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We consider the stability of solutions of variational problems with respect to perturbations of the inte-
grand, raised by Ulam in [21]. In this paper we prove some results concerning Ulam’s problem by using
the theory of wellposedness. We consider the notion of wellposedness introduced in [23] and we deal
with perturbations of the integrands related to variational convergence. Moreover some criteria to obtain
variational convergence of sequences of non-convex integrals are given.
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1. Introduction

Wellposedness of a problem means, roughly speaking, existence and uniqueness of its so-
lution and also the continuous dependence of the solution on problem’s data. We are
interested in wellposedness of global minimization problems of functionals of the Calculus
of Variations. There are only few wellposedness results in the classical theory, see for
example Chapter VIII in [10]. There Tikhonov wellposedness of the Lagrange problem
is characterized by means of regularity of the value function. Moreover, Hadamard well-
posedness is shown to be linked to topologies on the space of integrands coming from
epi-convergence or Mosco-convergence, in the case of convex functionals.

In this paper we study the stability problem of solutions of variational problems with
respect to perturbations of the integrand (with fixed boundary data) arisen by Ulam in
[21], using wellposedness theory, in particular the notion of wellposedness by perturbation
introduced in [23]. This problem of Ulam has been considered by Bobylev [5] and Sychev
[20], for local minimizers. Bobylev gives an example of an integral such that, for small
perturbation of its integrand in the uniform metric, existence of minimizers fails. Both
Bobylev and Sychev show that by imposing further regularity conditions on the integrand,
stability results are obtained.

In this paper we consider a one-dimensional integral functional with a unique minimizer.
For perturbations of the integrand which do not involve the derivative we show that their
variational convergence, which is weaker than uniform convergence, suffices to obtain
wellposedness. We are interested in the strong convergence in the Sobolev space of any
asymptotically minimizing sequence to the minimizer of the unperturbed problem (in
particular, of any minimizing sequence). We remark that by using epi-convergence only
the weak convergence of minimizers is achieved (see e.g. [8]). Moreover we do not require
existence of minimizers of perturbed problems.
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Recent results of A. D. Ioffe and A. J. Zaslavski [14] show that variational problems are
generically wellposed. More precisely, these results imply that for perturbations of the
integrands with respect to a topology coming from the uniform convergence modulo given
growth, there is a generic subset G in the space of the integrands such that for each
f ∈ G, the corresponding integral functional is wellposed with respect to changes of the
integrands in the same topological space.

In this paper we prove that Tikhonov wellposed problems are wellposed with respect
to perturbations of the integrand related to variational convergence. Hence the new
integrands are not necessarily close to the original one in the uniform norm. Consider,
for example, the linear perturbations of the quadratic functional

I(u, pn) =
1

2

∫ 1

0

Úu2(t)dt+

∫ 1

0

pn(t)u(t)dt u ∈ H1
0 ([0, 1]),

where

pn(t) = χ[0, 1
nβ ](t)n

α in [0, 1], with β < α <
3

2
β

and χ denotes the characteristic function. In this example we are able to show that we
have stability under the perturbation pn of the quadratic functional, even if ‖pn‖∞ is
divergent (see Section 5).

We emphasize that we do not impose any strict convexity assumption on the integrands
and that we consider a class of perturbations of the original integrand larger than the one
considered in [5] and [20]. Moreover, we establish criteria to obtain variational convergence
of integral functionals which are not convex; we point out that so far only characterizations
of epi-convergence of convex integral functionals are known (see [2], [6], [8], [10], [16]).

The paper is organized as follows. In section 2 we recall the relevant definitions and
notations. In section 3 we present criteria for Tikhonov wellposedness of an integral func-
tional; there the integrands are not necessarily strictly convex. In section 4 we prove
wellposedness by perturbations of global minimization problems in the Calculus of Vari-
ations . Moreover we detect a notion of convergence in the space of the integrands which
implies the variational convergence of integral functionals. In the final section 5 we con-
sider examples; for linear perturbation of the quadratic functional we obtain a complete
characterization of wellposedness by perturbation.

2. Definitions and preliminaries

Let q > 1, N ≥ 1 and let | · | be any norm in RN . Throughout this paper we denote by
W 1,q([a, b],RN) the space of functions u : [a, b] → RN , such that both u and Úu belong to
Lq. Moreover we write

‖u‖1,q = ‖u‖q + ‖ Úu‖q for all u ∈ W 1,q([a, b],RN).

Let q′ denote the conjugate exponent of q, i.e. 1
q
+ 1

q′
= 1.

If f = f(t, s, v) : [a, b]×RN ×RN → R we write ft, fs, fv for the partial derivatives and
we say that f is a Carathéodory function if:

(1) f(·, s, v) is measurable for every (s, v) ∈ R2N ,
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(2) f(t, ·, ·) is continuous for a.e. t ∈ [a, b].

In the general setting we consider the problem (X, J) of globally minimizing the proper
extended real valued functional

J : X −→ (−∞,+∞]

defined on the metric space X. Following [23], the given problem is embedded in a
family of minimization problems parametrized by the elements of a space P which may
be endowed with either a topology or a convergence structure The unperturbed problem
(X, J) corresponds to a given parameter value p0. Given a subset L of P containing p0
we denote by

I : X × L −→ (−∞,+∞] (2.1)

the embedding and define the corresponding value function as

V (p) = inf{I(x, p) : x ∈ X}, p ∈ L. (2.2)

Definition 2.1. We say that vn ∈ X is an asymptotically minimizing sequence corre-
sponding to the sequence pn → p0 in P if V (pn) > −∞ and

I(vn, pn)− V (pn) −→ 0 as n → +∞. (2.3)

Definition 2.2. The global minimization problem (X, J) is wellposed by perturbations
(with respect to the embedding defined in (2.1)) if V (p) > −∞ for all p ∈ L and there
exists a unique minimum point u0 = argmin(X, I(·, p0)) such that for all sequences pn
converging to p0, every corresponding asymptotically minimizing sequence vn is convergent
to u0.

(This definition was introduced in [23]). This notion of wellposedness is stronger than the
more classical notion of Tikhonov wellposedness and is related to Hadamard wellposed-
ness. We recall these definitions.

Definition 2.3. The problem (X, J) is Tikhonov wellposed iff has a unique global mini-
mum point towards which every minimizing sequence converges.

The concept of Tikhonov wellposedness can be extended to minimum problems without
uniqueness of the optimal solution as in the following definition.

Definition 2.4. The problem (X, J) is Tikhonov wellposed in the extended sense iff
the argmin(X, J) is nonempty and every minimizing sequence has a subsequence which
converges to some optimal solution.

Hadamard wellposedness deals with the continuous dependence of the unique solution
from problem’s data. There are many forms of Hadamard wellposedness for the problem
(X, J). We are interested in considering a convergence for a sequence of functionals and
studying the convergence of every asymptotically minimizing sequence. We introduce now
a suitable notion of convergence which implies Hadamard wellposedness under minimal
assumptions.

Definition 2.5. Let J, Jn : X → (−∞,+∞]. We say that Jn variationally converges to

J , Jn
V AR→ J , iff
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(1) xn → x implies lim infn Jn(xn) ≥ J(x),

(2) for every x ∈ X there exists xn such that lim supn Jn(xn) ≤ J(x)

(For a reference see Section 2, Chapter IV in [10]).

Observe that variational convergence is not a Kuratowski convergence (see [13]) since the
limit is not necessarily unique.

We consider also the natural extension of the definition of wellposedness by perturbations
given by relaxing the uniqueness requirement for the solution of the unperturbed problem.

Definition 2.6. The global minimization problem (X, J) is wellposed in the extended
sense (with respect to the embedding defined in (2.1)) if V (p) > −∞ for all p ∈ L,
argmin(X, I(·, p0)) is nonempty and, for every sequence pn converging to p0, every cor-
responding asymptotically minimizing sequence has a subsequence converging to some
optimal solution of the unperturbed problem.

3. Tikhonov Wellposedness

In this paragraph we present criteria concerning Tikhonov wellposedness of the minimiza-
tion problem for functionals of the Calculus of Variations

F (u) =

∫ b

a

f(t, u(t), Úu(t))dt, (3.1)

where f = f(t, s, v) : [a, b]×RN ×RN → R is a Carathéodory function.

It is well known that if f(t, ·, ·) is strictly convex and verifies suitable growth conditions,
then the minimization problem (W 1,q([a, b]), F ) is wellposed in the sense of Tikhonov (see
[22]). Here we want to obtain a similar result under a milder convexity assumption. In
order to do this we need the following definition of strict convexity at a point introduced
in [19].

Definition 3.1. Let U be a closed convex subset in RN . Fix v0 ∈ U . We say that
a continuous function L : U → R is strictly convex at v0 with respect to the set U if
∑r

i=1 ciL(vi) > L(v0) for any vi ∈ U , vi 6= v0, and ci ≥ 0, where i = 1, ..r, r ∈ N,
∑r

i=1 ci = 1 with
∑r

i=1 civi = v0.

It is easy to find examples of convex superlinear functions which are strictly convex on U
but not elsewhere.

3.1. Lipschitz functions

We start with some existence results concerning minimizers of integral functionals for
which we refer to [15]. Given k > 0, consider the integral functional (3.1) defined on

Ck =
{

u ∈ C0,1([a, b]) : u(a) = A, u(b) = B, ‖u‖C0,1 ≤ k
}

(3.2)

endowed with the W 1,q([a, b])-norm, where A,B ∈ RN and

‖u‖C0,1 = ‖u‖∞ + sup
{x,y∈[a,b] |x 6=y}

|u(x)− u(y)|
|x− y|

.
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There are several existence results for the problem (3.1), (3.2), which are essentially based
on the direct method due to Tonelli [4] (see also [7] and [11]).

In general the minimizers are not Lipschitz continuous. We are interested in obtaining
an a priori estimate of the gradient of minima in order to weaken the strict convexity
assumption in Corollary 1 of [19] by considering only a local convexity condition.

We need also the following result which follows immediately from Theorem 11.10 in [15],
generalized to vector valued functions; in this case we consider the function ū(x) = A +
B−A
b−a

(x− a).

Proposition 3.2. Let f ∈ C1((a, b) ×RN ×RN), let f , fs, fv ∈ C0([a, b] ×RN ×RN)
and assume f(t, s, ·) convex. Then for all k ≥ ‖ū‖C0,1 the minimum of (3.1) on Ck exists.

The above Proposition allows us to give a criterion for the Tikhonov wellposedness of
(3.1), namely we have:

Proposition 3.3. Let F be as in (3.1), let f be as in Proposition 3.2. Assume f(t, ·, ·)
is in C2 and satisfies the following assumptions:

(1) For i = 1, 2 there exist constants γi > 1 and functions φi ∈ Lri((a, b)), where
r1 ≥ 1 and r2 > 1 such that for some suitable exponent q and a positive constant δ,
γ2 < q r2−1

r2
and

δ|v|q + φ2(t)|s|γ2 + φ1(t) ≤ f(t, s, v) for a. e. t, s ∈ RN , v ∈ RN ; (3.3)

(2) f(t, s, ·) is convex for a. e. t and every s ∈ RN .

Fix k ≥ ‖ū‖C0,1 and consider the global minimization problem (Ck, F ). If for a.e. t ∈
[a, b] and for all s ∈ RN , f(t, s, ·) is strictly convex in the closed ball Bk of radius k,
then the problem (Ck, F ) is Tikhonov wellposed in the extended sense with respect to the
W 1,q([a, b])-norm.

Moreover, if N = 1 and f(t, ·, ·) is convex for a. e. t, then (Ck, F ) is Tikhonov wellposed.

Proof. (Step 1) First we prove that every minimizing sequence un, i.e. F (un) →
infF (Ck), has a weakly convergent subsequence in W 1,q([a, b]). To do this it suffices to
show that F (un) is minorized by a coercive function of the norm of un in W 1,q([a, b]). Set

α =
(

(r2−1)q
r2γ2

)′
. By (3.3) we have

F (un) ≥ δ

∫ b

a

| Úun(t)|qdt−
(∫ b

a

|φ2(t)|r2dt
)

1
r2
(∫ b

a

|un(t)|γ2
r2

r2−1dt

)
r2−1
r2

+

∫ b

a

(φ1(t))dt

≥ δ

∫ b

a

| Úun(t)|qdt− ‖φ2‖r2
(∫ b

a

|un(t)|qdt
)

γ2
q

(b− a)
1
α +

∫ b

a

(φ1(t))dt

≥ δ

∫ b

a

| Úun(t)|qdt−

[

M +N

(∫ b

a

| Úun(t)|qdt
)

γ2
q

]

+

∫ b

a

(φ1(t))dt

where M , N are suitable constants depending on a, b, A and γ2. Since γ2 < q the claim
follows now from the coercivity of the last term. Thus, a subsequence, which we also
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denote by un, weakly converges to u in W 1,q([a, b]). Since un ∈ Ck and the subsequence
converges uniformly to u, we have that u ∈ Ck as well. Since F is lower semicontinuous
on Ck with respect to uniform convergence, it follows that u belongs to argmin(Ck, F ).

(Step 2) Now we prove the strong convergence of some subsequence of un to u in
W 1,q([a, b]). Observe that f and un satisfy the hypothesis of Corollary 1 of [19]. Therefore
un strongly converges to u in W 1,1([a, b]). To see that we have actually strong convergence
in W 1,q([a, b]) note that

| Úun(t)− Úu(t)|q ≤ (2k)q, for a.e. t.

By the Lebesgue convergence theorem a subsequence of Úun converges to Úu in Lq, which
proves the result.

Let N = 1. Then since f is convex, it follows from an easy generalization of the proof
of Theorem 11.9 of [15] that the argmin(F ) is a singleton. We observe that in the proof
of this theorem the global strict convexity of f with respect to the last variable can be
weakened by local strict convexity in [−k, k]. As a matter of fact what is required is the
positivity of ∂2

∂v2
f(t, s, v) for almost every t ∈ [a, b], for all s, v ∈ [−k, k]× [−k, k], that the

hessian matrix of f(t, ·, ·) is positive semidefinite on an open set containing [−k, k]×[−k, k]
and finally that ∂

∂s
f(t, ·, v) is non decreasing in [−k, k], for every v.

Remark 3.4. We observe that γ2 < q r2−1
r2

if r2 > q′.

Remark 3.5. The strict convexity of the integrand f with respect to the last variable at
the point v = Úu(t) is a necessary condition for the strong convergence of the sequence un

if we have a suitable growth condition on f , see Theorem 3 of [19].

3.2. The autonomous case

Now we present a result concerning Tikhonov wellposedness of the integral functional

G(u) =

∫ b

a

g(u(t), Úu(t))dt (3.4)

defined on the space

W =
{

u ∈ W 1,q([a, b],RN) : u(a) = A, u(b) = B
}

where A,B ∈ RN , endowed with the W 1,q([a, b],RN)-norm. Before proving Tikhonov
wellposedness of (W,G) we need a lemma, which provides us some a priori estimates for
the minimum point and its derivative. This result derives from Lemma VIII.11 in [10].

Lemma 3.6. Let G be as in (3.4) with g, gv : RN ×RN → R continuous and satisfying

(1) g(s, ·) is convex, for all s ∈ RN ;

(2) there exists a strictly increasing function θ : [0,+∞) → R such that θ(|v|)
|v| → ∞ as

|v| → ∞ such that

g(s, v) ≥ θ(|v|)for every s ∈ RN , v ∈ RN ; (3.5)

(3) g is locally bounded: for all r ≥ 0 there exists Mr ≥ 0 such that

|g(s, v)| ≤ Mr if |s|+ |v| ≤ r; (3.6)
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(4) gv is locally bounded: for all r ≥ 0 there exists Pr ≥ 0 such that

|gv(s, v)| ≤ Pr if |s|+ |v| ≤ r. (3.7)

Let H = G(ū), where ū(t) = A+ B−A
(b−a)

(t−a) and consider d such that θ(d) ≥
(

2H
(b−a)

)

−θ(0).

Then for every u ∈ argmin(W,G) the following statements hold:

(1) Let k be such that θ(z) ≥ z for z ≥ k and A1 = |A|+k(b−a)+H, then ‖u‖∞ ≤ A1.

(2) If R is such that θ(h) ≥ h (1 +MA1+1 +MA1+2d + 2dPA1+2d) whenever h ≥ R then
| Úu(t)| ≤ R for a.e. t ∈ [a, b].

Proof. See the proof of Lemma VIII.11 in [10]: there the smoothness of the minimizers
is not needed since the required change of variable leading to (37) follows from Corollary
6 of [18].

Theorem 3.7. Let G be defined as in (3.4). Consider the global minimization problem
(W,G). Under the same assumptions of Lemma 3.6, if furthermore, for every s, g(s, ·) is
strictly convex in the ball of radius R in RN we have that the problem (W,G) is Tikhonov
wellposed in the extended sense with respect to the W 1,1- norm.

Proof. Let un be a minimizing sequence. By (3.5) we have that un is weakly convergent
to some u0, up to a subsequence, in W 1,1. Since G is lower semicontinuous with respect
to the weak topology in W 1,1 (Corollario 4.1, [11]), u0 ∈ argmin(W,G) and satisfies
G(un) → G(u0). Hence we can apply Corollary 1 in [19] and we obtain that un → u0 in
W 1,1([a, b],RN).

4. Wellposedness by perturbations

Given f = f(t, s, v) : [a, b]×RN ×RN → R, we consider the following embedding

I(u, p) =

∫ b

a

f(t, u(t), Úu(t))dt+

∫ b

a

p(t, u(t))dt. (4.1)

The space of parameters P is the space of all functions p : [a, b]×RN → R, measurable
in the first variable and verifying the following assumptions:

(1) For every bounded subset B ⊂ RN and for every p ∈ P there exists kp ∈ L1 such
that

|p(t, s1)− p(t, s2)| ≤ kp(t)|s1 − s2| for all s1, s2 ∈ B. (4.2)

Moreover, for all B ⊂ RN there exists MB ≥ 0 such that

∫ b

a

|kp(t)|dt ≤ MB for all p ∈ P . (4.3)

(2) There exist ψi ∈ Lri((a, b)), ri ≥ 1, for i = 0, 1, 2, 3, γ1 > 1 and γ2 > 1 such that for
every p ∈ P

p(t, s) ≤ ψ0(t) + ψ1(t)|s|γ1 (4.4)

and
p(t, s) ≥ −ψ2(t)|s|γ2 + ψ3(t). (4.5)
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We consider on the space P the following convergence of sequences:

pn → po iff I(·, pn)
V AR→ I(·, po) (4.6)

where the variational convergence is meant with respect to the weak convergence in the
Sobolev space W 1,q

0 ([a, b],RN) (we remark that the convergence structure on P does not
fulfill all axioms of [13]).

In this setting we obtain the wellposedness of our problem with respect to the embedding
(4.1).

Theorem 4.1. Let P be the space of parameters defined as above. Let q ≥ 2. Consider
the embedding I : W 1,q

0 ([a, b],RN) × P → (−∞,+∞] defined in (4.1) and fix p0 ∈ P .
Assume that the integrand f is a Carathéodory function, convex with respect to the last
variable and verifies the following growth conditions

δ|v|q + φ2(t)|s|γ2 + φ3(t) ≤ f(t, s, v) for a. e. t, s ∈ RN , v ∈ RN (4.7)

and
f(t, 0, 0) ≤ φ0(t) for a.e. t ∈ [a, b]. (4.8)

Here δ is a positive constant, the functions φi ∈ Lri((a, b)) for i = 0, 2, 3, with ri = 1, for
i = 0, 3 and r2 > 1; γ1, γ2 are such that γ1 > 1 and 1 < γ2 < q r2−1

r2
. Furthermore assume

that I(·, p0) is Tikhonov wellposed with respect to the strong topology of W 1,q
0 ([a, b]).

Then the problem of minimizing I(·, p0) is wellposed by perturbations with respect to the
embedding (4.1).

Proof. (Step 1) Consider a sequence pn converging to p0 in P and vn a correspond-
ing asymptotically minimizing sequence. We prove that vn is weakly convergent in
W 1,q

0 ([a, b],RN). To do this it suffices to verify that the sequence I(·, pn) is equicoer-

cive with respect to the weak topology and V (pn) is bounded. Set α =
(

(r2−1)q
r2γ2

)′
, by

(4.5) and (4.7) we have

I(u, pn) ≥ δ

∫ b

a

| Úu(t)|qdt−
(∫ b

a

|φ2(t) + ψ2(t)|r2dt
)

1
r2
(∫ b

a

|u(t)|γ2
r2

r2−1dt

)
r2−1
r2

+

∫ b

a

(φ3(t) + ψ3(t))dt

≥ δ

∫ b

a

| Úu(t)|qdt− ‖φ2 + ψ2‖r2
(∫ b

a

|u(t)|qdt
)

γ2
q

(b− a)
1
α

+

∫ b

a

(φ3(t) + ψ3(t))dt

≥ δ

∫ b

a

| Úu(t)|qdt− ‖φ2 + ψ2‖r2cγ2p
(∫ b

a

| Úu(t)|qdt
)

γ2
q

(b− a)
1
α (4.9)

+

∫ b

a

(φ3(t) + ψ3(t))dt
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for each u ∈ W 1,q
0 ([a, b],RN) and cp is the Poincaré constant. Since γ2 < q the last term

of (4.9) is coercive. Now we prove that V (pn) is bounded; actually by (4.8) and (4.4) we
have

V (pn) ≤
∫ b

a

f(t, 0, 0)dt+

∫ b

a

pn(t, 0)dt ≤
∫ b

a

(φ0 + ψ0)(t)dt.

Thus a subsequence, which we also denote by vn, is weakly convergent to u0 in W 1,q
0 ([a, b],

RN). As proved in Theorem IV.5 in [10], the properties of the variational convergence
yields that

u0 ∈ argmin(W 1,q
0 ([a, b],RN), I(·, p0)),

but, by Tikhonov wellposedness, argmin(W 1,q
0 ([a, b],RN), I(·, p0)) is a singleton and so,

for every subsequence of vn, some further subsequence weakly converges to u0. This yields
the claim.

(Step 2) Now we prove the strong convergence of vn in W 1,q
0 ([a, b],RN). By the char-

acterization of Tikhonov wellposedness in Theorem I.12 of [10], there exists a forcing
function c such that, writing kn = kpn , we have

I(vn, pn)− V (pn) ≥ c (‖ Úvn − Úu0‖q) +
∫ b

a

[p0(t, u0(t))− p0(t, vn(t))] dt

+

∫ b

a

[pn(t, vn(t))− pn(t, u0(t))] dt

≥ c (‖ Úvn − Úu0‖q)−
∫ b

a

kn(t)|vn(t)− u0(t)|dt

−
∫ b

a

k0(t)|vn(t)− u0(t)|dt (4.10)

≥ c (‖ Úvn − Úu0‖q)− (const.)‖vn − u0‖∞.

In (4.10) we use Rellich’s theorem to obtain uniform boundedness of the sequence vn and
then the assumption (4.2). Finally, by the forcing property of c, the proof is completed
by passing to the lim sup as n → +∞.

4.1. Variational convergence

In Theorem 4.1 we have considered a particular convergence mode on the space of param-
eters P , defined by (4.6). Since the variational convergence of a sequence of non-convex
integral functionals is not so far characterized, now we show explicit conditions on the
integrands to obtain the variational convergence of sequences of integrals with respect to
the weak topology in a Sobolev space.

More precisely, we first show a criterion concerning Mosco convergence of sequences of
non convex integrals (4.1). Then we improve this result considering sequences of integral
functionals whose integrands have no uniform bounds.

Write f− = max(0,−f).

Definition 4.2. A function f : [a, b]×RN×RN → R is said to satisfy the inf-compactness
property if for every sequence un strongly converging in L1 and every sequence vn weakly



308 S. Bertirotti / Wellposedness in the calculus of variations

converging in L1 such that

∫ b

a

f(t, un(t), vn(t))dt ≤ const. < +∞

the functions f−(t, un(t), vn(t)) are equintegrable.

Proposition 4.3. Let I be as in (4.1), with f : [a, b] ×RN ×RN → R a Carathéodory
function, convex with respect to the last variable and satisfying the inf-compactness prop-
erty. Consider the sequence pn ∈ P such that pn(t, s) converges to p0(t, s) for almost every
t ∈ [a, b] and for all s ∈ RN .

Then the sequence I(·, pn) Mosco converges to I(·, p0) in W 1,q
0 ([a, b],RN).

Proof. We prove that the sequence I(·, pn) pointwise converges to I(·, p0); indeed by
assumptions ( 4.4) and ( 4.5) we have

|pn(t, u(t))| ≤ max {ψ0(t) + ψ1(t)|u(t)|γ1 , ψ2(t)|u(t)|γ2 − ψ3(t)}

for all u ∈ W 1,q, and so the claim follows by the Lebesgue convergence theorem. Now,
since F given by (3.1) is weakly lower semicontinuous in W 1,1([a, b],RN) (see Theorem
3.9 in [1]), it suffices to verify that for every sequence un weakly convergent to ū in
W 1,q

0 ([a, b],RN) we have

lim inf
n

∫ b

a

pn(t, un(t))dt ≥
∫ b

a

p0(t, ū(t))dt.

We have

∫ b

a

pn(t, un(t))dt−
∫ b

a

p0(t, ū(t))dt

=

∫ b

a

[pn(t, un(t))− pn(t, ū(t))] dt+

∫ b

a

[pn(t, ū(t))− p0(t, ū(t))] dt

≥ −
∫ b

a

kn(t)|un(t)− ū(t)|dt+
∫ b

a

[pn(t, ū(t))− p0(t, ū(t))] dt,

where kn = kpn . Now taking the limit as n → ∞, we deduce that the last term converges
to zero because un uniformly converges to ū and the integral functionals with integrands
pn are pointwise convergent. This yields the result.

Now we deal with variational convergence of a sequence of non-convex integral functionals
(4.1) under milder assumptions on the integrand.

Proposition 4.4. Consider the sequence of Carathéodory functions pn : [a, b]×RN → R
such that

(1) there exist ψi ∈ Lri((a, b)), with ri ≥ 1, for i = 1, 2 and γ > 1 such that

pn(t, s) ≥ −ψ2(t)|s|γ + ψ1(t) for all n = 1, 2, 3, .., and s ∈ RN ; (4.11)
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(2) for every sequence yn → y0

lim inf
n

pn(t, yn) ≥ p0(t, y0) for a.e. t ∈ [a, b]. (4.12)

Consider also the corresponding sequence of functionals I(·, pn), defined in (4.1). Let f
be as in Proposition 4.3.

Then for every sequence vn weakly convergent to v0 in W 1,q
0 , we have

lim inf
n

I(vn, pn) ≥ I(v0, p0).

Proof. First of all, we observe that the functional F in (3.1) is weakly lower semicon-
tinuous in W 1,q

0 ([a, b],RN) because of the properties of the integrand f . Hence we prove
that for every sequence vn, weakly convergent to v0, we have

lim inf
n

∫ b

a

pn(t, vn(t))dt ≥
∫ b

a

p0(t, v0(t))dt. (4.13)

By assumption (4.11), Fatou’s Lemma yields:

lim inf
n

∫ b

a

pn(t, vn(t))dt ≥
∫ b

a

lim inf
n

pn(t, vn(t))dt

and this concludes the proof by (4.12) since vn is uniformly convergent to v0.

Proposition 4.4 is only a partial result; indeed, to obtain the Variational convergence it is
necessary to check also condition (2) in Definition 2.5.

In the following we consider the class of autonomous integral functionals

G(u) =

∫ b

a

g(u(t), Úu(t))dt, u ∈ W 1,q
0 ([a, b]). (4.14)

Proposition 4.5. Let q > 1 and G0, Gn be defined in (4.14) with respective integrands
g0, gn : RN ×RN → R ∪ {+∞} Borel functions such that:

(1) g0(y, ·), gn(y, ·) are lower semicontinuous for all y ∈ RN and n = 1, 2, 3, ..

(2) There exist a positive constant γ, real numbers M and N , with M > 0 and a non
negative function ψ : R → [0,+∞) such that ψ(y) ≤ β|y|q, with β ≥ 0 and

gn(y, z) ≥ γ|z|q − ψ(y) and gn(y, 0) ≤ M |y|q +N. (4.15)

for every y ∈ RN , z ∈ RN and all n ∈ N.

(3) There exist k0 ∈ L1 and α, δ > 0 such that for all n ∈ N and for all (y, z) ∈ R2N

there exists a sequence of measurable functions φn : [a, b] → (0, 1] such that:

φn(t)gn

(

y,
z

φn(t)

)

≤ k0(t) + α|y|q + δ|z|q. (4.16)
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(4) For every (y, z) ∈ R2N there exists a sequence of real number τn = τn(y, z), τn ≤ 1,
τn(y, z) → 1 such that

lim sup
n

gn

(

y,
z

τn(y, z)

)

≤ g0(y, z). (4.17)

Then for every ū ∈ W 1,q
0 ([a, b],RN) there exists un ∈ W 1,q

0 ([a, b],RN) such that

lim sup
n

Gn(un) ≤ G0(ū). (4.18)

Proof. Let ū ∈ W 1,q
0 ([a, b],RN). We can assume that g0(ū(s), Ú̄u(s)) < +∞ almost every-

where, otherwise the conclusion is trivially true. We consider now A = {s ∈ [a, b] | Ú̄u(s) 6=
0}. If A has measure zero, then ū is the zero constant and the conclusion is achieved by
taking un = 0. Otherwise, for every s ∈ A, we consider the sequence of functions

fn(s, v) =

{

gn(ū(s),
Ú̄u(s)
v
)v if 0 < v ≤ 1

+∞ if v ≤ 0 or v > 1.

The lower semicontinuity of fn(s, ·) follows easily from the lower semicontinuity of gn with
respect to the second variable and from the growth condition in (4.15) . Moreover we
consider the sequence of functions

hn(s, v) = max{0, fn(s, v)− g0(ū(s), Ú̄u(s))} (4.19)

for all s ∈ A and v ∈ R; hence hn(s, ·) is lower semicontinuous and non negative. Now
by the smooth variational principle Theorem 3.3 of [17]. Fix a sequence εn converging to
zero, then there exists a sequence of functions ξn = ξn(s) ∈ R such that |1− ξn(s)| ≤ εn
and the function

v 7→ hn(s, v) + |v − ξn(s)|2

has a unique minimizer vn = vn(s) in Dom(hn(s, ·)). Thus 0 < vn(s) ≤ 1 for almost every
s in A.

We observe that vn and ξn are measurable by the proof of Theorem 3.3 in [17] (as limits
of measurable functions). Now we prove that hn(·, vn(·)) pointwise converges to zero in
A. As a matter of fact, by (4.17), there exists τn = τn(ū(s), Ú̄u(s)) such that:

hn(s, vn(s)) ≤ hn(s, vn(s)) + |vn(s)− ξn(s)|2 (4.20)

≤ hn(s, τn) + |τn − ξn(s)|2

≤ max

{

0, gn

(

ū(s),
Ú̄u(s)

τn

)

τn − g0(ū(s), Ú̄u(s))

}

+ |τn − ξn(s)|2,

for almost every s ∈ A. Taking the limit as n → ∞, we see that hn(·, vn(·)) pointwise
converges to zero in A. Moreover from (4.16) and (4.20) we obtain that

hn(s, vn(s)) ≤ hn(s, φn(s)) + |φn(s)− ξn(s)|2 (4.21)

≤ max

{

0, gn

(

ū(s),
Ú̄u(s)

φn(s)

)

φn(s)− g0(ū(s), Ú̄u(s))

}

+ |φn(s)− ξn(s)|2

= max{0, k0(s) + α|ū(s)|q + δ| Ú̄u(s)|q − g0(ū(s), Ú̄u(s))}+ const.
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So the claim follows from the Lebesgue convergence theorem, i.e. hn(·, vn(·)) converges to
zero in L1. Arguing as before, it is proved that

|vn(s)− ξn(s)|2 → 0 and |vn(s)|2 is bounded by a summable function.

Thus vn converges to one in L2.

Now we consider two different cases.

First case: we assume that the set {s ∈ [a, b] | Ú̄u(s) = 0} has measure zero. Hence

lim sup
n

∫ b

a

[

gn

(

ū(s),
Ú̄u(s)

vn(s)

)

vn(s)− g0(ū(s), Ú̄u(s))

]

≤ lim
n

∫ b

a

max{0, gn(s, vn(s))− g0(ū(s), Ú̄u(s))} = 0 (4.22)

because 0 < vn(s) ≤ 1 almost everywhere. Hence we define the sequence wn(s) = a +
∫ s

a
vn(t)dt such that wn is strictly increasing in [a, b], wn(b) ≤ b and wn(b) → b, as

n → +∞. Thus the inverse function w−1
n exists and its derivative is given by

d

dt
w−1

n (t) =
1

Úwn(w−1
n (t))

for a. e. t ∈ [a, wn(b)]

by Corollary 4 in [18]. Moreover, by Theorem 1 of [3], provided only that one of the
integrals exists, the change of variables t = wn(s) can be used, yielding

∫ wn(b)

a

gn

(

ū(w−1
n (t)),

Ú̄u(w−1
n (t))

Úwn(w−1
n (t))

)

dt =

∫ b

a

gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds.

As a matter of fact the function f(s) = gn

(

ū(s),
Ú̄u(s)
Úwn(s)

)

Úwn(s) is integrable because

hn(·, vn(·)) is dominated by a summable function and by the growth condition in (4.15).
Now we observe that by Corollary 4 in [18] the derivative of ū(w−1

n ) is given by

d

ds
(ū(w−1

n ))(s) =
Ú̄u(w−1

n (s))

Úwn(w−1
n (s))

since w−1
n is increasing and ū is absolutely continuous. Hence

lim sup
n

∫ b

a

gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds

= lim sup
n

∫ wn(b)

a

gn

(

ū(w−1
n (t)),

d

dt
(ū(w−1

n ))(t)

)

dt.

Now we check that the derivative d
dt
(ū(w−1

n )) is in Lq. Therefore, in order to apply

Theorem 1 in [3], we first prove that the function | Ú̄u(s)|q
| Úwn(s)|q−1 is integrable. By (4.15), since
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Úwn(s) is a minimum point for hn(s, ·) + | · −ξn(s)|2, we have

γ

∫ b

a

| Ú̄u(t)|q

| Úwn(t)|q−1
dt

≤
∫ b

a

gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds+

∫ b

a

ψ(ū(s)) Úwn(s)ds

≤
∫ b

a

[hn(s, Úwn(s)) + g0(ū(s), Ú̄u(s))]ds+

∫ b

a

| Úwn(s)− ξn(s)|2ds

−
∫ b

a

| Úwn(s)− ξn(s)|2ds+
∫ b

a

ψ(ū(s)) Úwn(s)ds.

The claim is proved because, by (4.21), the integrands on the right hand side are bounded
by a summable function and since 0 < Úwn ≤ 1. Thus again by Theorem 1 in [3] the
change of variables s = wn(t) is admissible in the following integral and we obtain:

∫ wn(b)

a

| Ú̄u(w−1
n (s))|q

| Úwn(w−1
n (s))|q

ds =

∫ b

a

| Ú̄u(t)|q

| Úwn(t)|q−1
dt. (4.23)

Now we consider the sequence of absolutely continuous functions un(x) =
∫ x

a
Úun(s)ds,

where

Úun(s) =

{

d
ds
(ū(w−1

n ))(s) in [a, wn(b))

0 in [wn(b), b].

It is easy to check that un(x) = ū(w−1
n (x)) in [a, wn(b)) and is zero elsewhere. Thus (4.22)

may be written as

lim sup
n

∫ b

a

gn(un(t), Úun(t))dt

≤ lim sup
n

[

∫ wn(b)

a

gn

(

ū(w−1
n (t)),

d

dt
(ū(w−1

n ))(t)

)

dt

]

+ lim sup
n

[∫ b

wn(b)

gn(0, 0)dt

]

≤
∫ b

a

g0(ū(s), Ú̄u(s))ds,

where the last inequality is due to (4.22) and the fact that, by the Lebesgue convergence
theorem and (4.15)

lim sup
n

[∫ b

wn(b)

gn(0, 0)dt

]

= 0.

Hence the sequence un ∈ W 1,q
0 ([a, b],RN) and satisfies (4.18).

Second case: assume that the set {s ∈ [a, b] | Ú̄u(s) = 0} has positive measure. Integrating
hn(·, vn(·)) on A we have

lim sup
n

∫

A

[

gn

(

ū(s),
Ú̄u(s)

vn(s)

)

vn(s)− g0(ū(s), Ú̄u(s))

]

≤ 0. (4.24)
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Now consider the sequence of absolutely continuous functions wn such that

Úwn(s) =

{

vn(s) in A
rn elsewhere

where rn is a real number such that

∫ b

a

Úwn(s)ds = b− a.

Hence rn ≥ 1 and rn converges to one; indeed

rn =
b− a−

∫

A vn(s)ds

meas ({s | Ú̄u(s) = 0})
.

Therefore we obtain

lim sup
n

∫ b

a

gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds

≤ lim sup
n

[∫

A
gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds

]

+ lim sup
n

[

rn

∫

{ Ú̄u=0}
gn(ū(s), 0)ds

]

≤ lim sup
n

[∫

A
gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds

]

+

∫

{ Ú̄u=0}
g0(ū(s), 0)ds

≤
∫

A
g0(ū(s), Ú̄u(s)) +

∫

{ Ú̄u=0}
g0(ū(s), 0)ds,

where the last inequality follows from (4.24), and by Fatou’s Lemma. Finally, arguing as
in the first case, by Theorem 1 of [3] we have

∫ b

a

gn

(

ū(s),
Ú̄u(s)

Úwn(s)

)

Úwn(s)ds =

∫ b

a

gn

(

ū(w−1
n (t)),

Ú̄u(w−1
n (t))

Úwn(w−1
n (t))

)

dt

=

∫ b

a

gn

(

ū(w−1
n (t)),

d

dt
(ū(w−1

n ))(t)

)

dt.

We observe that the integrability of the function f(s) = gn

(

ū(s),
Ú̄u(s)
Úwn(s)

)

Úwn(s) is obtained

as before on A, while outside A the function f is equal to gn(ū(s), 0)rn, which is equi-
bounded. Thus we consider the sequence of absolutely continuous functions un(s) =
∫ s

a
d
dv
(ū(w−1

n ))(v)dv. By (4.23) the first derivative of un is in Lq and un(s) = (ū(w−1
n ))(s).

because if s ∈ [a, b], Theorem 1 of [3], with A = [a, w−1
n (s)], f = d

dv
(ū(w−1

n )), yields

∫ w−1
n (s)

a

Ú̄u(x)dx =

∫ s

a

Ú̄u(w−1
n (t))

Úwn(w−1
n (t))

(v)dv.

Hence we have found a sequence of functions un in W 1,q
0 ([a, b],RN) which satisfy (4.18).

This ends the proof.
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Remark 4.6. The convergence mode defined in (4.17) holds if the sequence gn pointwise
converges to g, but it does not imply pointwise convergence. As an example the sequence
of functions:

gn(z) =

{

zn − 1 if z ∈ [0, 1];

0 otherwise

fulfills (4.17) with g0 = 0 and τn = 1− 1
n
, but it is not pointwise convergent to zero.

Another example is the sequence of convex functions

gn(z) =

{

z2 if n is even;

2(z − 1)2 + 2 if n is odd

which does not converge pointwise nor is epi-convergent, but for every sequence τn con-
verging to one we have

lim sup
n

gn

(

z

τn

)

= epi− lim sup
n

gn(z) = 2(z − 1)2 + 2.

Remark 4.7. The assumption (4.16) in the previous proposition is satisfied in particular
when φn = 1 considering the sequence of functions gn = gn(y, z), convex with respect to
the second variable and equicoercive, i.e.

A+ γ|z|q − β|y|q ≤ gn(y, z) ≤ α|y|q + δ|z|q + k0.

In this case the sequence is locally equibounded and so the epi-convergence of the sequence
is equivalent to the pointwise convergence. The same is true for the the corresponding
integral functionals.

As a consequence of the previous results we obtain the following

Corollary 4.8. Let pn : RN → R satisfy the growth condition (4.11) and f : RN ×RN

be such that f + pn verifies (4.15) and (4.16). If pn is both pointwise and epi-convergent
to p0 then the sequence of non-convex autonomous integrals

∫ b

a

f(u(t), Úu(t))dt+

∫ b

a

pn(u(t))dt (4.25)

is variational convergent in W 1,q
0 ([a, b],RN) with respect to the weak topology.

Remark 4.9. A result of this kind is, for example, contained in [12], where epi-conver-
gence of the integrand is proved to imply Mosco convergence of the corresponding integral
functionals in Lp space, but only convex integrals are considered there.

5. Examples

We want to exhibit an example characterizing completely the weakest convergence on the
space of parameters which guarantees wellposedness.
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Example 5.1. We consider linear perturbations of the quadratic functional

u 7→
∫ 1

0

Úu2(t)dt.

More precisely consider the space of parameters P defined as follows

P =
{

(t, s) 7→ p(t)s : p ∈ L1([0, 1]) and s ∈ R
}

. (5.1)

Fix p0 ∈ L1. We study the wellposedness by perturbations of the minimization problem
defined by

I(u, p0) =
1

2

∫ 1

0

Úu2(t)dt+

∫ 1

0

p0(t)u(t)dt, u ∈ H1
0 ([0, 1]). (5.2)

It is well known that there exists a unique minimizer w of ( 5.2) which satisfies the
Euler-Lagrange equation

d

dt
Úw(t) = p0(t), w ∈ H1

0 ([0, 1]). (5.3)

Now we prove that the following convergence of sequences

pn → po iff pn ∈ L1 and δ(pn, p0) → 0

where

δ(pn, p0) =

=

∫ 1

0

[∫ t

0

(pn(s)− p0(s))ds

]2

dt−
[∫ 1

0

∫ t

0

(pn(s)− p0(s))dsdt

]2

→ 0 (5.4)

as n → +∞, is the weakest one guaranteeing wellposedness by perturbations of this
minimization problem.

To clarify we observe that ( 5.4) is equivalent to strong convergence in H1
0 ([0, 1]) of

argmin(H1
0 ([0, 1]), I(·, pn)) to argmin(H1

0 ([0, 1]), I(·, p0)). As a matter of fact when un =
argmin(H1

0 ([0, 1]), I(·, pn)) then from (5.3)

Úun(x) = −
∫ 1

0

∫ y

0

pn(t)dtdy +

∫ x

0

pn(t)dt for n = 0, 1, 2, 3, .. (5.5)

and it is easy to see that by (5.5)

‖ Úun − Úu0‖22 =
∫ 1

0

[

−
∫ 1

0

∫ y

0

(pn(t)− p0(t))dtdy +

∫ x

0

(pn(t)− p0(t))dt

]2

dx

=

∫ 1

0

[∫ t

0

(pn(s)− p0(s))ds

]2

dt−
[∫ 1

0

∫ t

0

(pn(s)− p0(s))dsdt

]2

.

We remark that the convergence in (5.4) comes from a topology (see [9]). Let us check
the uniqueness of the limit. Let p0, q0 be such that δ(pn, p0) and δ(pn, q0) converge to zero.
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Denote by u0 the unique solution of d
dt
Úu = p0 in H1

0 ([0, 1] and by v0 the unique solution of
d
dt
Úu = q0. Then Úun converges both to Úu0 and to Úv0 in L2. Thus Úu0 = Úv0 almost everywhere

and so p0 = q0, thanks to the Euler-Lagrange equation.

Denote by vn any asymptotically minimizing sequence. Then we can write, using the
Euler-Lagrange equation

I(vn, pn)− V (pn) =
1

2

∫ 1

0

( Úvn − Úun)
2 (t)dt+

∫ 1

0

Úun( Úvn − Úun)dt

+
1

2

∫ 1

0

Úun
2 +

∫ 1

0

pn(t)(vn(t)− un(t))dt

=
1

2

∫ 1

0

( Úvn − Úun)
2 (t)dt, (5.6)

so the asymptotically minimizing sequence has the same asymptotic character of the
sequence un.

Thus we have obtained that δ is the weakest convergence structure on the space of pa-
rameters guaranting wellposedness. This convergence is a necessary condition to well-
posedness being equivalent to the strong convergence of un = argmin(H1

0 ([0, 1]), I(·, pn))
to u0 = argmin(H1

0 ([0, 1]), I(·, p0)) and it is also a sufficient condition.

When ( 5.4) does not hold we have a Tikhonov wellposed functional which is illposed with
respect to linear perturbations.

Example 5.2. Let us consider

pn(t) = χ[0, 1
nβ ](t)n

α in [0, 1], with α >
3

2
β, (5.7)

where we have denoted by χ the characteristic function. Let p0 = 0. In this case we have

δ(pn, 0) =

∫ 1
nβ

0

n2αt2dt+

∫ 1

1
nβ

n2(α−β)dt−

(

∫ 1
nβ

0

nαtdt+

∫ 1

1
nβ

nα−β

)2

(5.8)

= n2α−3β

(

1

3
− 1

4
n−β

)

→ +∞ as n → +∞. (5.9)

So δ(pn, 0) does not converge, hence the problem is illposed.

The following example deals with perturbations involving the derivative.

Example 5.3. Let us consider the embedding I : P ×H1
0 ([−1, 1]) → R, defined as

I(u, p) =

∫ 1

−1

p(t) Úu2(t)dt,

where

P = {p ∈ L∞([−1, 1])| p(t) > 0 a.e.}.
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We claim that if we endow the parameter space P with Lq-convergence (any q > 1)
wellposedness of this minimization problem fails. Consider the sequence

pn(t) =
1

n5
for |t| < 1

n
and pn(t) = 1 otherwise

which converges to 1 in Lq and is uniformly bounded. The asymptotically minimizing
sequence vn given by

Úvn(t) =
t|t||1− pn(t)|

√

pn(t)

does not converge to 0 = argmin(I(·, 1)) in H1
0 ([−1,−1]).
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