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Abstract

In this paper, by using some congruences concerning with Fibonacci and Lucas

numbers, we completely solve the Diophantine equations Ln = 2Lmx
2, Fn = 2Fmx

2,

Ln = 6Lmx
2, Fn = 3Fmx

2, and Fn = 6Fmx
2.

1 Introduction

Fibonacci and Lucas sequences are defined as follows; F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for
n ≥ 2 and L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2, respectively. Fn is called the n-th
Fibonacci number and Ln is called the n-th Lucas number. Fibonacci and Lucas numbers
for negative subscripts are given by F−n = (−1)n+1 Fn for n ≥ 1 and L−n = (−1)n Ln for
n ≥ 1. It can be seen that Ln = Fn−1 + Fn+1 and Ln−1 + Ln+1 = 5Fn for every n ∈ Z. For
more information about Fibonacci and Lucas sequences, one can consult [9], [18].

Let α and β denote the roots of the equation x2 − x− 1 = 0. Then α = (1 +
√

5)/2 and
β = (1−

√
5)/2. It can be seen that αβ = −1 and α + β = 1. Moreover it is well known and

easy to show that

Fn = (αn − βn) /
√

5

and
Ln = αn + βn
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for every n ∈ Z.
In the following section, we will give some congruences concerning with Fibonacci and

Lucas numbers. By using these congruences, we may prove many properties known before.

2 Preliminaries

The problem of characterizing the square Fibonacci numbers was first introduced in the book
by Ogilvy [12, p. 100]. In 1963, both Moser and Carlitz [10], and Rollet [17] proposed this
problem. In 1964, the square conjecture was proved by Cohn [4] and independently by Wyler
[19]. Later the problem of characterizing the square Lucas numbers was solved by Cohn [6]
and by Alfred [1]. Moreover in 1965, Cohn solved the Diophantine equations Fn = 2x2 and
Ln = 2x2 in [6].

We give the following theorem from [5].

Theorem 1. If Fn = x2, then n = 1, 2, 12. If Fn = 2x2, then n = 3, 6. If Ln = x2, then

n = 1, 3 and if Ln = 2x2, then n = 6.

The proofs of the following two theorems are given in [8].

Theorem 2. Let n ∈ N ∪{0} and k,m ∈ Z. Then

F2mn+k ≡ (−1)mn Fk (mod Fm) (1)

and

L2mn+k ≡ (−1)mn Lk (mod Fm) . (2)

Theorem 3. Let n ∈ N∪{0} and k,m ∈ Z. Then

L2mn+k ≡ (−1)(m+1)n Lk (mod Lm) (3)

and

F2mn+k ≡ (−1)(m+1)n Fk (mod Lm) . (4)

From the identity (2), it follows that 8 ∤ Ln for any natural number n.
Now we give two lemmas and a corollary, which will be needed later. The proofs of the

lemmas can be achieved by induction. For the proof of the corollary, one can consult [2] or
[11].

Lemma 4. L2k ≡ 3 (mod 4) for the all positive integers k with k ≥ 1.

Lemma 5. If r ≥ 3, then L2r ≡ 2 (mod 3).

Corollary 6. If k ≥ 1, then there is no integer x such that x2 ≡ −1 (mod L2k).

The following lemma can be proved by induction.

Lemma 7. If r ≥ 2, then L2r ≡ 7 (mod 8) .

The proofs of the following theorems can be found in [3], [18] or [8].
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Theorem 8. Let m,n ∈ N and m ≥ 2. Then Lm|Ln if and only if m|n and
n

m
is an odd

integer.

Theorem 9. Let m,n ∈ N and m ≥ 3. Then Fm|Fn if and only if m|n.

Theorem 10. Let m,n ∈ N and m ≥ 2. Then Lm|Fn if and only if m|n and
n

m
is an even

integer.

Also we give some identities about Fibonacci and Lucas numbers which will be needed
in the sequel:

L2n = L2
n − 2(−1)n (5)

L3n = Ln(L2
n − 3(−1)n) (6)

F2n = FnLn (7)

F3n = Fn(5F 2
n + 3(−1)n) (8)

L2
n − 5F 2

n = 4(−1)n (9)

2|Fn ⇔ 2|Ln ⇔ 3|n (10)

(Fn, Ln) = 1 or (Fn, Ln) = 2 (11)

Let
(

a
p

)

represent the Legendre symbol. Then we have

(

2

p

)

= 1 if and only if p ≡ ±1 (mod 8) (12)

and
(−2

p

)

= 1 if and only if p ≡ 1, 3 (mod 8) . (13)

For the proof of (12) and (13), one can consult [2] or [11].

3 Main Theorems

Many authors investigated Fibonacci and Lucas numbers of the form cx2. In [5], Cohn
solved Fn = cx2 and Ln = cx2 for c = 1, 2. In [14], Robbins considered Fibonacci numbers
of the form px2. Robbins solved the equation Fn = px2 for all p such that p ≡ 3 (mod 4)
or p < 10000. Later, in [15] Robbins considered Fibonacci numbers of the form cx2. The
author obtained all solutions of Fn = cx2 for composite values of c ≤ 1000. After that, in
[16], the same author solved Ln = px2, where p is an odd prime and p < 1000. Moreover,
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in [20], Zhou dealt with Lucas numbers of the form Ln = px2, where p is a prime number,
and he gave solutions for 1000 < p < 60000. In this section, we consider the equations
Ln = 2Lmx2, Fn = 2Fmx2, Ln = 6Lmx2, Fn = 3Fmx2, and Fn = 6Fmx2.

In [13], Ribenboim considers square-classes of Fibonacci numbers. Fm, Fn are in the same
square-class if there exist non-zero integers x, y such that Fmx2 = Fny

2; or equivalently,
when FmFn is a square. In a similar way, he considers square-classes of Lucas numbers. A
square-class will be called trivial if it consists of only one number. Ribenboim showed that
the square-class of Lm is trivial when m 6= 0, 1, 3, and 6. He also showed that the square-
class of Fm is trivial when m 6= 1, 2, 3, 6, 12. Now, we can give following two theorems,
which can be obtained from Proposition 1 and Proposition 2 given in [13].

From now on, we will assume that n and m are positive integers.

Theorem 11. Let m > 3 be an integer and Fn = Fmx2 for some x ∈ Z. Then n = m.

Theorem 12. Let m ≥ 2 be an integer and Ln = Lmx2 for some x ∈ Z. Then n = m.

The proofs of the following two theorems can be obtained from Theorem 6 and Theorem
12 given in [7], but we will give a different proof.

Theorem 13. There is no integer x such that Ln = 2Lmx2 for m > 1.

Proof. Assume that Ln = 2Lmx2. Then Lm|Ln and therefore n = mk for some odd natural
number k by Theorem 8. Firstly assume that m is an odd integer. Since 2|Ln, we get 3|n
by (10). Thus we see that 3 ∤ m. For if 3|m, then L3|Lm, i.e., 4|Lm by Theorem 8. This
implies that 8|Ln, which is impossible. Since 3 ∤ m, it follows that 3|k. That is, k = 3t for
some odd positive integer t. Thus n = mk = 3mt and mt is an odd integer. Therefore, since
3|n, it follows that L3|Ln, i.e., 4|2Lmx2 by Theorem 8. Since 3 ∤ m, Lm is an odd integer.
Therefore 2|x2, i.e., x is an even integer. This implies that 8|Ln, which is impossible.

Now assume that m is an even integer. If x is an even integer, then we see that 8|Ln,
which is impossible. Therefore x is an odd integer. Assume that 3|m. Then Lm is an even
integer. Therefore L3|Ln by Theorem 8. It follows that n = 3b for some odd integer b by
Theorem 8. That is, n is an odd integer. But this is impossible. Because since m is an
even integer, n is also an even integer. Assume that 3 ∤ m. Then since n = mk and 3|n, we
get 3|k, i.e., k = 3t for some odd integer t. Since t is an odd integer, t = 4q ± 1 for some
nonnegative integer t. Thus n = mk = 3m(4q ± 1) = 2 · 6mq ± 3m. Then

Ln = L2·6mq±3m ≡ L±3m (mod F6)

and therefore
2Lmx2 ≡ L3m (mod 8)

by (2). Since x2 ≡ 1 (mod 8) and m is even integer, we get

2Lm ≡ Lm(L2
m − 3) (mod 8)

by (6). Moreover, since 3 ∤ m, Lm is odd integer. Therefore we get

2 ≡ L2
m − 3 (mod 8).
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Thus
2 ≡ −2 (mod 8),

which is impossible. This completes the proof.

In [5], it is shown that, for m = 1, 2, the equation Fn = 2Fmx2 = 2x2 has solution only
for n = 3, 6. More generally, we can give the following theorem.

Theorem 14. If Fn = 2Fmx2 and m ≥ 3, then m = 3, x2 = 36, and n = 12 or m = 6,
x2 = 9, and n = 12.

Proof. If m = 3, then Fn = 2F3x
2 = (2x)2. Thus it can be seen that n = 12, x2 = 36 by

Theorem 1. Assume that m > 3 and Fn = 2Fmx2. Then Fm|Fn and therefore n = mk for
some natural number k by Theorem 9.

Firstly, assume that k is an even integer. Then k = 2t for some integer t. Therefore
n = mk = 2mt. Thus

Fn = F2mt = FmtLmt = 2Fmx2

by (7). This shows that (Fmt/Fm) Lmt = 2x2. It can be easily seen that if (Fmt/Fm, Lmt) = d,
then d = 1 or d = 2 by (11). Thus we have the following equations:

Fmt

Fm

= u2, Lmt = 2v2, (14)

Fmt

Fm

= 2u2, Lmt = v2, (15)

Fmt

Fm

= 2u2, Lmt = (2v)2, (16)

and

Fmt

Fm

= (2u)2, Lmt = 2v2. (17)

Assume that (14) is satisfied. Then mt = m, i.e., t = 1 by Theorem 11. Therefore Lm = 2v2

and this implies that m = 6 by Theorem 1. Thus we get m = 6, x2 = 9, and n = 12. By
using Theorem 1 and Theorem 11, it can be seen that the other three cases are impossible.

Secondly, assume that k is an odd integer. Suppose that m is an even integer, i.e., m = 2r
for some natural number r. Then we can write n = mk = 2kr. Thus

Fn = F2kr = FkrLkr = 2FrLrx
2

by (7). This shows that (Fkr/Fr) (Lkr/Lr) = 2x2. A similar argument shows that the equation
(Fkr/Fr) (Lkr/Lr) = 2x2 has no solution. Now assume that m is an odd integer. Firstly,
suppose that 3 ∤ k. Since k is an odd integer, we can write k = 6q ± 1 for some nonnegative
integer q. Therefore n = mk = m(6q ± 1) = 2 · 3mq ± m. Thus we get

Fn = F2·3mq±m ≡ F±m (mod L3),
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i.e.,
Fn ≡ Fm (mod 4)

by (4). Since Fn is even integer, Fm is also an even integer. Thus 3|m, and therefore m = 3a
for some integer a by (10). On the other hand, since Fm is even integer, 4|Fn, and thus
6|n by Theorem 9. Since n = mk = 3ak, we get 6|3ak, i.e., 2|ak. Moreover, since k is odd
integer, it is seen that 2|a. This implies that 2|m, which is impossible. Because m is an odd
integer. Assume that 3|k. Then k = 3s for some odd integer s. Therefore n = mk = 3ms.
Thus since ms is odd integer, we get

Fn = F3ms = Fms(5F
2
ms − 3) = 2Fmx2

by (8). This shows that (Fms/Fm) (5F 2
ms − 3) = 2x2. It can be easily seen that if d =

(Fms/Fm, 5F 2
ms − 3) , then d = 1 or d = 3. Assume that d = 3. Then 3|Fms, and thus 4|ms

by Theorem 9. But this is impossible, since ms is odd integer. Therefore d = 1. Then we
get

Fms

Fm

= u2, 5F 2
ms − 3 = 2v2 (18)

or

Fms

Fm

= 2u2, 5F 2
ms − 3 = v2 (19)

for some integers u and v. Assume that (18) is satisfied. Then ms = m, i.e., s = 1 by
Theorem 11. Therefore 5F 2

m−3 = 2v2 and this shows that 2v2 = 5F 2
m−3 = L2

m+1 = L2m−1
by (9) and (5). This implies that L2m = 2v2 + 1. Since L2m = 2v2 + 1, we get 3 ∤ m. Thus
we can write m = 6q ± 1 = 3 · 2r+1b ± 1, where q = 2rb for some odd integer b with r ≥ 0.
This shows that

L2m = L2·2r+13b±2 ≡ −L±2 (mod L2r+1)

and therefore
2v2 + 1 ≡ −3 (mod L2r+1),

i.e.,
2v2 ≡ −4 (mod L2r+1)

by (3). Since L2r+1 is an odd integer, we get

v2 ≡ −2 (mod L2r+1).

This shows that

(−2

p

)

= 1 for every prime divisor of L2r+1 . Then it follows that

p ≡ 1, 3 (mod 8)

by (13) and therefore
L2r+1 ≡ 1, 3 (mod 8).

6



This shows that r = 0 by Lemma 7. Consequently, q is an odd integer. Therefore it can be
easily seen that m = 12c + 5 or m = 12c + 7 for some integer c. Thus we get

Lm ≡ 3 (mod 8)

or
Lm ≡ 5 (mod 8)

by (2). On the other hand, since

2v2 = L2
m + 1,

we get
2v2 ≡ 1 (mod Lm),

and therefore
(2v)2 ≡ 2 (mod Lm).

This shows that

(

2

p

)

= 1 for every prime divisor p of Lm. Then it follows that

p ≡ ±1 (mod 8)

by (12) and therefore
Lm ≡ ±1 (mod 8).

But this contradicts with the fact that Lm ≡ 3, 5 (mod 8). Assume that (19) is satisfied.
Then we get v2 = 5F 2

ms−3 = L2
ms +1 by (9). This implies that Lms = 0, which is impossible.

This completes the proof.

Theorem 15. If Ln = 6Lmx2 and m ≥ 1, then m = 2, x2 = 1, and n = 6.

Proof. Assume that Ln = 6Lmx2 for some integer x. Then 3|Ln and therefore n = 2k0 for
some odd integer k0 by Theorem 8. Moreover, since 2|Ln, we get 3|n by (10). This shows
that 3|k0 and then k0 = 3t for some odd integer t. Thus n = 6t = 6(2u + 1) = 12u + 6.
Therefore

Ln = L12u+6 ≡ L6 (mod 8)

by (2). That is,
Ln ≡ 2 (mod 8).

Since 8 ∤ Ln, it can be seen that x is an odd integer. Therefore

x2 ≡ 1 (mod 8),

which implies that
6Lmx2 ≡ 6Lm (mod 8).

This shows that
6Lm ≡ 2 (mod 8),

7



which implies that m 6= 1. Now assume that m > 2. Since Lm|Ln, there exists an odd integer
k such that n = mk by Theorem 8. On the other hand, since 2|n, it is seen that 2|m.
Therefore m = 2r for some odd integer r. If r = 6q +3, then m = 2r = 12q +6 and therefore

Lm ≡ L6 (mod 8)

by (2). That is,
Lm ≡ 2 (mod 8),

which is impossible since
6Lm ≡ 2 (mod 8).

Therefore 3 ∤ r. Since n = mk, m = 2r and 3 ∤ r, it follows that 3|k and thus k = 3s for
some odd integer s. Then

Ln = Lmk = L3ms = Lms(L
2
ms − 3) = 6Lmx2

by (6). It can be seen that (Lms, L
2
ms − 3) = 3. Thus

(

Lms,
L2

ms − 3

3

)

= 1. Then we get

Lms

Lm

(

L2
ms − 3

3

)

= 2x2.

This shows that
Lms

Lm

= 2u2 and
L2

ms − 3

3
= v2 (20)

or
Lms

Lm

= u2 and
L2

ms − 3

3
= 2v2 (21)

for some integers u and v. Assume that (20) is satisfied. Then 3

(

Lms

3

)2

− 1 = v2 and

therefore
v2 ≡ −1 (mod 3),

which is a contradiction. Now assume that (21) is satisfied. Then Lms = Lmu2, which implies
that ms = m by Theorem 12. That is, s = 1. Thus L2

m − 3 = 6v2. Since L2
m = L2m + 2 by

(5), we see that L2m − 1 = 6v2. Moreover, since m = 2r, it follows that L4r − 1 = 6v2. On
the other hand, we can write 4r as 4r = 4(4u ± 1) = 16u ± 4 = 2 · 2ka ± 4 for some odd
integer a with k ≥ 3. This shows that

L4r = L2·2ka±4 ≡ −L±4 (mod L2k)

by (3) and therefore
1 + 6v2 ≡ −7 (mod L2k).

Then we get
6v2 ≡ −8 (mod L2k).

That is,
3v2 ≡ −4 (mod L2k).
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Thus
(3v)2 ≡ −12 (mod L2k).

This shows that

(−12

p

)

= 1 for every prime divisor p of L2k . Then it follows that

p ≡ 1 (mod 3)

and therefore
L2k ≡ 1 (mod 3).

But this contradicts with Lemma 5. This completes the proof.

In [8], the authors showed that Ln = 3Lmx2 has no solution if m > 1. Now we give a
similar result for Fibonacci numbers.

Theorem 16. Let m ≥ 3 be an integer and Fn = 3Fmx2 for some integer x. Then m = 4,
x2 = 16, and n = 12.

Proof. Assume that m ≥ 3 and Fn = 3Fmx2 for some integer x. Then Fm|Fn and therefore
n = mk for some integer k by Theorem 9.

Firstly, assume that k is an even integer. Then k = 2s for some s ∈ N. Therefore
n = mk = 2ms. Thus

Fn = F2ms = FmsLms = 3Fmx2

by (7). This shows that

(Fms/Fm)Lms = 3x2.

By using Theorem 1, Theorem 12, and Theorem 15, it can be shown that the equation
(Fms/Fm)Lms = 3x2 has no solution.

Now assume that k is an odd integer. Since Fn = 3Fmx2, we get 4|n by Theorem 9.
Moreover, since n = mk and k is odd, we get 4|m. Assume that x is an even integer. Then
4|Fn. Thus L3|Fn and 3|n by Theorem 10. Therefore since 4|n and 3|n, we get 12|n. That
is, n = 12t for some t ∈ N. On the other hand since 4|m, we get m = 4r for some r ∈ N.
Therefore 12t = n = mk = 4rk. Then it follows that 3t = rk. Thus

Fn = F12t = F6tL6t = 3F2rL2rx
2

by (7). Since (6t/2r) = k and k is odd, we can write

F6t

F2r

.
L6t

L2r

= 3x2.

Assume that 3|r. Then, it can be seen that

(

F6t

F2r

,
L6t

L2r

)

= 1. Therefore

F6t

F2r

= u2,
L6t

L2r

= 3v2 (22)
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or

F6t

F2r

= 3u2,
L6t

L2r

= v2 (23)

for some integers u and v. A similar argument shows that (22) and (23) are impossible. Now
assume that 3 ∤ r. Then since 3t = rk, it follows that 3|k. Thus k = 3s for some s ∈ N. Then

3t = rk = 3rs and therefore t = rs. Also since 3 ∤ r, it can be seen that

(

F6t

F2r

,
L6t

L2r

)

= 2.

Therefore

F6t

F2r

= 2u2,
L6t

L2r

= 6v2 (24)

or

F6t

F2r

= 6u2,
L6t

L2r

= 2v2 (25)

for some integers u and v. Assume that (24) is satisfied. Then 2r = 2 by Theorem 15. This
shows that r = 1 and t = s. Thus L6t = 6L2v

2 = L6v
2 and this implies that 6t = 6, i.e.,

t = 1 by Theorem 12. Therefore k = 3s = 3t = 3 and m = 4r = 4. Therefore n = 12 and
x2 = 16.

Now assume that (25) is satisfied. Then it follows that

L6t = 2L2rv
2,

which is impossible by Theorem 13 and Theorem 15.
Now assume that x is an odd integer. Then

Fn ≡ 3Fm (mod 8).

Since 4|m, it follows that m = 12q or m = 12q ±4 for some integer q. If m = 12q ±4, then

Fm ≡ F12q±4 ≡ F±4 ≡ ±3 (mod 8)

by (1). Therefore

Fn ≡ ±1 (mod 8),

which is impossible since 4|n. Because if 4|n, then n = 12r ± 4 or n = 12r for some integer
r, and therefore Fn ≡ ±3, 0 (mod 8) by (1). If m = 12q, then n = mk = 12qk. This shows
that 6qk/6q is an odd integer. Then from the identity

Fn = F12qk = F6qkL6qk = 3Fmx2 = 3F6qL6qx
2,

it follows that

F6qk

F6q

.
L6qk

L6q

= 3x2.
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Since

(

F6qk

F6q

,
L6qk

L6q

)

= 1, we get

F6qk

F6q

= u2,
L6qk

L6q

= 3v2 (26)

or

F6qk

F6q

= 3u2,
L6qk

L6q

= v2 (27)

for some integers u and v. Similarly, it can be seen that (26) and (27) are impossible. This
completes the proof.

Lastly, we can give the following theorem without proof since its proof is similar to that
of Theorem 16.

Theorem 17. There is no integer x such that Fn = 6Fmx2.
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