.5.2.1]. (ii): See [16, Proposi-
tion III.5.2.4 and Corollary III.5.2.5].

Regularities

Definition 2.9. Suppose C1 and C2 are two closed convex sets in X with C := C1 ∩
C2 6= ∅. Then {C1, C2} is linearly regular if there exists κ > 0 such that d(x,C) ≤
κmaxi d(x,Ci), for every x ∈ X. If for every bounded subset S of X there exists κS > 0
such that d(x,C) ≤ κS maxi d(x,Ci), for every x ∈ S, then {C1, C2} is boundedly linearly
regular.
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Remark 2.10. Clearly, linear regularity implies bounded linear regularity. (Also, it is
obvious how these definitions extend to more than two sets.) The concept of (bounded)
linear regularity is very useful in certain areas of convex optimization, in particular error
bounds and projection methods. Bounded linear regularity is guaranteed to hold under
the usual constraint qualification ri(C1)∩ ri(C2) 6= ∅ (the relative interior can be dropped
for polyhedral sets). We refer the reader to [9] and [23, Section 3.4] for further information
and references.

Remark 2.11. A comment on the relationship between bounded linear regularity and
the well-known notion of metric regularity for set-valued maps is in order. To start with,
there is no generally agreed upon notion of metric regularity for two sets C1, C2. We
could define metric regularity as in [9, Remark 5] or as in [18, Section 5]. However, both
definitions imply the constraint qualification “0 ∈ int(C1−C2)Ô and consequently bounded
linear regularity [5, Theorem 4.3]. On the other hand, it is easy to obtain two sets that
are boundedly linearly regular without the constraint qualification. (Let C1 = C2 = {0}
in X = R, for instance.) Thus, existing definitions of metric regularity are genuinely
stronger than bounded linear regularity.

For cones, bounded linear regularity implies linear regularity:

Fact 2.12. Suppose K1 and K2 are two closed convex cones in X. Then the following
are equivalent.

(i) {K1, K2} is linearly regular.

(ii) {K1, K2} is boundedly linearly regular.

(iii) There exists ε > 0 such that (K⊕
1 +K⊕

2 ) ∩ εBX ⊆ (K⊕
1 ∩BX) + (K⊕

2 ∩BX).

Remark 2.13. Jameson referred to condition (iii) of Fact 2.12 as “property (G)Ô; see [19].
If K1 and K2 are actually subspaces, then these conditions always hold [9, Corollary 10].

Strong CHIP and CHIP

Definition 2.14. Suppose C1 and C2 are two closed convex sets inX with C := C1∩C2 6=
∅ and let x ∈ C. Then {C1, C2} has strong CHIP (resp. CHIP ) at x, if NC(x) =
NC1(x) + NC2(x) (resp. TC(x) = TC1(x) ∩ TC2(x)). We say that {C1, C2} have strong
CHIP (resp. CHIP ), if it has strong CHIP (resp. CHIP) at every point in C.

Remark 2.15. It is always true that TC(x) ⊆ TC1(x) ∩ TC2(x) and thus (Fact 2.3.(i))
NC(x) ⊇ cl(NC1(x) + NC2(x)). Also, taking negative polars shows that CHIP is less
restrictive then strong CHIP. The notions strong CHIP and CHIP — CHIP is an acronym
for “conical hull intersection propertyÔ — were coined by Deutsch and his co-workers (see
[10] and [15]) in their studies of constraint approximation problems. Very recent work on
strong CHIP and CHIP are [9], [12], [13], and [14],

We now present the basic relationships.

Fact 2.16. Bounded linear regularity ⇒ strong CHIP ⇒ CHIP.

Proof. The first implication can be shown using the connection between NC(x) and
the subdifferential of d(x,C); see [9, Theorem 3] and [23, Proposition 6]. The second
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implication follows from [24, Corollary 16.4.2].

Remark 2.17. We will construct examples below that show that neither implication is
reversible, even for cones. In stark contrast, all three conditions always hold for subspaces ;
see Remark 2.13.

Fact 2.18. Suppose K1 and K2 are two closed convex cones in X. Then {K1, K2} has
strong CHIP if and only if K⊕

1 +K⊕
2 is closed.

Proof. See [9, Proposition 20].

A family of self-dual cones

Definition 2.19. Suppose 1 < p < ∞. Set α := αp := 1/p, β := βp := 1 − α, and let
ρ := ρp be the positive solution of 1/ρ2 = ααββ. Define

S := Sp := {(x, y, z) ∈ R3 : |y| ≤ ρxαzβ, x ≥ 0, z ≥ 0}.

Theorem 2.20. S⊕
p = Sp. In particular, Sp is a closed convex cone.

Proof. Define α, β, ρ, and S as in Definition 2.19. Fix an arbitrary (u, v, w) ∈ S⊕. Then

ux+ vy + wz = 〈(u, v, w), (x, y, z)〉 ≥ 0, ∀(x, y, z) ∈ S. (∗)

Claim 1. u ≥ 0 and w ≥ 0.
Indeed, (1, 0, 0) and (0, 0, 1) belong to S and so the claim follows from (∗).

Claim 2. |v| ≤ ρuαwβ.
Case 1: u = 0. Then (x,±1, ρ−1/βx−α/β) ∈ S, ∀x > 0. By (∗), 0 ≤ ±v + wρ−1/βx−α/β.
This implies |v| ≤ ρ−1/βx−α/β, ∀x > 0. By letting x tend to +∞, it follows that v = 0.
This proves Claim 2 for this case. Case 2: w = 0. Similar to Case 1. Case 3: u > 0 and
w > 0. Set momentarily x :=

√

(wα)/(uβ), z :=
√

(uβ)/(wα), and y := ±ρxαzβ. Then
(x, y, z) ∈ S. Hence (∗) yields 0 ≤ ux + vy + wz. Now substitute the values for x, y, z
into this inequality and simplify. (Recall that α + β = 1 and 1/ρ2 = ααββ.) The desired
inequality follows.

Claims 1 and 2 imply (u, v, w) ∈ S and hence

S⊕ ⊆ S.

Claim 3. ξ + η ≥ ρ2ξαηβ, ∀ξ ≥ 0, η ≥ 0.
Without loss of generality, we may assume that ξ and η are both nonzero. Setting w :=
η/ξ, the inequality is then equivalent to f(w) := wα + w−β ≥ ρ2, ∀w > 0. The function
f is differentiable and its range is contained in (0,+∞). Also, as w tends to either 0+ or
+∞, the value f(w) tends to +∞. Hence f attains its minimum value. Calculus shows
that the minimum is ρ2, attained at β/α. The claim thus holds.

Now fix two arbitrary elements (x, y, z) and (a, b, c) in S. Then x, z, a, c are all nonnega-
tive, |y| ≤ ρxαzβ, and |b| ≤ ρaαcβ. Using this and Claim 3 (with ξ = ax and η = cz), we
estimate
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〈(a, b, c), (x, y, z)〉 = ax+ by + cz

≥ ax+ cz − ρ2(ax)α(cz)β

≥ 0.

Therefore, S ⊆ S⊕ and the proof is complete.

Proposition 2.21. Suppose K is a closed convex nonempty set in R and L is a closed
convex nonempty set in R+. Then Sp + (0×K × L) is closed.

Proof. Let α, β, ρ, and S be as in Definition 2.19. Fix a sequence (xn, yn, zn) in S and
a sequence (0, kn, ln) in 0×K × L, and assume that

(a, b, c) := limn(xn, yn + kn, zn + ln).

Then xn ≥ 0, zn ≥ 0, |yn| ≤ ρxα
nz

β
n , kn ∈ K, and ln ∈ L, for every n. Hence (xn) converges

to a, which yields a ≥ 0. Now (zn + ln) converges to c, which must be nonnegative.
Moreover, after passing to a subsequence if necessary, we assume that z := limn zn ≥ 0
and l := limn ln ∈ L. Hence z + l = c and (yn) is bounded. After passing to another
subsequence, we assume that y := limn yn. Hence limn kn = b− y ∈ K and (a, y, z) ∈ S.
It follows that (a, b, c) = (a, y, z) + (0, b− y, l) ∈ S + (0×K × L).

Remark 2.22. Denote the (real) vector space of 2-by-2 real symmetric matrices by H.
Then 〈x, y〉 := trace(xy) (for x, y ∈ H) defines an inner product on H, with induced norm
‖x‖ :=

√

〈x, x〉. The map

Φ : R3 → H : (x, y, z) 7→
(

x y/
√
2

y/
√
2 z

)

is a linear isometry from R3 onto H. Moreover, the image of S2 = {(x, y, z) : |y| ≤√
2xz, x ≥ 0, z ≥ 0} under Φ, S := Φ(S2), is precisely the cone of all positive semi-definite

matrices in H. (This cone has recently received much attention in convex optimization.
See, for instance, Lewis’s paper [21] for further information.) The projection onto S of an
element x ∈ H can be found as follows. Find first an unitary matrix u that diagonalizes
x: x = u∗du = u−1du, where d is diagonal. Then PS(x) = u∗d+u, where (d+ij) := ((dij)

+).

Definition 2.23. Suppose 1 < p < +∞ and let α, β, and ρ be as in Definition 2.19.
Define

S̃p := {(x, y, z) ∈ R3 : |x| ≤ ρyαzβ, y ≥ 0, z ≥ 0}.

Corollary 2.24. S̃⊕
p = S̃p.

Proof. Let Sp be as in Definition 2.19. Observe that S̃p is just Sp with the first two
coordinates interchanged. Hence S̃p = T (Sp), where

T :=





0 1 0
1 0 0
0 0 1



 .

Since T = T ∗ = T−1, the result follows from Proposition 2.4 and Theorem 2.20.
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A quarter circle

Proposition 2.25. Define a quarter circle in R2 by

Q := {(y, z) ∈ R2 : z2 + (y − 1)2 ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z}
= {(y, z) ∈ R2 : 2y ≥ y2 + z2, y ≤ 1, 0 ≤ z}.

Suppose q = (y, z) ∈ bd(Q). Then exactly one of the following two alternatives holds.

(i) z = 0 and 0 ≤ y ≤ 1. In this case,

TQ(q) =











R+ × R+, if y = 0;

R× R+, if 0 < y < 1;

R− × R+, if y = 1.

(ii) Either y = 1 and 0 < z ≤ 1, or 0 < y < 1 and z =
√

2y − y2. In either case,

Q ∩ R+ · q = [0, 1] · q, q 6∈ TQ(q), but − q ∈ TQ(q).

Proof. The second description of Q is easy to verify. The various statements on TQ(q)
follow immediately by examining a picture of Q. (This can be made rigorous by calculus,
of course.)

Conification

Proposition 2.26. Suppose C is a compact convex nonempty set in X. In X×R, define
K := cone(C × 1). Then:

(i) K = cone(C × 1).

(ii) Suppose p > 0 and c ∈ C. Then (y, s) ∈ TK(pc, p) if and only if y − sc ∈ TC(c).

(iii) If 0 ∈ C, then TK(0, 1) = TC(0)× R and NK(0, 1) = NC(0)× 0.

Proof. (i): It is clear that cone(C × 1) is contained in K. Conversely, pick (x, r) ∈ K.
Then there exists a sequence (cn) in C and a sequence of nonnegative reals (pn) such
that (x, r) = limn pn(cn, 1). Hence limn pn = r ≥ 0. Since C is compact, after passing
to a subsequence and relabeling if necessary, we assume without loss of generality that
limn cn =: c ∈ C. Hence rc = limn pncn and thus (x, r) = r(c, 1) ∈ cone(C × 1).
(ii): “(y, s) ∈ TK(pc, p) ⇒ y − sc ∈ TC(c)Ô: There exist sequences (tn) and (pn) in R+,
and (cn) in C such that (y, s) = limn tn

[

(pncn, pn) − (pc, p)
]

. Hence s = limn tn(pn − p)
and

y = limn tn(pncn − pc)

= limn tnpn(cn − c) + limn tn(pn − p)c

= limn tnpn(cn − c) + sc.

It follows that y − sc = limn tnpn(cn − c) ∈ TC(c).
“(y, s) ∈ TK(pc, p) ⇐ y−sc ∈ TC(c)Ô: We obtain sequences (t′n) in R+ and (cn) in C such
that limn t

′
n = +∞ and y − sc = limn t

′
n(cn − c). Define

pn :=
t′np

t′n − s
=

p

1− s/t′n
→ p and tn :=

t′n
pn

→ +∞.
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Then tn(pn − p) = s, ∀n. Hence

(y, s) =
(

sc+ (y − sc), s
)

=
(

tn(pn − p)c+ limn(t
′
n(cn − c)), tn(pn − p)

)

=
(

tn(pn − p)c+ limn(tnpn(cn − c)), tn(pn − p)
)

= limn

(

tn(pncn − pc), tn(pn − p)
)

= limn tn
[

(pncn, pn)− (pc, p)
]

∈ TK(pc, p).

(iii): This follows from (ii) and by taking negative polars.

Proposition 2.27. Suppose K is a closed convex cone in X. In X × R, define L :=
cone(K × 1). Then:

(i) L = K × R+.

(ii) TL(k, p) = TK(k)× TR+(p), for every (k, p) ∈ L.

(iii) NL(k, p) = NK(k)×NR+(p), for every (k, p) ∈ L.

Proof. (i): K × R+ not only contains K × 1 but also is a closed convex cone. Hence
K×R+ ⊇ L. Conversely, fix (k, p) ∈ K×R+. Pick a sequence of positive reals (pn) tending
to p. Then cone(K × 1) 3 pn(k/pn, 1) = (k, pn) → (k, p); hence (k, p) ∈ cone(K × 1) = L.
(ii): follows immediately from (i). (iii): Consider (ii) and take negative polars.

3. Strong CHIP 6⇒ bounded linear regularity

Throughout this section, we let

K := (0× S̃2) + (S3 × 0) and Y := 0× R3 in X := R4,

where S3 (resp. S̃2) is defined as in Definition 2.19 (resp. Definition 2.23).

Theorem 3.1.
(i) K is a closed convex cone in X, and Y is a subspace of X.

(ii) K ∩ Y = 0× S̃2.

(iii) K⊕ = (R× S̃2) ∩ (S3 × R) and Y ⊕ = Y ⊥ = R× 0.

(iv) PY (K
⊕) = 0× S̃2.

(v) R× S̃2 = K⊕ + Y ⊕ = (K ∩ Y )⊕.

(vi) There is no ε > 0 such that εBX ∩ PY (K
⊕) ⊆ PY (K

⊕ ∩BX).

(vii) There is no ε > 0 such that εBX ∩ (K⊕ + Y ⊕) ⊆ (K⊕ ∩BX) + (Y ⊕ ∩BX).

(viii) For t > 0, let xt := (1, t2, t3, 0). Then d(xt, K) = 0, d(xt, Y ) = 1, and d2(xt, K ∩
Y ) = 1 + t4/(t+

√
t2 + 2)2.

Proof. Let ρ2 =
√
2 and ρ3 = 31/2/21/3 be defined as in Definition 2.19.

(i): Clearly, K is a convex cone and Y is a subspace. To show that K is closed, fix
sequences (an, bn, cn) in S̃2 and (wn, xn, yn) in S3 and assume

limn(wn, xn + an, yn + bn, cn) =: (w∗, x∗, y∗, z∗).
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Now all bn, cn, wn, yn are nonnegative. It follows that w∗ ≥ 0, y∗ ≥ 0, and z∗ ≥ 0.
Moreover, (bn) and (yn) are bounded. After passing to a subsequence if necessary, we
assume that b̄ := limn bn ≥ 0 and ȳ := limn yn ≥ 0. Thus y∗ = b̄ + ȳ ≥ 0. Also, |an| ≤
ρ2b

1/2
n c

1/2
n , ∀n. Hence (an) is bounded, too. Without loss of generality (subsequence!),

assume ā := limn an. Hence

(ā, b̄, z∗) ∈ S̃2.

This implies limn xn = x∗ − ā and so

(w∗, x∗ − ā, ȳ) ∈ S3.

Altogether, (w∗, x∗, y∗, z∗) = (0, ā, b̄, z∗) + (w∗, x∗ − ā, ȳ, 0) ∈ K.
(ii): It is clear that 0× S̃2 is a subset of K ∩ Y . Now take an element of K, say (w, x+
a, y+ b, c), where (a, b, c) ∈ S̃2 and (w, x, y) ∈ S3. Assume further that (w, x+ a, y+ b, c)
belongs also to Y . Hence w = 0, which implies x = 0. Since y ≥ 0, the vector (a, b+ y, c)
clearly belongs to S̃2 and the reverse inclusion is established.
(iii): Follows from Fact 2.3.(ii), Theorem 2.20, and Corollary 2.24.
(iv): By (iii), K⊕ ⊆ R × S̃2. Hence PY (K

⊕) ⊆ PY (R × S̃2) = 0 × S̃2. Conversely, fix
(a, b, c) ∈ S̃2. Then b ≥ 0, c ≥ 0, and |a| ≤ ρ2b

1/2c1/2. If b = 0, then a = 0. So
we can always pick w ≥ 0 such that |a| ≤ ρ3w

1/3b2/3. Thus (w, a, b) ∈ S3. Using (iii),
(w, a, b, c) ∈ (R× S̃2) ∩ (S3 × R) = K⊕. Hence (0, a, b, c) = PY (w, a, b, c) ∈ P (K⊕).
(v): Since Y ⊕ = R×0 (by (iii)) and PY (K

⊕) = 0×S̃2 (by (iv)), we haveK⊕+Y ⊕ = R×S̃2.
This proves the first equality. In particular, K⊕ + Y ⊕ is closed. The second equality now
follows from Fact 2.3.(i).
(vi): By contradiction. Assume there exists ε > 0 such that εBX ∩ PY (K

⊕) ⊆ PY (K
⊕ ∩

BX). Multiplication by δ := ρ−3
3 > 0 yields

δεBX ∩ PY (K
⊕) ⊆ PY (K

⊕ ∩ δBX). (∗)

Now choose t > 0 so small such that y∗ := (0, t2, t3, t) ∈ δεBX . Let x∗ := (ρ−3
3 , t2, t3, t).

Then it can be checked that x∗ ∈ (R× S̃2) ∩ (S3 ×R). By (iii), x∗ ∈ K⊕ and hence y∗ =
PY (x

∗) ∈ PY (K
⊕). Thus y∗ ∈ δεBX ∩ PY (K

⊕). By (∗), there exists x := (w, t2, t3, t) ∈
K⊕ ∩ δBX such that PY (x) = y∗. On the one hand, |w| < δ. On the other hand, by (iii),
x ∈ (R × S̃2) ∩ (S3 × R). In particular, (w, t2, t3) ∈ S3, which is equivalent to w ≥ ρ−3

3 .
Altogether, we get w ≥ ρ−3

3 = δ > |w|, which is the desired contradiction.
(vii): This follows immediately from (vi) and Proposition 2.6 (with L = K⊕ and Z = Y ⊥).
(viii): It is clear that d(xt, Y ) = 1. Because ρ3 > 1, it is easy to verify that (1, t2, t3) ∈ S3.
Hence xt ∈ S3 × 0 ⊆ K and further d(xt, K) = 0. By (ii), K ∩ Y = 0× S̃2. Hence

d(xt, K ∩ Y ) =
√

1 + d2
(

(t2, t3, 0), S̃2

)

.

Let T be as in the proof of Corollary 2.24. Then T (S2) = S̃2 and T = T ∗ = T−1. Thus if
s is an arbitrary element of S2, then ‖(t2, t3, 0)−Ts‖ = ‖T (t2, t3, 0)−s‖ = ‖(t3, t2, 0)−s‖.
Borrowing notation from Remark 2.22, we thus have

d
(

(t2, t3, 0), S̃2

)

= d
(

(

t3 t2/
√
2

t2/
√
2 0

)

,S
)

.
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The eigenvalues of the matrix
(

t3 t2/
√
2

t2/
√
2 0

)

are t2(t ±
√
t2 + 2)/2. Hence the distance

from this matrix to S is t2(
√
t2 + 2− t)/2 = t2/(t+

√
t2 + 2). Altogether,

d(xt, K ∩ Y ) =

√

1 +
t4

(t+
√
t2 + 2)2

,

which completes the proof of the theorem.

Corollary 3.2. {K,Y } has strong CHIP, but is not boundedly linearly regular.

Proof. On the one hand, {K,Y } has strong CHIP, because of Theorem 3.1.(v) and
Fact 2.18. On the other hand, Theorem 3.1.(vii) and Fact 2.12 show that {K,Y } is not
boundedly linearly regular.

Remark 3.3. The intuition for the example {K,Y } can be seen by noting that K⊕ =
cone(C × 1) and Y ⊕ = Z × 0, where C := S3 ∩ C̃, with C̃ := R× {x ∈ R2 : (x, 1) ∈ S̃2},
and Z := R × 0 ⊂ R3. The pair {C,Z} has properties analogous to those given in
Theorem 3.1.(v) and (vii). In particular, bd(C̃) = {(x, y, z) ∈ R3 : y2 = 2z} intersects
bd(S3) = {(x, y, z) ∈ R3 : |y|3 = ρ33xz

2, z ≥ 0} in two curves that have Z as an asymptote.
This in turn ensures that C+Z is closed and there is no ε > 0 such that εBX ∩ (C+Z) ⊆
(C ∩BX)+ (Z ∩BX). [The latter can be seen by taking any sequence of points (xt, yt, zt)
in bd(S3) ∩ bd(C̃) that asymptotically approaches Z as t → 0, such as (xt, yt, zt) =
(4/(ρ33t), t, t

2/2). Then, (0, yt, zt) belongs to C + Z and is bounded as t → 0, but its
unique decomposition as sum of elements of C and Z, namely (xt, yt, zt) and (−xt, 0, 0), is
not bounded due to xt → ∞.] Notice that the particular choice of S3 and C̃ is not essential.
What is essential is that the intersection of their boundary has Z as an asymptote.

We outline, using Theorem 3.1.(viii), a different and more explicit proof that {K,Y } is
not boundedly linearly regular. Indeed, since K and Y are cones, it suffices to show that
{K,Y } is not linearly regular (Fact 2.12). If {K,Y } were linearly regular, then there
would exist κ > 0 such that d2(x,K ∩ Y ) ≤ κ2max{d2(x,K), d2(x, Y )}, for every x ∈ X.
Letting xt be as in Theorem 3.1.(viii) and setting zt := (1/t)xt = (1/t, t, t2, 0), we would
conclude that

1

t2
+

1
(

1 +
√

1 + 2/t2
)2 = d2(zt, K ∩ Y )

≤ k2max{d2(zt, K), d2(zt, Y )}

=
k2

t2
,

for every t > 0. But this is absurd, since, as t tends to +∞, the first expression in
this chain of inequalities tends to 1/4, whereas the last expression tends to 0. Therefore,
{K,Y } is not boundedly linearly regular.

Also, the example from Corollary 3.2 can be embedded into any higher-dimensional space.

Remark 3.4. The earlier result of Bakan [2] asserts the existence of two convex cones in
R4 with strong CHIP but without bounded linear regularity. Our result gives an explicit
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construction of such cones. Another result of Bakan [1], together with a result in [15],
asserts that these concepts coincide for convex cones in R3.

Also, a somewhat simpler example (residing in R7) is described in a subsequent paper [7,
Remark 3.12].

4. CHIP 6⇒ strong CHIP

Throughout this section, we let

A := S2 ∩ {(x, y, z) ∈ R3 : (x− 1)2 + z2 ≤ 1, 0 ≤ x ≤ 1, 0 ≤ z}

and
B := 0×Q, C := conv(A ∪B), Y := 0× R2,

where S2 (resp. Q) is as in Definition 2.19 (resp. Proposition 2.25).

Theorem 4.1.
(i) The sets A,B,C are compact, convex, and nonempty.

(ii) TA(0) = S2.

(iii) A ∩B = A ∩ Y = {0}.
(iv) C ∩ Y = B.

(v) TC(b) ∩ Y ⊆ TB(b), for every b ∈ B.

(vi) TC(b) ∩ TY (b) = TB(b), for every b ∈ B.

(vii) (0,−1, 0) ∈ NB(0) \
[

NC(0) +NY (0)
]

.

Proof. (i): If (x, y, z) ∈ A, then both x and z belong to [0, 1]. Hence y2 ≤ 2xz ≤ 2 and
so A is bounded. Using Theorem 2.20, we see that A is convex. Also, A is nonempty
and closed. Clearly, B is compact, convex, and nonempty. The compactness of C follows
from [24, Theorem 17.2].
(ii): TA(0) ⊆ S2, because A ⊆ S2. Conversely, fix an arbitrary (x, y, z) ∈ S2. Then x ≥ 0,
z ≥ 0, and y2 ≤ 2xz. Case 1 : x > 0. Pick α ≥ x large enough so that x2 + z2 ≤ 2xα.
Set u := x/α, v := y/α, w := z/α. Then (u, v, w) ∈ S2, 0 ≤ u ≤ 1, and 0 ≤ w. Also,
2xα ≥ x2 + z2 ⇔ 2u ≥ u2 + w2 ⇔ 1 ≥ (u − 1)2 + w2. Hence (u, v, w) ∈ A and so
(x, y, z) = α(u, v, w) ∈ cone(A) ⊆ TA(0). Case 2 : x = 0. Then y = 0 and z ≥ 0. For
small ε > 0, consider a := (ε, 0,

√

ε(2− ε)). It is easy to check that a ∈ A. Hence

z√
2ε
a =

z√
2
(
√
ε, 0,

√
2− ε) ∈ cone(A).

We conclude that (z/
√
2)(0, 0,

√
2) = (0, 0, z) = (x, y, z) ∈ cone(A) = TA(0), by letting ε

tend to 0 from above. Hence (ii) holds.
(iii): It is straightforward to check that 0 ∈ A ∩B ⊆ A ∩ Y = {0}.
(iv): Clearly, B ⊆ C ∩ Y . To prove the reverse inclusion, note first that an arbitrary
element in C, say v, can be written as (see [24, Theorem 3.3])

v = λ(a, b, c) + (1− λ)(0, y, z) = (λa, λb+ (1− λ)y, λc+ (1− λ)z),

where λ ∈ [0, 1], (a, b, c) ∈ A, and (0, y, z) ∈ B. Hence 1 ≥ a ≥ 0, c ≥ 0, b2 ≤ 2ac,
2a ≥ a2 + c2, 0 ≤ y ≤ 1, 0 ≤ z, and 2y ≥ y2 + z2. In addition, assume that v belongs to
Y . Then

λa = 0.
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If λ = 0, then v = (0, y, z) ∈ B, as required. Otherwise, λ > 0. Then a = 0, which implies
b = 0 and c = 0. Hence v = λ(0, 0, 0) + (1− λ)(0, y, z) ∈ B, since B is convex and both
(0, 0, 0) and (0, y, z) belong to B. In either case, v ∈ B and (iv) thus holds.
(v): The inclusion is trivial when b ∈ ri(B). Hence we fix arbitrarily b ∈ rbd(B) =
0× bd(Q) and d ∈ TC(b) ∩ Y . By Fact 2.8.(i), we obtain a sequence of positive reals (tn)
with limn tn = +∞, a sequence (an) in A, a sequence (bn) in B, and a sequence (λn) in
[0, 1] such that

d = limn tn
[

λnan + (1− λn)bn − b
]

.

By compactness of A and B (see (i)), we assume without loss of generality that

ā := limn an ∈ A, b̄ := limn bn ∈ B, and λ := limn λn ∈ [0, 1].

Claim 1 : λā = 0 and b = (1− λ)b̄.
Because tn tends to +∞, we must have limn λnan + (1− λn)bn = b. Taking limits yields
λā+ (1− λ)b̄ = b. On the one hand, λā ∈ A (since A is convex and contains both 0 and
ā). On the other hand, λā = b − (1 − λ)b̄ ∈ Y (since both b and b̄ belong to B ⊆ Y ).
Altogether, λā ∈ A ∩ Y = {0} (by (iii)). Claim 1 thus follows.

Claim 2 : d ∈ Y ∩ cl(S2 + TB(b)).
Clearly, d ∈ Y . Also, tn

[

λnan + (1 − λn)bn − b
]

= tn
[

λnan − 0
]

+ tn
[

(1 − λn)bn − b
]

∈
TA(0) + TB(b). Hence d ∈ cl(TA(0) + TB(b)). Now Claim 2 follows from (ii).

Now write b = (0, q), where q = (y, z) ∈ bd(Q). Then

TB(b) = 0× TQ(q)

(by [16, Proposition III.5.3.1.(ii)], for instance). We now complete the proof of (v) by
considering two alternatives.

Case 1 : q = (y, z) is as in Proposition 2.25.(i). By Proposition 2.25.(i), the tangent
cone TQ(q) is of the form K × R+, where K ∈ {R+,R,R−}. Now by Proposition 2.21,
S2 + TB(b) = S2 + (0× TQ(q)) = S2 + (0×K × R+) is closed. Hence

d ∈ Y ∩ (S2 + TB(b)).

On the one hand, since TB(b) ⊆ Y , we have Y ∩(S2+TB(b)) = (Y ∩S2)+(Y ∩TB(b)) = (Y ∩
S2)+TB(b). On the other hand, Y ∩S2 = 0×0×R+. Altogether, d ∈ (0×0×R+)+TB(b).
However, (0× 0×R+) + TB(b) = (0× 0×R+) + (0×K ×R+) = (0×K ×R+) = TB(b),
and (v) holds for Case 1.

Case 2 : q = (y, z) is as in Proposition 2.25.(ii).
Since q 6= 0, we have b 6= 0 and so (by Claim 1) λ < 1.

Claim 3 : λ = 0, b 6∈ TB(b), but −b ∈ TB(b).
Write b̄ = (0, q̄), with q̄ ∈ Q. Then Claim 1 yields q̄ = q/(1 − λ). Were λ > 0, then
Claim 1 would yield q̄ = q/(1−λ), with 1/(1−λ) > 1. Recall that q ∈ bd(Q). Altogether,
we would contradict Proposition 2.25.(ii). So λ = 0. Again by Proposition 2.25.(ii), we
have q 6∈ TQ(q) and −q ∈ TQ(q). But this is equivalent to b 6∈ TB(b) and −b ∈ TB(b).
Claim 3 thus holds.
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Now define µn := tnλn, ∀n. Then

d = limn µn(an − b) + tn(1− λn)(bn − b). (∗)

After passing to a subsequence if necessary, we assume that

µ := limn µn ∈ [0,+∞].

We consider now three subcases.

Case 2.1 : µ = 0.
Since A is compact by (i), the sequence (an) is bounded. Hence limn µn(an−b) = 0. From
(∗), d = limn tn(1− λn)(bn − b) ∈ TB(b), as required.

Case 2.2 : µ = +∞.
We assume without loss of generality that λn > 0, ∀n. Dividing (∗) by µn yields b− ā =
limn((1− λn)/λn)(bn − b) ∈ TB(b) ⊆ Y . Since b ∈ Y , this implies ā ∈ Y . Clearly, ā ∈ A.
Hence, using (iii), ā = 0. This implies b = b− ā ∈ TB(b), which is impossible by Claim 3.

Case 2.3 : µ ∈ (0,+∞).
Then (∗) yields d − µ(ā − b) = limn tn(1 − λn)(bn − b) =: t ∈ TB(b). Note that we chose
d ∈ Y , and that both b and t are in Y . Thus ā ∈ Y . Using (iii) once again, we have
ā = 0. By Claim 3, −b ∈ TB(b). Altogether, d = −µb + t ∈ TB(b) + TB(b) = TB(b), and
(v) is finally established.
(vi): The inclusion TC(b) ∩ TY (b) ⊇ TB(b) is always true; see Remark 2.15. Also, since Y
is a subspace, TY (b) = Y . Hence (vi) follows from (v).
(vii): Using Proposition 2.25.(i), we have TB(0) = 0× TQ(0) = 0× R+ × R+. Hence, by
Fact 2.8.(ii), NB(0) = R × R− × R− 3 (0,−1, 0). Since A ⊆ C, (ii) yields S2 = TA(0) ⊆
TC(0). Taking negative polars and Theorem 2.20 gives NC(0) ⊆ NA(0) = S©

2 = −S⊕
2 =

−S2. Also, NY (0) = Y © = Y ⊥ = R × 0 × 0. To prove (vii), it thus suffices to verify the
following

Claim: (0, 1, 0) 6∈ S2 + (R× 0× 0).
Suppose the claim were false, say (0, 1, 0) = (x, y, z)+ (r, 0, 0), for some (x, y, z) ∈ S2 and
r ∈ R. Then z = 0, which results in y = 0 and we obtain the contradiction 0 = y = 1.
Hence the claim is true and the entire theorem is proven.

Corollary 4.2. {C, Y } has CHIP, but does not have strong CHIP at 0.

Proof. By Theorem 4.1.(iv) and (vi), {C, Y } has CHIP. Now Theorem 4.1.(iv) and (vii)
imply that NB(0) 6= NC(0) +NY (0). Hence {C, Y } does not have strong CHIP.

Remark 4.3. The intuition for the example {C, Y } can be seen by first considering the
simpler example {S2, Y }. This example does not have strong CHIP at 0, but it also does
not have CHIP at any point in S2 ∩ Y = 0 × R+ except 0. By intersecting S2 with
a quarter-cylinder to obtain A, we cut away these latter points and still maintain the
property that strong CHIP fails at 0. Although {A, Y } does not have CHIP at 0, this is
the only point in the intersection A ∩ Y = 0 where CHIP fails. To restore CHIP at 0, we
need the intersection to have a curved boundary asymptotic to S2 ∩ Y at 0, such as B.
Taking the convex hull of A and B yields the set C which, at least intuitively, has the
desired properties.
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Finally, define two closed convex cones in R4 by

K := cone(C × 1) and L := cone(Y × 1).

Theorem 4.4. {K,L} has CHIP, but does not have strong CHIP.

Proof. Recall that C ∩ Y = B (by Theorem 4.1.(iv)).

Claim 1 : K ∩ L = cone(B × 1) = cone(B × 1).
It suffices to prove the first equality. By Proposition 2.26.(i) and Proposition 2.27.(i),
K = cone(C × 1) and L = Y × R+. First, let (x, r) ∈ K ∩ L. Then r ≥ 0, x ∈ Y , and
(x, r) ∈ cone(C × 1). If r = 0, then x = 0 (since all nonzero elements in cone(C × 1)
have a nonzero last component); thus, (x, r) = (0, 0) ∈ cone(B × 1). Otherwise, r > 0, in
which case x/r ∈ C ∩ Y = B; consequently, (x, r) = r(x/r, 1) ∈ cone(B× 1). The reverse
inclusion is even simpler. Hence Claim 1 holds.

Claim 2 : {K,L} has CHIP.
In view of Remark 2.15 and Claim 1, it suffices to show that TK(pb, p) ∩ TL(pb, p) ⊆
TK∩L(pb, p), for every p ≥ 0 and b ∈ B. This inclusion is obvious when p = 0. Hence
we assume p > 0. So take (y, s) ∈ TK(pb, p) ∩ TL(pb, p). Proposition 2.26.(ii) and Prop-
osition 2.27.(ii) yield y − sb ∈ TC(b), s ∈ R, and y ∈ Y . Since b ∈ B ⊆ Y , this is
equivalent to y − sb ∈ TC(b) ∩ Y = TC(b) ∩ TY (b). But the last set is equal to TB(b) by
Corollary 4.2. Hence y − sb ∈ TB(b). Altogether, by Proposition 2.26.(ii) and Claim 1,
(y, s) ∈ TK∩L(pb, b). Claim 2 thus holds.

Claim 3 : {K,L} does not have strong CHIP at (0, 1).
Corollary 4.2 and Remark 2.15 yield NB(0) % NC(0) +NY (0). By Claim 1 and Proposi-
tion 2.26.(iii), NK∩L(0, 1) = NB(0)×0 andNK(0, 1) = NC(0)×0. By Proposition 2.27.(iii),
NL(0, 1) = NY (0)×0. Altogether, NK∩L(0, 1) % NK(0, 1)+NY (0, 1). Hence Claim 3 holds
and the entire theorem is proven.

Remark 4.5. It is clear that the two examples from Corollary 4.2 and Theorem 4.4 can
be embedded into any higher dimensional space.

5. Equivalence for cones in R3

For completeness, we include below a result (obtained while the paper was undergoing
revision) showing that the above conical examples cannot reside in spaces of dimension
smaller than 4. The equivalence of (i) and (ii) in this result can also be inferred from a
result of Bakan in 1988, see [1].

Theorem 5.1. Suppose K1 and K2 are two closed convex cones in R3. Then the following
are equivalent.

(i) {K1, K2} is boundedly linearly regular.

(ii) {K1, K2} has strong CHIP.

(iii) {K1, K2} has CHIP.

Proof. Let K := K1 ∩K2. In view of Fact 2.16, it suffices to show that (iii) implies (i).
We will argue by contradiction. So suppose {K1, K2} is CHIP but not boundedly linearly
regular. We assume without loss of generality that intK = ∅ (by [5, Corollary 4.5], for
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instance). Hence K lies in some hyperplane H. Since K is a convex cone, it is polyhedral.
Also, H separates K1 from K2. Since {K1, K2} is not boundedly linearly regular, there
exists a bounded sequence (xn) in R3 \K such that

‖xn − y1,n‖+ ‖xn − y2,n‖
‖xn − yn‖

→ 0, (∗)

where yi,n := PKi
(xn) (i = 1, 2) and yn := PK(xn).

Case 1: K has dimension of 2 and yn lies in riK for an infinite number of n.
After passing to a subsequence and relabelling if necessary, we may assume that always
yn ∈ riK and that xn is on the same side as K1. Then ‖xn − y1,n‖ ≤ ‖xn − yn‖ and
y2,n = yn, for all n. But this contradicts (∗).
Case 2: Either K has dimension of less than 2, or K has dimension of 2 and yn ∈ rbdK
eventually. In this case, there are four possibilities for K: • K = {0}; • K is a line; • K
is a ray; or • rbdK is the union of two rays. After passing to a subsequence if necessary,
we must be in the setting of one of the following two subcases.

Subcase 2.1: yn = 0, for all n.
Then xn belongs to K©, as does xn/‖xn‖. Let z be a cluster point of (xn/‖xn‖). Then
z ∈ K©. On the other hand, for i = 1, 2:

xn

‖xn‖
− xn − yi,n

‖xn − yn‖
=

yi,n
‖xn‖

∈ Ki,

which together with (∗) implies z ∈ Ki. Altogether, z ∈ K© ∩K1 ∩K2 = {0}, which is
absurd since ‖z‖ = 1. Thus it remains to consider

Subcase 2.2: each yn is nonzero and lies in some fixed ray.
Then yn/‖yn‖ = ỹ, for some nonzero ỹ ∈ K. Set x̃n := xn/‖yn‖ and ỹi,n := yi,n/‖yn‖ for
all n and each i = 1, 2. Now (∗) implies

‖x̃n − ỹ1,n‖+ ‖x̃n − ỹ2,n‖
‖x̃n − ỹ‖

→ 0. (∗∗)

Let d be a cluster point of (x̃n − ỹ)/‖x̃n − ỹ‖. Because x̃n − ỹ ∈ NK(ỹ) (the projection
onto K is positively homogeneous), d belongs to NK(ỹ). Since d 6= 0, we have

d 6∈ TK(ỹ).

On the other hand, (∗∗) implies that d is a cluster point of (ỹi,n− ỹ)/‖x̃n− ỹ‖, for i = 1, 2.
Since ỹi,n ∈ Ki, we learn that d ∈ TKi

(ỹ), for each i = 1, 2. Altogether,

d ∈
(

TK1(ỹ) ∩ TK2(ỹ)
)

\ TK(ỹ).

But this contradicts CHIP and the proof is thus complete.
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