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Abstract

Let pm/qm denote the m-th convergent (m ≥ 0) from the continued fraction expan-
sion of some real number α. We continue our work on error sum functions defined by
E(α) :=

∑

m≥0 |qmα − pm| and E∗(α) :=
∑

m≥0(qmα − pm) by proving a new density
result for the values of E and E∗. Moreover, we study the function E with respect to
continuity and compute the integral

∫ 1
0 E(α) dα. We also consider generalized error

sum functions for the approximation with algebraic numbers of bounded degrees in the
sense of Mahler.

1 Introduction and statement of the main results

Recently the first author [2] introduced two error sums: Let α = [a0; a1, a2, . . . ] be the
continued fraction expansion of a real number α, which may be finite in the case of a rational
number α. Let

pm

qm

= [a0; a1, . . . , am] (m ≥ 0)

denote the convergents of α. The error sum functions E(α) and E∗(α) are defined by

E(α) =
∑

m≥0

|αqm − pm| =
∑

m≥0

(−1)m(αqm − pm) ,

E∗(α) =
∑

m≥0

(αqm − pm) .
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Both functions do not depend on the integer part a0 of α. So we may restrict their domains
on the interval [0, 1).

The first author [2] proved that

0 ≤ E(α) ≤ ρ =
1 +

√
5

2
and 0 ≤ E∗(α) ≤ 1 (α ∈ R) .

The series
∑

m≥0 |qmα − pm| ∈ [0, ρ] measures the approximation properties of α on
average. The smaller this series is, the better rational approximations α has. Nevertheless,
α can be a Liouville number and

∑

m≥0 |qmα − pm| takes a value close to ρ. So, it may
be interesting to question on the average value of E and E∗, respectively. We compute
the average value of E , see Theorem 5. The error sum functions E and E∗ have various
interesting properties. In [2], applications are discussed for certain transcendental numbers
and for quadratic irrational numbers. For instance, we have

E(exp(1)) =
∑

m≥0

|qme − pm| = 2e

∫ 1

0

exp(−t2) dt − e = 1.3418751 . . . ,

E∗(exp(1)) =
∑

m≥0

(qme − pm) = 2

∫ 1

0

exp(t2) dt − 2e + 3 = 0.4887398 . . . ,

E(
√

7) =
∑

m≥0

|qm

√
7 − pm| =

7 + 5
√

7

14
= 1.444911182 . . . ,

E∗(
√

7) =
∑

m≥0

(qm

√
7 − pm) =

21 − 5
√

7

14
= 0.555088817 . . . .

It is clear that for any rational number α the series for E(α) and E∗(α) become finite sums and
therefore belong to Q. In the case of quadratic irrational numbers α we have E(α) ∈ Q(α)
and E∗(α) ∈ Q(α) ([2, Theorem 3]). But for quadratic irrationals E(α) ∈ Q(α) \Q does not
hold in general. For example, E((3 −

√
5)/2) = 1 (see [3, Lemma 8]). On the other hand

E(α) ∈ Q(α) is not true for all real numbers α. For α = e = exp(1) we have E(e) 6∈ Q(e),

since e and
∫ 1

0
exp(−t2) dt are algebraically independent over Q. This follows from a remark

on page 193 in [8]. Similarly, one can show that E∗(e) 6∈ Q(e).
The authors [3] studied the value distribution of the error sum functions in more detail.

They constructed two algorithms which prove that the set of values of E is dense in the
interval IE = [0, ρ], and that the set of values of E∗ is dense in the interval IE∗ = [0, 1] (see
[3, Theorems 1, 2]). But, given any uniformly modulo one distributed sequence (αν)ν≥1 of
real numbers, the sequences (E(αν))ν≥1 and (E∗(αν))ν≥1 are not uniformly distributed in IE
and IE∗ , respectively (see [3, Theorems 3, 4]). In this paper we show that any dense subset of
(0, 1) is mapped by E(α) and E∗(α) into a set which is dense in IE and IE∗ , respectively. Then,
we continue to study the analytic properties of the error sum functions. The function E∗

has already been investigated by Ridley and Petruska [7]. Among other things they showed
that E∗(α) is continuous at every irrational point α, and discontinuous when α is rational.

Moreover, they computed the integral
∫ 1

0
E∗(α) dα by applying the functional equation

E∗(α) + E∗(1 − α) = max{α, 1 − α} except at α = 0 and α =
1

2
.
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Inspired by the work of Ridley and Petruska, we prove similar results for the error sum
function E . We compute the integral

∫ 1

0
E(α) dα by using a multiple sum, which expresses

the integral in terms of denominators of convergents. Unfortunately, the functional equation

E(α) − E(1 − α) =

{

α − 1, if 0 < α < 1/2;

α, if 1/2 < α < 1;

cannot be used to evaluate the integral
∫ 1

0
E(α) dα.

The main results of this paper are given by the following theorems.

Theorem 1. Let (αn)n≥1 be a sequence of real numbers forming a dense set {αn : n ∈ N}
in (0, 1). Then the set {E(αn) : n ∈ N} is dense in (0, ρ), and the set {E∗(αn) : n ∈ N} is

dense in (0, 1).

Theorem 2. The function E(α) is discontinuous at every rational point α, and it is contin-

uous at every irrational point α.

Example 3. Let n, k be integers with n, k ≥ 3. For x = 1/n we have

E
( 1

n
+

1

nk

)

=
2

n
+

3

nk
→ 2

n
(k → ∞) ,

E
( 1

n
− 1

nk

)

=
1

n
− 1

nk
+

2

nk−1
→ 1

n
(k → ∞) ,

E∗
( 1

n
+

1

nk

)

=
2

nk−1
− 1

nk
→ 0 (k → ∞) ,

E∗
( 1

n
− 1

nk

)

=
1

n
− 3

nk
→ 1

n
(k → ∞) .

These expressions are obtained by using the identities

1

n
+

1

nk
= [ 0; n − 1, 1, nk−2 − 1, n ] ,

1

n
− 1

nk
= [ 0; n, nk−2 − 1, 1, n − 1 ] .

2

Let m ≥ 1, and let a1, . . . , am be positive integers. Set

pm

qm

= [ 0; a1, . . . , am ] ,

where pm and qm with qm > 0 are coprime integers.

Theorem 4. We have
∫ 1

0

E(α) dα =
1

2
+

1

2

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

1

qm(qm + qm−1)
2 ,

and
∫ 1

0

E∗(α) dα =
1

2
+

1

2

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

(−1)m

qm(qm + qm−1)
2 .
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With the first identity from the preceding theorem, we compute the mean value of the
function E .

Theorem 5. We have

∫ 1

0

E(α) dα = −5

8
+

3ζ(2) log 2

2ζ(3)
= 0.79778798 . . . ,

where ζ(s) denotes the Riemann zeta function.

Remark 6. Ridley and Petruska [7] proved that

∫ 1

0

E∗(α) dα =
3

8
.

We point out that by Theorem5 and Remark 6 the mean values of E and E∗ are less than
half of the maximum value of E and E∗, respectively.

In Section 5 we generalize the error sum function E to the approximation with algebraic
numbers of bounded degree. Here, the Mahler function wn(H,α) will be involved.

2 Proof of Theorem 1

We will only prove the statement concerning the values of the function E , since there are no
additional arguments for the function E∗.

It is shown in the proof of Theorem 1 in [3] that the set {E(α) : α ∈ Q∩ (0, 1)} is dense
in (0, ρ). Hence, for any real number η ∈ (0, ρ) and for any δ > 0 there is a rational number
r ∈ (0, 1) satisfying

∣
∣η − E(r)

∣
∣ <

δ

3
. (1)

By

r = [0; a1, a2, . . . , at] =
pt

qt

we denote the continued fraction expansion of r. Without loss of generality we may assume
that t satisfies

1 +
√

2

(
√

2)
t−1 <

δ

3
. (2)

This can be seen by the following argument: For any number r′ = [0; a1, . . . , at′ ] satisfying
|η − E(r′)| < δ/3 and t′ < t we construct a number r = [0; a1, a2, . . . , at] with at′+1 = · · · =
at = b, such that t satisfies (2) and b is sufficiently large (see [3, Lemma 1]). Namely, for rk
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defined by rk := [0; a1, . . . , at′ , b, . . . , b
︸ ︷︷ ︸

k

] we have

∣
∣E(r) − E(r′)

∣
∣ =

∣
∣E(rt−t′) − E(r0)

∣
∣ =

∣
∣

t−t′−1∑

k=0

E(rk+1) − E(rk)
∣
∣

≤
t−t′−1∑

k=0

∣
∣ E(rk+1) − E(rk)

∣
∣ <

t−t′−1∑

k=0

1

b
=

t − t′

b

<
t

b
→ 0 (b → ∞) .

Since the set {αn : n ∈ N} is dense in (0, 1) by the assumption in the theorem, there is
a positive integer m satisfying

αm = [0; a1, a2, . . . , at, at+1, . . . ]

and
∣
∣r − αm

∣
∣ <

δ

3(t + 1)qt

. (3)

Let pν/qν be the convergents of αm. Then, by applying the inequalities (1), (3) and (2) we
have

∣
∣η − E(αm)

∣
∣ =

∣
∣η − E(r) + E(r) − E(αm)

∣
∣ ≤

∣
∣η − E(r)

∣
∣ +

∣
∣E(r) − E(αm)

∣
∣

<
δ

3
+

∣
∣

t∑

ν=0

|qνr − pν | −
∑

ν≥0

|qναm − pν |
∣
∣

≤ δ

3
+

t∑

ν=0

|r − αm|qt +
∑

ν≥t+1

|qναm − pν |

≤ δ

3
+

t∑

ν=0

δ

3(t + 1)
+

∑

ν≥t+1

1

qν

≤ 2δ

3
+

∑

ν≥t

1

(
√

2)
ν

=
2δ

3
+

1 +
√

2

(
√

2)
t−1

< δ ,

which completes the proof of Theorem 1. 2

3 Proof of Theorem 2

Since the function E is periodic of period one, it suffices to prove Theorem 2 for α ∈ [0, 1).
We will prove the statement on continuity first. Let η ∈ [0, 1) be a real irrational number,
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say
η = [0; a1, a2, . . .] ,

and let (ξn)n≥1 be a sequence of real numbers converging to η. By Im = Im(a1, . . . , am) we
denote the interval defined uniquely by

[0; b1, b2, . . .] ∈ Im ⇐⇒ (b1 = a1 ∧ · · · ∧ bm = am) . (4)

The boundary points of Im are rational numbers, and therefore the irrational number η lies
in the interior of Im for any m ≥ 1. With limn→∞ ξn = η we conclude on

ξn ∈ Im (n ≥ n0)

for some positive integer n0 = n0(m). Hence, by (4), we have

ξn = [0; a1, . . . , am, . . .]. (5)

Let pν/qν for ν ≥ 0 be the convergents of η and let p
(n)
ν /q

(n)
ν be the convergents of ξn. Then,

from (5), it follows that

pν

qν

=
p

(n)
ν

q
(n)
ν

(0 ≤ ν ≤ m) .

For a fixed positive integer m and any n ≥ n0 we estimate

|E(η) − E(ξn)| =
∣
∣
∣

∑

ν≥0

|qνη − pν | −
∑

ν≥0

|q(n)
ν ξn − p(n)

ν |
∣
∣
∣

≤
∣
∣
∣

m∑

ν=0

(−1)νqν(η − ξn)
∣
∣
∣ +

∑

ν≥m+1

|qνη − pν | +
∑

ν≥m+1

|q(n)
ν ξn − p(n)

ν |

≤
∣
∣
∣

m∑

ν=0

(−1)νqν(η − ξn)
∣
∣
∣ +

∑

ν≥m+1

1

qν

+
∑

ν≥m+1

1

q
(n)
ν

≤
∣
∣
∣

m∑

ν=0

(−1)νqν(η − ξn)
∣
∣
∣ +

∑

ν≥m+1

1

2(ν−1)/2
+

∑

ν≥m+1

1

2(ν−1)/2

=
∣
∣
∣

m∑

ν=0

(−1)νqν(η − ξn)
∣
∣
∣ +

2
√

2√
2 − 1

· 1

(
√

2)
m .

Since m can be chosen arbitrary large and ξn tends to η for increasing n, we conclude on

lim
n→∞

E(ξn) = E(η) .

This proves that the function E(α) is continuous at every irrational point α.
To prove the statement on discontinuity we shall at first discuss the case when η is a

rational number in (0, 1). Let
η = [0; a1, a2, . . . , am]
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for some integers m ≥ 1 and am > 1. Moreover, let (ξ
(1)
n )n≥2 and (ξ

(2)
n )n≥2 be two sequences

of rationals defined by

ξ(1)
n = [0; a1, . . . , am, n] and ξ(2)

n = [0; a1, . . . , am − 1, 1, n] (n ≥ 2) .

Obviously we have
lim

n→∞
ξ(1)
n = η = lim

n→∞
ξ(2)
n . (6)

Let p
(1)
ν /q

(1)
ν for ν = 0, . . . ,m + 1 be the convergents of ξ

(1)
n . By p

(2)
ν /q

(2)
ν for ν = 0, . . . ,m + 2

we denote the convergents of ξ
(2)
n . Then we have

p
(1)
ν

q
(1)
ν

=
p

(2)
ν

q
(2)
ν

(0 ≤ ν ≤ m − 1) .

Therefore we may set pν := p
(1)
ν = p

(2)
ν and qν := q

(1)
ν = q

(2)
ν for ν = 0, . . . ,m−1. We compute

E(ξ(2)
n ) − E(ξ(1)

n )−
m−1∑

ν=0

(−1)ν(ξ(2)
n − ξ(1)

n )qν

= (−1)m((am − 1)qm−1 + qm−2)ξ
(2)
n − (−1)m((am − 1)pm−1 + pm−2)

+ (−1)m+1(amqm−1 + qm−2)ξ
(2)
n − (−1)m+1(ampm−1 + pm−2)

− (−1)m(amqm−1 + qm−2)ξ
(1)
n + (−1)m(ampm−1 + pm−2)

= (−1)m(ξ(2)
n − ξ(1)

n )(amqm−1 + qm−2) + (−1)m(pm−1 − qm−1ξ
(2)
n )

+ (−1)m+1(amqm−1 + qm−2)ξ
(2)
n − (−1)m+1(ampm−1 + pm−2) .

For n → ∞, by (6) and with η = p
(1)
m /q

(1)
m we obtain the limit

lim
n→∞

(
E(ξ(2)

n ) − E(ξ(1)
n )

)
= (−1)m

[
(pm−1 − qm−1η) + (p(1)

m − q(1)
m η)

]

= (−1)m p
(1)
m−1q

(1)
m − p

(1)
m q

(1)
m−1

q
(1)
m

=
1

q
(1)
m

.

In particular, by 1/q
(1)
m 6= 0, this proves that the function E is discontinuous at η.

It remains to prove that E is discontinuous at η = 0. Let ξ
(1)
n := [0; n] and ξ

(2)
n :=

[−1; 1, n]. Then both sequences (ξ
(1)
n )n≥1 and (ξ

(2)
n )n≥1 tend to 0 for increasing n, but

E(ξ(1)
n ) =

1

n
→ 0 (n → ∞),

wheras E(ξ
(2)
n ) = 1 holds for every positive integer n. Hence, Theorem 2 is proven. 2

4 Proofs of Theorem 4 and Theorem 5

Proof of Theorem 4. Let m and a1, . . . , am be positive integers. Set

ξ1 = [0; a1, . . . , am−1, am] , ξ2 = [0; a1, . . . , am−1, am + 1] .
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Then we have ξ1 < ξ2 for even m and ξ2 < ξ1 otherwise. We define Im := (ξ1, ξ2) for even
m and Im := (ξ2, ξ1) for odd m, which depend on a1, . . . , am. The intervals Im are disjoint
for different m-tuples (a1, . . . , am). For any fixed m the union of all closed intervals Im gives
the interval [0, 1]. With this decomposition of [0, 1] we obtain

∫ 1

0

E(α) dα =

∫ 1

0

∞∑

m=0

(−1)m(qmα − pm) dα

=
∞∑

m=0

(−1)m

∫ 1

0

(qmα − pm) dα

=
1

2
+

∞∑

m=1

(−1)m

∞∑

a1=1

· · ·
∞∑

am=1

∫

Im

(qmα − pm) dα

=
1

2
+

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

∫ ξ2

ξ1

(qmα − pm) dα (7)

and
∫ 1

0

E∗(α) dα =

∫ 1

0

∞∑

m=0

(qmα − pm) dα

=
1

2
+

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

∫

Im

(qmα − pm) dα

=
1

2
+

∞∑

m=1

(−1)m

∞∑

a1=1

· · ·
∞∑

am=1

∫ ξ2

ξ1

(qmα − pm) dα (8)

Every point α ∈ Im satisfies α = [0; a1, . . . , am−1, am, . . .], hence the convergents pν/qν for
ν ≤ m depend on Im, but not on α ∈ Im. Therefore, we derive

∫ ξ2

ξ1

(qmα − pm) dα = (ξ2 − ξ1)
(ξ2 + ξ1)qm − 2pm

2
.

Using

ξ1 =
pm

qm

and ξ2 =
(am + 1)pm−1 + pm−2

(am + 1)qm−1 + qm−2

we compute the expressions

ξ2 − ξ1 =
(−1)m

(qm + qm−1)qm

and

ξ2 + ξ1 =
pm−1qm + qm−1pm + 2pmqm

(qm + qm−1)qm

,

which give
∫ ξ2

ξ1

(qmα − pm) dα =
1

2qm(qm + qm−1)2
.

Substituting this integral into (7) and (8), we finally get the formulas stated in the theorem.
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Proof of Theorem 5. First we show that

1

2
+

1

2

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

1

qm(qm + qm−1)
2 = −3

8
+

∞∑

a=1

1

a

a−1∑

b=0
gcd(a,b)=1

1

(a + b)2
. (9)

For the denominators of two subsequent convergents of the continued fraction expansion of
α = [0; a1, . . . , am, . . .] it is well-known that gcd(qm, qm−1) = 1. For fixed qm = a we count
the solutions of qm−1 = b with gcd(a, b) = 1 and 0 ≤ b ≤ a − 1 in the multiple sum on the
left-hand side of (9). It is necessary to distinguish the cases m ≥ 2 and m = 1.
Case 1: m ≥ 2. First let a1 = 1. Then,

qm−1

qm

= [0; am, . . . , a2, 1] = [0; am, . . . , a2 + 1] .

For a1 ≥ 2 we have

qm−1

qm

= [0; am, . . . , a2, a1] = [0; am, . . . , a2, a1 − 1, 1] .

Case 2: m = 1. For a1 = 1 we have a unique representation of the fraction

qm−1

qm

=
q0

q1

=
1

a1

=
1

1
= [0; 1] ,

since the integer part a0 = 0 must not be changed. For a1 ≥ 2 there are again two represen-
tations:

qm−1

qm

=
q0

q1

=
1

a1

= [0; a1] = [0; a1 − 1, 1] .

Therefore it is clear that for fixed qm = a every b with gcd(a, b) = 1 and 0 ≤ b ≤ a − 1
occurs exactly two times in the multiple sum on the left-hand side of (9), except for m = 1
and a1 = 1. For this exceptional case we separate the term

1

2q1(q1 + q0)2
=

1

8
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from the multiple sum. Then we obtain

1

2
+

1

2

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

1

qm(qm + qm−1)
2

=
1

2
+

1

2

∞∑

m=2

∞∑

a1=1

· · ·
∞∑

am=1

1

qm(qm + qm−1)
2 +

1

2

∞∑

a1=2

1

q1(q1 + 1)2 +
1

8

=
1

2
+

∞∑

a=1

1

a

a−1∑

b=1
gcd(a,b)=1

1

(a + b)2
+

1

8

=
1

2
+

∞∑

a=1

1

a

a−1∑

b=0
gcd(a,b)=1

1

(a + b)2
− 1 +

1

8

= −3

8
+

∞∑

a=1

1

a

a−1∑

b=0
gcd(a,b)=1

1

(a + b)2
,

which proves the identity in (9).
Next we treat the double sum on the right-hand side of (9). Let µ denote the Möbius

function. Then we derive

∞∑

a=1

1

a

a−1∑

b=0
gcd(a,b)=1

1

(a + b)2
=

∞∑

a=1

1

a

a−1∑

b=0

∑

d>0
d| gcd(a,b)

µ(d)

(a + b)2
=

∞∑

a=1

a−1∑

b=0

∑

d>0
d|a∧ d|b

µ(d)

a(a + b)2

=
∞∑

d=1

∞∑

a=1
d|a

a−1∑

b=0
d|b

µ(d)

a(a + b)2
=

∞∑

d=1

∞∑

n=1

n−1/d
∑

m=0

µ(d)

nd(nd + md)2

=
∞∑

d=1

µ(d)

d3

∞∑

n=1

n−1∑

m=0

1

n(n + m)2
=

1

ζ(3)

∞∑

a=1

a−1∑

b=0

1

a(a + b)2

=
1

ζ(3)

∞∑

a=1

1

a

2a−1∑

c=a

1

c2
=

1

ζ(3)

∞∑

c=1

1

c2

c∑

a=⌊c/2⌋+1

1

a

=
1

ζ(3)

∞∑

c=1

1

c2

c∑

a=1

(−1)a+1

a

=
1

ζ(3)

∞∑

c=1

1

c2

c−1∑

a=1

(−1)a+1

a
+

1

ζ(3)

∞∑

c=1

(−1)c+1

c3

= −ζ(2,−1)

ζ(3)
+

3

4
,
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where

ζ(2,−1) =
∞∑

c=1

1

c2

c−1∑

a=1

(−1)a

a
=

∑

c>a>0

(−1)a

ac2

is a special case of the multivariate zeta function (see [1, Section 2.6]), satisfying

ζ(2,−1) = ζ(3) − 3

2
ζ(2) log 2 .

Collecting together we obtain from (9) that

∫ 1

0

E(α) dα = −3

8
− 1 +

3

4
+

3

2

ζ(2) log 2

ζ(3)
= −5

8
+

3ζ(2) log 2

2ζ(3)
,

which completes the proof of the theorem.

Remark 7. Let n be a positive integer. We consider a modified error sum function given by

∑

m≥0

|αqm − pm|n (0 < α < 1) .

By similar methods as used to deduce Theorems 4 and 5 we obtain the following identities:

∫ 1

0

∑

m≥0

|αqm − pm|n dα =
1

n + 1
+

1

n + 1

∞∑

m=1

∞∑

a1=1

· · ·
∞∑

am=1

1

qm(qm + qm−1)
n+1

=
1

n + 1

(

1 − 1

2n+1
− 2ζ(n + 1,−1)

ζ(n + 2)

)

with the multivariate zeta function ζ(n + 1,−1) defined by

ζ(n + 1,−1) =
∑

m2>m1>0

(−1)m1

m1m
n+1
2

.

This yields an asymptotic expansion, namely

∫ 1

0

∑

m≥0

|αqm − pm|n dα =
1

n + 1
+ O

(
1

(n + 1)2n

)

(n → ∞) .

5 Generalization of the error sum function E
In this section we show that the error sum function E is the special case of a more general
concept involving the theory of approximation with algebraic numbers of bounded degree.
We need some notations to recall the definition of the Mahler functions wn(H,α) and wn(α).
For more details on this function we refer to [5].
For any polynomial P (x) ∈ Z[x] we denote by H(P ) the height of the polynomial P , which is
given by the maximum value of the modulus of the coefficients. Let n,H be positive integers

11



and α ∈ C with |α| ≤ 1/2 and deg α > n. For α being transcendental we define deg α = ∞.
Set

wn(H,α) := min
P ∈ Z[x] \ {0}

deg P ≤ n
H(P ) ≤ H

∣
∣P (α)

∣
∣ ,

wn(α) := lim sup
H→∞

− log wn(H,α)

log H
.

wn(α) is the largest positive real number such that for every ε > 0 there are infinitely many
polynomials P from Z[x] of degree at most n satisfying

∣
∣P (α)

∣
∣ <

(
H(P )

)−wn(α)+ε
.

So the function wn(H,α) is needed to define the important Mahler function wn(α). From the
definition of wn(H,α) it follows immediately that w1(H,α) ≥ w2(H,α) ≥ · · · ≥ wn(H,α)
holds for all integers n = 1, 2, . . . .
Given α and some positive integer n with deg α > n, there is a unique sequence (Hm)m≥0 of
positive integers satisfying the following conditions:

(i) 1 = H0 < H1 < · · · < Hm < . . .
(ii) wn(H0, α) > wn(H1, α) > · · · > wn(Hm, α) > . . .

(iii) wn(Hm, α) = wn(Hm+1 − 1, α) (m = 0, 1, . . . )

We define the generalized error sum function

En(α) :=
∞∑

m=0

wn(Hm, α) .

Note that En(α) = En(−α) holds, since the same is obviously true for the Mahler function:
wn(H,α) = wn(H,−α). For n = 1 and α ∈ (−1/2, 1/2) \ Q we have p0/q0 ∈ {−1/1, 0/1}
and p1/q1 = 1/a1, where a1 = 1 holds if and only if −1/2 < α < 0. This implies that

w1(Hm, α) =

{
|qmα − pm|, if 0 < α < 1/2; ,
|qm+1α − pm+1|, if − 1/2 < α < 0;

(m = 0, 1, . . . ) .

Therefore,

E1(α) =

{
E(α), if 0 < α < 1/2; ,
E(α) − α − 1, if − 1/2 < α < 0; ,

where α + 1 equals q0α − p0 in the second case. Let

En := sup
{
En(α) : α ∈ (−1/2, 1/2) ∧ deg α > n

}
(n = 1, 2, . . . ) .

Then it is clear that for n = 1, 2, . . .

En = sup
{ ∞∑

m=0

wn(Hm, α) : α ∈ (−1/2, 1/2) ∧ deg α > n
}

≤ sup
{ ∞∑

m=0

w1(Hm, α) : α ∈ (−1/2, 1/2) ∧ deg α > n
}

≤ E1 = sup
{
E1(α) : α ∈ (−1/2, 1/2) ∧ deg α > 1

}

≤ ρ .
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This bound can be improved by applying two inequalities based on Siegel’s Lemma. Let
α ∈ C with |α| < 1/2. For real α and any positive integers n,H we have

wn(H,α) < (n + 1)H−n . (10)

For α /∈ R and any positive integers n,H we have

wn(H,α) <
√

2(n + 1)H−(n−1)/2 . (11)

These inequalities can be found on page 69 in [5], where the constants C1 and C2 are given
by [5, Hilfssatz 27, Hilfssatz 28]. In what follows we distinguish whether α is real or not.

Case 1: α ∈ R. By using

wn(1, α) ≤ max
−1/2≤x≤1/2

|xn| =
1

2n

we obtain with (10) and the Riemann zeta function for n ≥ 2

En(α) =
∞∑

m=0

wn(Hm, α) = wn(1, α) +
∞∑

m=1

wn(Hm, α)

≤ 1

2n
+

∞∑

m=1

wn(m + 1, α) ≤ 1

2n
+

∞∑

m=1

n + 1

(m + 1)n

=
1

2n
+ (n + 1)

(
ζ(n) − 1

)
→ 0 (for n → ∞) .

Case 2: α /∈ R. Here we consider the polynomial zn for |z| ≤ 1/2. Then,

wn(1, α) ≤ max
|z|≤1/2

|zn| =
1

2n
.

With (11) we repeat the arguments from Case 1 for n ≥ 4:

En(α) ≤ wn(1, α) +
∞∑

m=1

√
2(n + 1)

(m + 1)(n−1)/2

≤ 1

2n
+
√

2(n + 1)

(

ζ

(
n − 1

2

)

− 1

)

→ 0 (for n → ∞) .

Note that the inequality
1

2n
+ (n + 1)

(
ζ(n) − 1

)
< ρ

holds for n ≥ 3, whereas

1

2n
+
√

2(n + 1)

(

ζ

(
n − 1

2

)

− 1

)

< ρ

is true for n ≥ 5.
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[5] Th. Schneider, Einführung in die transzendenten Zahlen, Springer-Verlag, 1957.

[6] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Company, 1929.
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