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Abstract

We investigate the integer sequence (tn)n∈Z defined by tn = 0 if n ≤ 0, t1 = 1,

and tn =
∑n−1

i=1 tn−ti for n ≥ 2. This sequence has the following properties: if we
consider fn(X) := −1+

∑n
i=1 Xti and take xn to be the real positive number such that

fn(xn) = 0, then

lim
n→∞

tn

tn+1
= lim

n→∞
xn = 0.410098516 · · ·

Moreover, if u is the real positive number such that 1 =
∑∞

i=1 u−ti , then there is a
positive constant M such that tn ∼Mun.

1 Definitions and main results

If we look in the Online Encyclopedia of Integer Sequences of N. J. A. Sloane [1], we find a
remarkable sequence by (tn)n∈Z defined by tn = 0 if n ≤ 0, t1 = 1 and

tn =
n−1
∑

i=1

tn−ti (1.1)

for n ≥ 2. This sequence is due to Robert Lozyniak (A052109 in Sloane) and is a cousin of
the Hofstadter-Conway $10,000 challenge sequence (A004001 in Sloane).

We find t2 = 1, t3 = 2, t4 = 5, t5 = 12, t6 = 30, t7 = 73, . . . Observe that if n ≥ 2 ,
tn+1 = 2tn + · · · ≥ 2tn. Since t4 = 4 + 1, we have

tn ≥ n+ 1 (n ≥ 4) (1.2)

The serie
∑∞

i=1 X
ti = 2X+X2+ · · · converges for |X| < 1. Let u be the real positive number

such that
∞
∑

i=1

u−ti = 1 (1.3)
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We easily see that 2 < u < 3. Indeed we have
∑∞

i=1

(

1
2

)ti = 1
2
+ 1

2
+ · · · > 1 and

∑∞

i=1

(

1
3

)ti
<

2
3
+ 1

9

∑∞

i=0

(

1
3

)i
= 5

6
.

Theorem 1.1. There exists a positive constant M such that

lim
n→∞

tn

un
= M.

Corollary 1.1. Let n ≥ 2 be an integer. Let fn(X) = −1 +
∑n

i=1 X
ti and take xn the real

positive number such that fn(xn) = 0. Then

lim
n→∞

tn

tn+1

=
1

u
= lim

n→∞
xn = 0.410098516 · · · .

Proof. By the theorem, tn ∼Mun, therefore limn→∞
tn

tn+1
= 1

u
.

In addition, the sequence (xn)
∞

n=1 is strictly decreasing. Indeed,

n
∑

i=1

xti
n = 1 =

n+1
∑

i=1

xti
n+1

so that
n
∑

i=1

(

xti
n+1 − xti

n

)

= −x
tn+1

n+1 < 0

This proves that xn+1 < xn for every n. Moreover, this sequence is bounded, so it converges
to an element, say v. The function f∞(x) = −1 +

∑∞

i=1 x
ti is continuous. Let ε > 0. We

have

0 < f∞(xn) =
∞
∑

i=n+1

xti
n < ε

if n is big enough. Finally,
f∞(v) = lim

n→∞
f∞(xn) = 0.

That is, v = 1
u
, because 1

u
is the only positive zero of f∞.

2 Proof of the Theorem

We begin with a lemma:

Lemma 2.1. If 0 ≤ vn < 1 for every integer n > 0, then the following inequalities are

equivalent

∞
∑

n=1

vn < ∞ (2.1)

∞
∏

n=1

(1− vn) > 0. (2.2)
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Proof. Without loss of generality, we can suppose that vn ≤
1
2
. If an infinite number of

vn > 1
2
, the claims 2.1 and 2.2 are both wrong, otherwise we can take out the finite number

of vn > 1
2
. By Taylor expansion, we have for 0 ≤ x ≤ 1

2

− log(1− x) = x+
1

2

x2

(1− θx)2
, 0 ≤ θ ≤ 1;

hence x ≤ − log(1− x) ≤ 2x for 0 ≤ x ≤ 1
2
. It follows that for every integer N > 0 we have

N
∑

n=1

vn ≤ − log
N
∏

n=1

(1− vn) ≤ 2
N
∑

n=1

vn.

So the lemma is proved.

Lemma 2.2. There exists a constant d such that

0 < d ≤
tn

un
for every integer n > 0.

Proof. Suppose that n ≥ 4 and dn is such that 0 < dn ≤
tk
uk for 1 ≤ k ≤ n. Then we have

tn+1 =
n
∑

i=1

tn+1−ti ≥

n
∑

i=1

n+1−ti>0

dnu
n+1−ti .

By Eq. (1.2), n+ 1− tn ≤ 0. Hence

tn+1 ≥ dnu
n+1

n
∑

i=1

n+1−ti>0

u−ti = dnu
n+1

∞
∑

i=1

n+1−ti>0

u−ti = dnu
n+1(1− vn)

where vn =
∑∞

i=1, ti≥n+1 u
−ti by definition of u. So we have

dn(1− vn) ≤
tk

uk
for 1 ≤ k ≤ n+ 1. (2.3)

The series
∞
∑

n=4

vn =
∞
∑

n=4

∞
∑

i=1

ti≥n+1

u−ti =
∞
∑

i=1

u−ti

∞
∑

4≤n<ti

1 =
∞
∑

i=4

u−ti(ti − 4)

is convergent; just compare this sum with 1
(X−1)2

=
∑∞

i=1 iX
i−1 for |X| < 1. Set d4 =

min1≤k≤4
tk
uk . By Lemma 2.1 and (2.3), d = d4

∏∞

n=4(1−vn) is such that 0 < d ≤ tn
un for every

positive integer n.

Lemma 2.3. For every integer n, one has tn ≤ un−1.
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Proof. If n ≤ 1, this is evident. Suppose that n ≥ 1 and by induction that ti ≤ ui−1 when
i ≤ n. Then by (1.1) and (1.3), we have

tn+1 =
n
∑

i=1

tn+1−ti ≤
n
∑

i=1

un−ti ≤
∞
∑

i=1

un−ti = un.

Remark 2.1. Let N ≥ 1. Set CN = supn≥N

(

tn
un

)

and DN = infn≥N

(

tn
un

)

. Lemmas 2.2

and 2.3 prove that C = limN→∞CN and D = limN→∞DN with 0 < D ≤ C are meaningful.

Define (t′n)n∈Z by t′i = 0 when i ≤ 1, t′2 = 1 and for n ≥ 3 define

t′n =
∞
∑

i=1

t′n−ti
. (2.4)

Define also (an)n∈Z by an = 0 when n ≤ 0, a1 = 1 and for n ≥ 2:

an = 1 +
∞
∑

i=1

an−ti . (2.5)

Lemma 2.4. Let n, N , k be positive integers such that n > N ≥ 1. Then we have

tn+k ≤ t′k+2tn + un+kCN

(

1−
t′k+2

uk

)

+ aku
N .

Proof. By induction on k. For k = 0, the claim is true. Suppose that l ≥ 1 and that the
lemma is true for k = 0, 1, . . . , (l − 1). By Eq. (1.1),

tn+l =
n+l−1
∑

i=1

tn+l−ti ≤

∞
∑

i=1

tn+l−ti = Σ1 + Σ2 + Σ3

where

Σ1 =
∞
∑

i=1

n+l−ti≥n

tn+l−ti

Σ2 =
∞
∑

i=1

N≤n+l−ti<n

tn+l−ti

Σ3 =
∞
∑

i=1

n+l−ti<N

tn+l−ti .

By induction we have

Σ1 ≤
∞
∑

i=1

l−ti≥0

(

t′l−ti+2tn + un+l−tiCN(1−
t′l−ti+2

ul−ti
) + al−tiu

N

)

.
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By the definition of CN

Σ2 ≤

∞
∑

i=1

N≤n+l−ti<n

CNun+l−ti .

By Lemma 2.3 and the fact that u > 2,

Σ3 ≤

N
∑

i=1

ti ≤

N−1
∑

i=0

ui =
uN − 1

u− 1
< uN .

Finally

tn+l ≤ tn
∑

i≥1

l−ti≥0

t′l−ti+2 + CN

∑

i≥1

n+l−ti≥N

un+l−ti − CN

∑

i≥1

l−ti≥0

unt′l−ti+2 +
∑

i≥1

l−ti≥0

al−tiu
N + uN .

This means by (2.4), (2.5) and (1.3) that

tn+l ≤ t′l+2tn + un+lCN(1−
t′l+2

ul
) + alu

N .

Lemma 2.5. There exists d′ > 0 such that d′ ≤ t′n
un for every n ≥ 2.

Proof. Suppose that d′n ≤
t′
k

uk for every 2 ≤ k ≤ n. Then

t′n+1 =
∞
∑

i=1

t′n+1−ti
≥

∞
∑

i=1, n+1−ti>1

d′nu
n+1−ti .

So we proved
t′n+1

un+1 ≥ d′n(1 −
∑∞

i=1, ti≥n u−ti) = d′n(1 − vn−1), with vn defined as in Lemma

2.2. Hence, 0 < d′ = 1
u2

∏

n≥1(1− vn) is such that d′ ≤ t′n
un for every n ≥ 2.

Lemma 2.6. We have am ≤ um − 1 for every integer m > 0.

Proof. For m = 1, this is true. if m ≥ 2, we see by induction that

am = 1 +
∞
∑

i=1, m>ti

am−ti ≤ 1 +
∞
∑

i=1, m>ti

(um−ti − 1)

Since
∑

i=1, m>ti
1 ≥ 2 and by (1.3),

am ≤ 1−
∞
∑

i=1, m>ti

1 + um

∞
∑

i=1, m>ti

u−ti < um − 1
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Proof of the Theorem. According to Lemmas (2.4), (2.5), (2.6) and the definition of CN ,
we have, for 1 ≤ N < n and k ≥ 0:

tn+k ≤ CNun+k − t′k+2(CNun − tn) + aku
N ≤ CNun+k − d′uk+2(CNun − tn) + uN+k

Let ε > 0. There exists N such that C ≤ CN < C + ε, and n > N such that uN−n < ε and
tn
un < D + ε. In these conditions, we have

tn+k

un+k
< C + ε− d′u2(C −D − ε) + ε.

There exists k such that tn+k

un+k > C − ε. Then C − ε < C + ε− d′u2(C −D − ε) + ε. Letting
ε tend to 0 gives C ≤ C − d′u2(C −D). Hence d′u2(C −D) ≤ 0. This implies C ≤ D and
thus C = D.
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