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Abstract
In this paper we study the reciprocal sums of products of two different Fibonacci
numbers. We obtain some identities related to the numbers |(3 oo, 1/FkFrim) L],
m > 1, where |-| indicates the floor function.

1 Introduction
As is well known, the Fibonacci numbers F), are generated from the recurrence relation
F,=F, 1+ F,» (nZ 2)7

with initial condition Fy =0 and F} = 1.
Recently Ohtsuka and Nakamura [7] found interesting properties of the Fibonacci num-

bers and proved Theorem 1 below.

Theorem 1. For the Fibonacci numbers, the following identities hold:

-1
io: 1 JF— Fo, ifn>2 and n is even; (1)
P Fy. |\ E.—F,1—1, ifn>3andn is odd,
-1
i 1 _JFaaF, =1, ifn>2andn is even; 2)
P F; F,_.F,, if n >3 and n is odd.
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Following the paper of Ohtsuka and Nakamura [7], diverse results in the same direction
have been reported in the literature [1, 2, 3], [5], [8, 9, 10, 11, 12, 13]. Among them, Liu
and Wang [5] considered the product of two reciprocal Fibonacci numbers, and obtained
several interesting results. For example, they proved Theorem 2 below for the products of
two consecutive Fibonacci numbers.

Theorem 2. Let m > 2. Then

1
% 1 | F if n > 2 and n is even; )
- FLFy N F?2—1, ifn>3 andn is odd.

Motivated by Theorem 2, we study the reciprocal sums of products of two different
Fibonacci numbers in this paper. We obtain some identities related to the numbers

“1
f: 1 m>1
— I Flym 7 -

Remark 3. The following identity was conjectured by Ohtsuka and proved by Bruckman [6]:

[oe] -1 n—1
1 1 1
> =" FiFim — 5Fmac1y + O = |, m>0.
( Fka—i-m) — R 3 2= F (FEL) m

k=n

For the case where m = 0 and n is large, (2) also can be derived from the above result.

2 Main results

We will use Lemma 4 below to prove our main results.

Lemma 4 (Koshy [4]). For the Fibonacci numbers, we have
Fn by, — Fm+an—k = (_]-)n_ka—n+ka'
Our main results are stated in the following theorem.

Theorem 5. For the Fibonacci numbers, (a), (b) and (c) below hold:
(a) Let m > 1. If

2F,, — Fi1
——— ¢ 7
3 £Z
then there exist positive integers ng and ny such that
o] -1 . .
Z 1 JFmaaFt 9m — 1, ifn>mng and n is even, (4)
— FrFiim Foim1Fn — gm, if n > mnq and n is odd,

2



where

2F, — F,
Im = \‘THJ + 1

(b) For m =2,

-1

=1
= Foym_1F,, forn>1. 5)
(Srm) |- >

(c) Let m > 3. If

2F,, — F,,
—H c Z’
3
then there exist positive integers ny and nz such that
0 -1 ~ . .
Z 1 JFimaa Bt g — 1, if n>ny and n is even, (6)
pt FrFpim Foim1FEy—Gm—1, ifn>ns andn is odd,
where
o 2Fm - Fm+1
gm - 3 .
Proof. (a) To prove (4), consider
v 1 1 1 1
! Fn+m—1Fn + (_]->ngm Fn+m+1Fn+2 + (—1)”9m FnFn+m Fn+1Fn+m+1
X,

{Fn+m—1Fn + (_1)ngm}{Fn+m+1Fn+2 + (_1)ngm}FnFn+an+1Fn+m+1 ’
Where, by the identity Fn+m+1Fn+2 - Fn+m—1Fn = FnFn+m + Fn+1Fn+m+1
Xl = (FnFn—i-m + Fn—i—an—i-m—&-l)Xla
with

Xl = FnFn+1Fn+an+m+l - Fn+m—1Fn+m+1FnFn+2
_(_1)n9m(Fn+m—1Fn + Fn+m+1Fn+2) - gg@'

From Lemma 4, we have

Fn+1Fn+m - n-l—m—i—an - <_1>nqu
Fn+m+1Fn - FnerlenJrQ (_1)n(Fm - Ferl)a
Fn+m+1Fn—1 - Fn+an = (_1)nFm+1-



Then
FnFn+1Fn+an+m+1 - Fn+m—an+m+1FnFn+2
- Fn+m+1Fn{Fn+m+1Fn + (_1)nFm}

_Fn+m+1Fn{Fn+m+1Fn + (_1)n(Fm+1 - Fm)}
= (_1)nFn+m+1Fn(2Fm - m+1)a

and

Fn+m71Fn + Fn+m+1Fn+2 = 3Fn+m+1Fn + Fn+m+1Fn71 - Fn+an
3Fn+m+1Fn + (_]-)nFm—i—l-

Hence

Xl - (_1)nFn+m+1Fn(2Fm - I'm+1 — 3gm) - ngm—H - gfn
Assume that n is even. Since g, > 0 and 2F}, — F},,11 — 3¢, < 0, then X; < 0 and

1 1 1 1

< + .
Fn+m—1Fn + 9Im Fn+m+an+2 + Im FnFn+m Fn+1Fn+m+1

Repeatedly applying the above inequality, we have

oo

1
< )
Fn+m—1Fn + Im k—n Fka—l-m

if n > 2 and n is even. (7)

Similarly, if n is odd, then there exists a positive integer m; such that, for n > mq, X; >0

and
1 1 1 1

+ < ,
FnFn+m Fn+1Fn+m+1 Fn+m—1Fn — 9m Fn+m+1Fn+2 — Jm

from which we obtain

- 1 1
< , if n > my and n is odd. 8
;Fkaer Fnerlen_gm ! ()

Next, consider

1 1 1
Fn+m—an + (—1)"9m -1 a Fn+an+1 + (_1)n+1gm —1 B FnFn+m
X,
{Fnerlen + <—1)"9m - 1}{Fn+an+l + (_1)n+1gm - 1}FnFn+m’

Xy =




where

XQ = FnF3+an+1 - Fn+an+m71FnFn+1 - Fanerlener

_(_1)ngm(2FnFn+m - Fn+m—1Fn + Fn+an+1)
+Fn+m—1Fn + Fn+an+1 + g?n -1

From Lemma 4, we have

Fn+m—1Fn - Fn+m—2Fn+1 = (_1)n+1Fm—2 = (_1)n(Fm+1 - QFm)

Then
FnFn+an+1Fn+m - Fn+an+m71FnFn+1 - FSFnerlener
FnFn+m(Fn+1Fn+m—2 - FnFn+m—l)
<_1)nFnFn+m(2Fm - Fm—l—l)a
and
2FnFn+m + Fn+an+1 - Fn+m—1Fn
SFnFn—l—m + Fn+an—1 - Fn—l—m—an
= 3F,Fyim (=1 (2Fs0 — Fiis).
Hence

~

X2 - (_1)nFnFn+m(2Fm - Fm+1 - 3gm) + Fn+m—1Fn + Fn+an+1
_gm<2Fm+2 - Fm+3) + gzn -1

Suppose that n is even. Since
—2 < 2F,, — Frys1 — 3gm < —1,
then

FnFn+m(2Fm —dm+l T 3gm) + (Fn-l-m—an + Fn-i-an—i—l)
—2F Frim + FpFoim1 + Foi1 Fpim

(anl - Fn)(Fanfl + anmf2) + FnFnerfl

Fy 1Foimet — FooFpim_s

> 0,

and there exists a positive integer moy such that, for n > mo, X5 > 0 and

1 1 1
< — .
FnFn+m Fn+m71Fn + (_1>ngm —1 FnerFnJrl + <_1)n+1gm —1

5



Repeatedly applying the above inequality, we have

i L < L if n> and n is eve
, 1 ~=m na n 1 VeEl.
P Fka+m Fn+m—1Fn+gm_ 1 g

n

On the other hand,

1 1 1
Fn+m—1Fn + (_]-)ngm + 1 a Fn—|—an+l + <_1>n+1gm + 1 B FnFn+m
X;
{Fn+m—1Fn + (_l)ngm + 1}{Fn+m—1Fn+1 + <_1)n+1gm + I}FnFn—Fm’

X3 =

where

X3 = X2 - 2(Fn+m—1Fn + Fn—i—an—l—l)
(_1)nFnFn+m<2Fm - Fm+1 - 3gm) - Fn+m—1Fn - Fn+an+1
_gm(QFm+2 - Fm+3) + gg@ - L

Suppose that n is odd. As shown above, we have

_FnFn+m(2Fm - Fm+1 - ng) - Fn+m—1Fn - Fn+an+1 < Fn—2Fn+m—2 - Fn—an—f—m—l‘

Hence there exists a positive integer mg such that, for n > mgs, X3 < 0 and

1 1 1
_ < ,
Fnerlen + (—1)"9m + 1 Fn+an+1 + (—1)”+19m + 1 FnFner

from which we have

1 S|
< , if n > mg and n is odd.
Fn+m71Fn_gm+1 ;Fkaer o ’

Then, (4) follows from (7), (8), (9) and (10).

(b) Since Fn+2Fn+3 - FnFn+1 = FnFn+2 + Fn+1Fn+3a we have

11 11 FwFu- PP (FFuetFaFu)
Folbnpn  Faelbrng FoFue  FoaFiags FoEon Pl
ie.,
1 1 1 1

FnFn+1 Fn+2Fn+3 B FnFn+2
Repeatedly applying the above equality, we obtain (5).

+ .
Fn+1Fn+3

=0,

(10)



(c) Let m > 3 and assume that

2ij_F;n—i-l

Z.
3 €

gm -
We recall the proof of (a). Replacing g,, by gm in X1, we have
X1 = —GmFpmi1 — G2 <0,

Then X; < 0if n > 2 and n is even or if n > my and n is odd for some positive integer my,
and we have

oo

1
< , ifn>2 (niseven) orif n >my (nisodd). (11
Similarly there exist positive integers ms and mg such that X, > 0 if n > ms5 and n is even,

or if n > mg and n is odd, from which we have

1
, if n > my (n is even) or if n > mg (n is odd).
Z Fkaer Fnerlen + (=1)"gm — 1 > ms ) > mg ( )

(12)
Then, (6) follows from (11) and (12). O

Remark 6. From Theorem 5, we have

o -1
Z 1 B F2, if n > 2 and n is even;
P Fka+1 N Fz—l, 1fn2 1 and n is Odd,
- -
Z 1 B F,5F,, if n > 2 and n is even;
— I Frye | FusF,—2, ifn>1andnisodd,

etc.
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