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Abstract.  We give the solution of Lie’s third fundamental problem for the
class of infinite dimensional Lie algebras corresponding to the isotropy sub-
pseudogroups of the flat transitive analytic Lie pseudogroups of infinite type.
The associated Lie groups are regular Gateaux-analytic infinite-dimensional Lie
groups whose compatible manifold structure is modelled on locally convex topo-
logical vector spaces (countable inductive limits of Banach spaces) of vector
fields by charts involving countable products exponential mappings. This struc-
ture theorem is applied to the local automorphisms pseudogroups of Poisson,
symplectic, contact and unimodular structures. In particular the local analytic
Lie-Poisson algebra associated to any finite dimensional real Lie algebra is shown
to be integrable into a unique connected and simply connected regular infinite-
dimensional Gateaux-analytic Lie group.

1. Introduction

An analytic Lie pseudogroup I'Y of transformations of a manifold M is a sub-
pseudogroup of the pseudogroup of analytic local diffeomorphisms of M which
forms the general solution of an involutive system S of analytic partial differential
equations. If the system S is completely integrable ( in the sense of the Frobenius
theorem ), then the elements of I'¥ depend on a finite number of parameters
and the Lie pseudogroup I'Y is said to be of finite type. For instance, the Lie
pseudogroup acting on the real line and defined by the differential equation

&dz 3 ,d*T ., , dT
a7 " 2\a) /() ="

is the Lie pseudogroup of finite type corresponding to the homographic transfor-
mations of the real line. If § is involutive, but not completely integrable, then the
Lie pseudogroup I'Y is said of infinite type since its elements are then parametrized
by arbitrary functions. For example, the locally conformal transformations of the
complex plane C form the Lie pseudogroup of infinite type associated with the
Cauchy-Riemann equations.
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It is well-known that the Lie pseudogroups of finite type have led to the
classical theory of Lie groups. Indeed, Elie Cartan proved that given a Lie pseu-
dogroup of finite type, there exists a unique connected and simply connected global
Lie group whose Lie algebra is isomorphic to the Lie algebra of infinitesimal trans-
formations of the pseudogroup. Any pseudogroup I'Y of finite type can therefore
be regarded as the local action of an abstract global Lie group. For instance, the
Lie pseudogroup acting on the real line and defined by the differential equation of
order 3 given above can be regarded as a local action of PSL(2,R). The first and
crucial step in the proof of Cartan’s theorem is to show that there exists a local
Lie group whose Lie algebra is isomorphic to the given Lie algebra of infinitesimal
transformations. This result, which was already known to Lie, is fundamentally
analytical in nature since it is based on the Frobenius integration theorem [8]. The
second and final step in the proof is to embed a neighbourhood of the identity in
the local group in a neighbourhood of the identity in a global Lie group, which is
essentially a topological problem. These results of Lie and Cartan are known as
the local and global versions of Lie’s Third Fundamental Theorem.

Starting with Sophus Lie himself, many mathematicians have risen to the
challenge of extending this abstract viewpoint, even in the local case, to pseu-
dogroups of infinite type. We should particularly mention the important papers of
Lie [22, 23], Cartan [5], Kuranishi [18], Guillemin, Sternberg [13], Leslie [19, 20, 21],
Ebin, Marsden [11], Milnor [24], Omori, de la Harpe [27, 28, 29], Souriau [35],
Coste, Dazord and Weinstein [7, 10, 37]. One has first to understand the local
problem in infinite dimensions. Since the Frobenius theorem and the standard
existence and uniqueness theorems for ordinary differential equations do not hold
in most of the relevant infinite-dimensional spaces, a different approach needs to
be developed. This difficulty was already recognized by Cartan [6], who bypassed
the use of infinitesimal transformations altogether in his study of the classification
problem for infinite Lie pseudogroups of transformations. Indeed, what he did was
to develop for infinite Lie pseudogroups a structure theory based on a geomet-
ric generalization of the Maurer-Cartan equations and on his theory of exterior
differential systems in involution. The modern incarnation of Cartan’s approach
appears in the theory of G-structures of infinite type.

Following Cartan’s ideas, the problem of assigning an abstract structure to
pseudogroups of infinite type was reconsidered by Kuranishi in [18]. Almost simul-
taneously Guillemin and Sternberg [36, 13| developed a more algebraic approach
based on the natural filtration of the Lie algebra of infinitesimal transformations
associated to any Lie pseudogroup of infinite type. The pathological behaviour
of the exponential mapping, even for Lie algebras of infinitesimal transformations
defined by analytic vector fields, led Kuranishi and Sternberg to work with formal
local Lie groups. An analytic framework suitable for the convergent situation was
thus still missing at that time. An important breakthrough came with the work of
Leslie [20], who showed that the group of analytic diffeomorphisms of an analytic
compact manifold can be given the structure of a smooth infinite dimensional Lie
group in Milnor’s sense [24]. A powerful body of ideas also comes from the seminal
work of Ecalle [12], who in the context of his iterative theory, carried out an elab-
orate analysis of various transformation groups on the real line and obtained some
important new results in both the formal and convergent cases. A basic ingredient
in Ecalle’s theory is the notion of a regular sequence, calibrating power series into
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the analytic, quasi-analytic and Gevrey classes. This latter point of view is helpful
for defining the appropriate locally convex topology for analytic Lie pseudogroups.

We succeed in this paper in proving an integration theorem for the class of
isotropy Lie algebras arising from transitive and flat analytic Lie pseudogroups of
infinite type. Our result is thus an infinite-dimensional counterpart of Cartan’s
global theorem for finite-dimensional Lie algebras. We prove precisely that for any
regular sequence 7 in the sense of Ecalle and any flat infinite Lie pseudogroup
of transformations of class C(7), the corresponding isotropy Lie algebra is the
Lie algebra of a unique connected and simply connected regular Gateaux analytic
Lie group Gf ( Theorem 6.9 ). The natural differentiable structure associated to
any flat isotropy Lie pseudogroup is thus obtained by applying a combination of
Leslie’s approach with Ecalle’s results.

Our paper is organized as follows. In Section 3., we briefly review the notion
of a regular infinite-dimensional Lie group in the sense of Milnor. In Section 4.,
we show that to any flat Lie pseudogroup and any regular sequence in the sense of
Ecalle, one can associate a locally convex topological Lie algebra of infinitesimal
transformations. In Section 5., we prove our main result for the pseudogroup of
analytic local diffeomorphisms of R", namely that for any regular sequence, the
topological Lie algebra corresponding to the isotropy sub-pseudogroup is the Lie
algebra of a Gateaux-analytic group which is regular in the sense of Milnor. Our
proof is based on a new regularity theorem that we establish for the exponential
mapping. In Section 6., we use the above results to prove our generalization
of Cartan’s global version of Lie’s Third Fundamental Theorem for the class
of topological Lie algebras associated to the isotropy sub-pseudogroups of flat
transitive Lie pseudogroups. Finally, Section 7. contains some applications of our
structure theorems to the fundamental pseudogroups of local automorphisms of
Poisson, symplectic, contact and unimodular structures on a manifold. Our main
results had been conjectured in [16]. Their proof was annouced in [15].

2. Differential Calculus

Our goal in this section is to define the category of topological vector spaces
that will serve as model spaces for the infinite-dimensional manifolds that we will
consider in this paper. We begin by recalling some basic results on the Gateaux
calculus. We refer the reader to [24] and the references therein for details.

Gateauz differentiability: Let E,F be two Hausdorff locally convex topological
vector spaces. Let U be an open subset of E. A map f:U — F is said to be of
class C° if it is continuous.

Given any point z in U and any vector v in E, the directional derivative
of f at = in the direction v is defined by

Df(x;v) = wa(v) — lim f(l' + t’U) — f(gj)

t—0 t
if the limit exists.

Definition 2.1. The map f is of class C! in U if it is of class C° in U and if
Df(z;v) is well defined in U x E and continuous as a function of two variables.

Higher order derivatives are defined as follows.
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Definition 2.2. A map f:U C— F is said to be of class C? in U if it is of
class C! in U and if, for each fixed vector v; in E, the map defined in U C E
with values in F' by x +— Df(z;v;) is of class C', its directional derivative

DQf(iE; v1,v2) = lim D f(z + tvy; v1) — D f(z;01)

t—0 t

being defined for all v, and being continuous as a function of three variables.

We call D?f(x;v;,v;) the second directional derivative of f at z in the
directions v; and w,. The third directional derivative and C® functions are
similarly defined and so on.

A function of class C™ for any integer n is called a C* map or briefly a
smooth map.

Using standard techniques, namely the Hahn-Banach theorem and the dif-
ferential calculus in finite dimensions, one proves that for any function of class C"
in U and any point z in U, the map D"f, defined on E X --- x E (n times) by

D" fo(v1,...,v) = D" f(z501,... ,0p)

is a continuous symmetric n-multilinear map. One also shows that this notion
of differentiability satisfies the classical theorems such as the chain rule, Taylor’s
theorem with Lagrangian remainder (when F' is sequentially complete), etc.

This notion of differentiability coincides with the usual one in finite di-
mensions. If EF and F' are infinite-dimensional Banach spaces, this notion is a
little weaker than the Fréchet differentiation. However the C™t! differentiability
in Gateaux sense implies the C™ differentiability in Fréchet sense [29]. Hence ev-
ery infinitely Gateaux differentiable mapping is, in the latter context, infinitely
Fréchet differentiable and conversely. For more details see [1, 24].

Complex and real analytic mappings:

Definition 2.3.  [Complex analyticity] Let E, F' be two locally convex complex
topological vector spaces. A map f: U C E — F from an open subset U of F
to F is said to be complez-analytic or holomorphic if it is of class C', and its
derivative Df, : E — F' a complex linear map at each point = of U .

Cauchy’s formula holds in this infinite-dimensional context.

Definition 2.4.  [Real analyticity] A map f : U C E — F between two real
locally convex topological vector spaces is said to be real analytic in the open
subset U if it can be extended to a complex analytic map, defined on some open
subset Ug of Ec = E@iE containing U with values in Fg.

We conclude this section by reviewing the notion of Gateaux-analitycity. A
homogeneous polynomial of degree n defined on a vector space E with values in
a vector space F' is a mapping f, : £ — F which is determined by an n-linear
mapping

n copies

———
fo:Ex--xE—F
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by fu(h) = fu(h,... k) for all h in E. Let P*(E,F) denote the space of
continuous homogeneous polynomials of degree k£ from FE to F'.

A formal sum »_°  fi where, for all £k € N, f; is a homogeneous polyno-
mial of degree k, is said to be a formal series. The space of formal series with
continuous coefficients (i.e. in P*¥(E, F)) is denoted by S(E, F).

A formal series is said to converge in an open set U of E if for each
continuous semi-norm ¢ of F' and all x € U, the series

> a(fa(x))

n=0

converges.

Definition 2.5. [Gateaux analyticity] Let E and F be real locally convex
topological vector spaces and f : U C E — F be a continuous function defined
in the open set U of E. The function f is said to be (real) Gdteauzr analytic
in U if for each x € U there exists a series Y fu. € S(E,F) such that
fl@+h) =", fnz(h) for all h belonging to a neighbourhood of zero in E.

More details can be found in [9], [2], [3].

Model spaces: It is known from the fundamental work of Leslie [19] and Omori
[28] that the topology of the group of global smooth diffeomorphisms of a compact
manifold is given by a projective limit of Banach spaces. We will see in contrast that
in the case of Lie pseudogroups of analytic transformations, the natural topology
is that of an inductive limit of Banach spaces. This structural difference is strong
enough to prevent us from being able to use Leslie and Omori’s existence theorems
for the exponential map in the context of pseudogroups of analytic transformations.

Bornological spaces: Our purpose in this section is to recall some of the basic
properties of bornological spaces that will be needed in the remainder of this
paper. We refer the reader to Bourbaki [4], K6the [17] and Hogbé-Nlend [14] for
details.

Let E be a locally convex real topological vector space.

A subset S in E is said to absorb a subset D if there is a p > 0 such that
D C pS. We then say that a subset B is bounded if and only if each neighbourhood
U of the origin absorbs B.

A map f: F — F between two locally convex spaces is said to be bounded
if for any bounded set B in E, f(B) is a bounded set in F'.

By definition, a disk is a subset D satisfying the following property: if
z,y € D and A\, p are such that | A | + | g |< 1 then Az + uy € D.

The disked cover of a subset S =, S, of E is denoted by A(S) or A, Sa
and consists of all elements of the form ", pz;, p; € R and z; € S with
Doy o<1,

A linear mapping between two normed spaces is said to be compact if the
image of the closed unit ball is relatively compact.

Following Bourbaki [4], we will say that a locally convex topological vector
space is bornological if every disk which absorbs all the bounded sets is a neigh-
bourhood of the origin.
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Silva spaces and properties: The model spaces adapted to the study of analytic
Lie pseudogroups are special bornological spaces known as Silva spaces. They are
defined as follows, [17], [14]:

Definition 2.6. A Silva space is a countable topological inductive limit of
Banach spaces limngN E,,, where the injection E,, — E,.; is compact for all
n.

If for each n, {U]'} denotes a base of neighbourhoods of the origin in E,,
then the disked covers A\ U} form a base of neighbourhoods of the origin in the
Silva space. Silva spaces are thus indeed bornological. The sequence (E,)nen of
Banach spaces is called a defining sequence for the Silva space.

Let E be a Silva space with defining sequence (E,)nen. We let ||-||, denote
a norm associated to the Banach space E,. Without loss of generality these norms
may be chosen in such a way that ||u||,+1 < ||u||, for all u € E,, for all n. Let
then B, be the closed unit ball in E,, i.e.

B, ={z € Ey, ||z[l, <1}.
This gives rise to the infinite nested sequence of disks
B,C---CB,CBpyyC---CEFE

in E. Notice also that, since by assumption the injection E,, — E,,,; is compact
and E, is complete for any n, the disk B, is a compact subset of E,; for any
integer n.

The following three propositions are easily established:

Proposition 2.7. A Silva space is a complete Hausdorff locally convex vector
space.

Proposition 2.8. The topological product of two Silva spaces lim 2N FE, and
limngN F, is a Silva space with defining sequence (Ep X Fp)pen-

Proposition 2.9. A Silva space limngN FE,, s topologically isomorphic to the
inductive limat lima - N E,, for any strictly increasing sequence (an)nen of inte-
gers. v

We will also need the following useful characerization of bounded sets in a
Silva space.

Proposition 2.10. A subset B of a Silva space E = lim 2N E,, is bounded if

and only if there is an integer ng such that B C E,, and B is bounded in the
Banach space E,, .

Proof.  Since the disked covers A U} form a base of neighbourhoods of the
origin in the Silva space (see definition 2.6) it is clear that the condition is sufficient.

Conversely if B is bounded in the Silva space E, we show that there exists
an integer ny such that B is contained in some E,, with B C noBy (B, is the
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closed unit ball of E, ). Suppose that this were not true. Then, for every integer
n, there exists an z, € B such that z, ¢ nB, . We are going to construct a
disked neighbourhood of the origin in the Silva space E that doesn’t absorb B,
thereby reaching a contradiction.

Let y, = #=. Since y; ¢ By and B; is closed in Ejy, there exists 0 < Ay <1
such that y; & B; 4+ AeB,. In particular y;,y, & (By + AoBy) () Bz. Since
(B1+X\2B3) () Bs is compact in Fj, it is closed and so there exists 0 < A3 < 1 with
Y1,Y2 & (By + AoB2) [ Bs + A3B3. In particular yy,y2,y3 & ((By + A2B2) () Bs +
A3Bs3) () Bs. This construction gives rise to an increasing sequence of disks D,
defined by D; = B; and D,, = (D1 + Ay By) [ B for n > 1. Setting A\ = 1 we
have \,B, C D,, for all n and yy,... ,y, € D,. Let

+o0
V=JD..
n=1

It is a disked neighbourhood of the origin in the Silva space E. Moreover V' does
not absorb B since x,, &€ nV for any integer n. This completes the proof. |

Proposition 2.11. A subset U in the Silva space limngN E,, is an open subset

if and only if for any element x € U and any integer n there is p, > 0 with
x + ppB, C U where B, is the closed unit ball in the Banach space E, .

Proof. It suffices to show that for any x € U there exists a disked bornivorous
set D, containing x and contained in U. The construction of D, can be done
inductively as in the proof of proposition 2.10. [ ]

The following theorem provides us with a simple characterization of con-
tinuity for mappings of bornological spaces in terms of boundedness. This result
will be very useful in our study of model spaces for the Lie algebras of vector fields
associated to analytic Lie pseudogroups.

Theorem 2.12. A linear mapping between bornological spaces is continuous if
and only if it s bounded.

Proof. Let E,F be bornological locally convex spaces and let
u: kB —F

be a linear map. We first prove that if u is continuous, then it is bounded. Let B
be a bounded subset of £ and V' be a neighbourhood of the origin in F'. Since u
is continuous, u~*(V) is a neighbourhood of the origin in F and hence absorbs B.
So there exists p > 0 with B C pu™'(V) = u~'(pV) and u(B) C pV. Therefore
V' absorbs u(B) which proves that u is bounded.

Conversely let v : £ — F be a bounded linear map. For every disked
neighbourhood V' of the origin in F', u=*(V) is a disk that absorbs every bounded
set in F, hence a neighborhood of the origin since F is a bornological locally
convex vector space. u
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Remark 2.13.  That theorem is a fortiori valid for multilinear mappings from
products of bornological spaces into bornological spaces.

We conclude this section with a characterization of continuous mappings
between Silva spaces.

Theorem 2.14. Let F = lim 2N E, and F be Silva spaces. Then f: E — F

is continuous if and only if the image (f(xy))nen of any bounded sequence (Zy)nen
converging to o is converging to f(xy) in F.

Proof.  The condition is obviously necessary. Conversely let  belong to f~(V)
where V' is an arbitrary neighbourhood in F'. Let B, be the closed unit disk of
E,. The image by f of any sequence of elements in z + B,, that converges to x
will converge to y = f(z). It follows that there is a strictly positive real number
pn such that =+ p, B, C f~*(V). Hence |, cy(2 + pnBy) is contained in f~(V).
Since this holds for any = € f~'(V), it follows that f~'(V) is open by proposition
2.11. ]

3. Infinite-dimensional Lie groups

By a differentiable manifold, we mean a sequentially complete Hausdorff topo-
logical space modelled via an atlas on a locally convex Hausdorff and complete
topological vector space. We use the Gateaux differential calculus. Following Mil-
nor, [24], we define an infinite-dimensional Lie group to be a group endowed with a
smooth manifold structure defined as above, compatible with the group operations.

If G is a Lie group, the model space of its underlying manifold structure
is identified with its Lie algebra £(G). The existence for all v in £(G) of a one
parameter subgroup v, : R — G with v as tangent vector at the identity is of
course not always guaranteed.

Let Z = [0,1]. The space C*°(Z, L(G)) of smooth paths of the Lie algebra
L(G) is endowed with the C'® uniform convergence topology. The group G is
said to be regular if the ordinary differential equation

g97'9(t) = v(t) with g(0) =e, (1)

where the dot denotes the derivative with respect to ¢, admits a smooth solution
7, for all smooth paths v in L£(G) and if the correspondence v +— 7,(1), from
C*(Z,L(G)) with values in G, is smooth. The mapping Exp : £L(G) — G that
associates to the constant path v the group element ~,(1) is called the exponential
mapping of the group.

For instance the group Diff**(M) of smooth diffeomorphisms of a compact
manifold M is a regular Lie group modelled on the Fréchet space x*°(V') of smooth
vector fields on M [19].

If G admits the exponential mapping as a manifold chart near the identity
we say that G is a Lie group of the first kind. The class of Lie groups of the first
kind is denoted by £X P. If in addition G is analytic then it is said of Campbell-
Baker-Hausdorff (CBH for short) type. The class of CBH Lie groups is denoted
by CBH. Finite dimensional Lie groups, gauge groups and Banach Lie groups
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are examples of CBH Lie groups. In contrast, the Lie group of analytic global
diffeomorphisms of a compact analytic manifold is not of CBH type.

We will say that G is a Lie group of the second kind if its Lie algebra
L(G) decomposes into a direct sum L£(G) = @), G; wit the property that the
mapping [[;~, Exp,, which associates to (X1, ... ,Xy) € G X---XG,, the product
Exp(X;) o--- 0 Exp(X,,) € G, defines a manifold chart near the identity. The
integer m denotes the multiplicity of the decomposition. In this case we will say
that G is of the second kind and of order m and belongs to the class EXP™.
We generalize this class to the class £X P of Lie groups of the second kind and
of countable order. We have the obvious inclusions CBH C EXP C EXP™ C
EXP™ C EXP™ for m <m/'.

4. Lie algebras of infinitesimal transformations

In this section it is shown that for any analytic Lie pseudogroup and any reg-
ular sequence in the sense of Ecalle the corresponding Lie algebra of calibrated
infinitesimal transformations is a Silva topological Lie algebra.

Notations: Let M be a connected analytic manifold and let z; be a point of M.
We choose a coordinate chart z = (z',...,2") such that zy = (0,...,0). For any
n-tuple a = (o, ..., q,) of non-negative integers we let

lal=a+ -+ a,

(its length) | @ |'=| | —1 (its reduced length) and

Lie algebras of infinitesimal transformations: Let

x(n) = x-1(n)

denote the Lie algebra of formal vector fields based at the origin O of R". For every
non-negative integer ¢, let x,(n) denote the Lie subalgebra of formal vector fields
tangent to order g to the zero vector field. This defines the decreasing filtration
naturally associated to x(n). In component form, any formal vector field V' of
Xq(n) can be written as V' =371 V'0; with V* =37, v}z A formal vector
field V' will be said positive (resp. negative) if all its coefficients v/ are positive
(resp. negative). To each formal vector field V' we associate a positive formal
vector field | V' | defined by | V7 | = Zr;ﬁo | vl 2.

We endow x(n) with the natural Tychonov topology.

Let now I be a transitive Lie pseudogroup of analytic local diffeomorphisms
of the connected analytic manifold M. To I' one associates a Lie algebra sheaf
of germs of vector fields whose local flows generate T', [34]. Since T is transitive,
the stalks of this Lie algebra sheaf at any two points are isomorphic. We will
thus consider the stalk at the point z, and we will denote it by £(I'). If T is a
transitive Lie pseudogroup, then the corresponding Lie algebra LA:(F) determines a
closed Lie subalgebra L(I') of x(n) consisting of the formal vector fields obtained
by formally expanding the elements of £(I') in Taylor series about the origin.
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Let £,(I') = L(T) N x4(n). We have L(I')/Ly(I') ~ R™ by transitivity. We
associate to £(I') the Lie algebra L(I") defined by L(I') = @2 | L,(I')/Ly11(T).
A transitive Lie pseudogroup I'“ is said to be flat if its formal Lie algebra L(I")
and the associated Lie algebra L(I') are isomorphic. The pseudogroup of local
transformations that preserve a volume form and the Hamiltonian pseudogroup of

local symplectomorphisms are important examples of flat Lie pseudogroups.

Analytic, quasi-analytic and Gevrey’s settings: Let
M=R"

and fix a norm on M. This defines for the space M ® SP(M*) of homogeneous
vector fields of degree p a norm || . ||,. Any non decreasing sequence m = {m,}
(n > 1) of positive real numbers such that limsupm,1/m, < oo will be called a
sequence of type R, or of regular type [12]. We will say that a formal vector field

V:in
k=0

(where, for all k, V; € M ® S*¥(M*)) belongs to the class C(r) if its coefficients
satisfy limsup || V,, ||# /70 < 0.

Lemma 4.1.  The class C(w) does not depend on the choice of norm. A formal

series .
5= 33 ot
i=1 |a|>0
is of class C() if and only if there exists a positive constant p such that for all i
and o we have, .
| o |< (M) P
If m = {1} the corresponding class C(r) is the analytic class. If m, = logn
N

or more generally m, = [],_, logyn where logn stands for

(log(log- - (logn))---)

r times and where N is fixed, the corresponding class is the quasi-analytic class
of Denjoy. For 7, = n? (6 > 0), we obtain Gevrey’s class of index §. We denote
{n°},>1 by ©. If T" is any Lie pseudogroup, the subspace £™(I') C £(T) of formal
vector fields of class C(r) is also a Lie subalgebra. All these spaces admit a natural
locally convex topology.

Let p be a positive real number and let £7(I') denote the subspace of L™(T')
of V’s such that limsup || V;, [[» /()" p") < +00. We have L™(I') = [ ., £5(I').
Each L7(T') is naturally endowed with a Banach space structure with the norm

[ Va
|V [l,= sup —-".
n (mn)"p
For p < p' the injection L5(I') < L7,(I') is continuous and compact. Hence £7(T')
is a complete Hausdorff locally convex topological vector space. Its associated
topology is the locally convex strict inductive limit topology
L) = liLn Lr(r).

neN
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This endows L£™(I') with a Silva topological Lie algebra structure.

5. The general pseudogroups

In this section we establish a regular Gateaux-analytic infinite-dimensional Lie
group structure for the isotropy subgroup of the origin in the general Lie pseu-
dogroup of local diffeomorphisms of class C(7) defined in a neighbourhood of the
origin of R®. This will enable us to establish a general existence and regular-
ity theorem for the exponential mapping, which we will use in Section 8 to solve
the integration problem for isotropy subalgebras of analytic Lie pseudogroups of
infinite type.

Lie pseudogroups of class C(7m): We represent formal transformations defined
in a neighborhood of the origin in R* by formal series

2 =3 62,

i=1 [af>0

where the matrix (¢%) defined by the linear terms in @ is invertible. We denote
by G™(n) = G™,(n) the set of formal transformations of class C(7) in n variables.
For any given positive integer ¢, we let G7(n) be the subset of transformations
tangent at order ¢ to the identity transformation I.

Thus G§(n) is the set of formal series

0 =323 60

i=1 |a|>1

of class C(m) with det(¢%) # 0 (4,5 = 1,...,n). The set GT(n) is the subset of
G§(n) defined by (¢}) = I, where I, is the n-by-n identity matrix. Finally for
any integer ¢ > 2, G7(n) is the set of formal transformations of class C(7) given

by
b= Zz—l—ZQS""

|a|>g+1

We will write these for short as

o= I+ZZ¢’“

i=1 |a|>¢+1

The set of formal transformations (without any restriction concerning the
growth of coefficients) will be denoted by G,(n).

We are first going to show that for any non-negative integer ¢ and any reg-
ular sequence 7, the set G (n) together with the composition of transformations.
In a second step we will show how such a group can be regarded as a Gateaux
analytic regular Lie group the sense of Milnor.

Let 3 k= 1,2 be formal series with coefficients o}, i.e.

Y= Z(Z o, 2*)0;.

i=1 |a]>0
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We introduce on the set of formal transformations a partial order, denoted by <«
and defined as follows: ) < 3y if | ot | < | o}, | for all indices ¢ and «.
A formal transformation ® will be said to be positive whenever its coeffi-
cients ¢!, are all positive real numbers.
We associate to each regular sequence 7 a scale transformation denoted by
which acts on formal series by mapping

¢ = Z(Z gﬁiza)@

i=1 |a]>0

™

to the formal series "® defined by

TP — Z Z 7T||g“ ¢Z a
=1 |a|20

Note that 7, is raised to the power | @ |'=| @ | —1 the reduced length of the
multi-index «.

The scale transformation ™ defines a bijection between the analytic class
and the class C(r).

The expression of the group law induced by composition on the set Gy(n)
of formal transformations preserving the origin in R" is determined as follows. If
® and ¥ € Gy(n) are given by

=) (D) ¢iz"

i=1 [a>1
and . .
U= (> viz"ai=) v (2,
i=1 |a|>1 i=1
then

QoW = (D i)™ (¥"(2))™)0;

i=1 |a|>1

Replacing () by 3,5 Y62 we get

20w =3 (Y 6h( X v (Y )0,

=1 Ja|21 1B1]>1 Bn|>1

where (31,..., [, are arbitrary multi-indices. The coeflicients of ® o ¥ are then
easily obtained. The linear terms compose as matrices and each coefficient of the
resulting series ® o ¥ is a polynomial in the coefficients of & and ¥. Moreover the
coefficients of these polynomials are positive. This proves that the composition of
two positive transformations in Gy(n) is also a positive transformation of Goy(n).
One proceeds likewise to show that Gy(n) is closed under inversion.

Regarding the scale transformation ™, we have:

Lemma 5.1.  For any reqular sequence m, the composition of transformations
in Go(n) satisfies
oo™ K (Do V).
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Proof. Let ® = Y ¢! 2%9; and ¥ = > ¢ 2°0; be formal transformations in
Go(n). We have ® o ¥ = Y (¢ 0 1)), 220;, with

4 . jr€{1,...,n},pEN él ]p ' in
($o) = (¢' 0 t), = > s o (W) - (o)
}31+ +"B =lel

laf’ +TL L |Bal g o |Bol' =17’

where the constants C are non-negative integers. Hence

it o "a |81V "B 8ol AN
ZCI |3| Tl Tyl ‘#W) - ()

The sequence 7 being increasing, each of the factors mq|, mg,|, - - - , T, is less than
' sl Bpl’ ro
7|y - Therefore we have L’i‘“ ‘T;f 1|| R (;i n < 7r‘|z‘| since
fal +nf [ Bl +---+nf | By =[]
We conclude that "® o ™0 <« "(® o ¥). u

If @ is a formal transformation of G1(n) we will say that ® is a negative
transformation whenever its coefficients ¢’, are negative real numbers. In this case

® takes the form
O=T-> (> [é}12%0

i=1 |a]>2

with I being the identity transformation. The class of negative transformations
has a remarkable behaviour under the group inversion.

Lemma 5.2. The group inversion restricted to G1(n) sends negative transfor-
mations into positive transformations. Moreover

(&) <« (@7

Proof. Let
Z P Z ‘ ¢z a ( n)an)ai
=1 || >2

be a negative formal transformation of G(n) and put

U= Zzﬂ+2\¢ﬂ| => 0,

181>2 j=1

We want to solve the equation ® o ¥ = [ for ¥, give ®. To do so, we substitute
in ® each z* by 1" and then set for 4 = 1,...,n the coefficients of 2% to 0 (for
| B> 1). It follows that

v = Paill ¢ |, ¥7)
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where Pg; is a polynomial in | ¢%, | and ¢ for I,m in {1,... ,n}, | a <] B |
and | v |<| B |. The coefficients of Ps; are positive integers. We conclude that
¥} takes the form

i i 1+ p | 1 ‘”71 | » |n7p
vp=1¢5 1+ > T | &
Tyi  Myp
) peN,|71|<IBI{=1,---,p

j
n?} Il -0y [ |'=1 8]

where the constants J are positive integers.
Hence the group inversion restricted to G1(n) sends negative transforma-

tions to positive transformations. Following the proof of lemma 5.1, we conclude
that ("®)~! < "(®71). ]

Theorem 5.3.  For any non-negative integer q¢ and any regqular sequence 7 the
set Gg(n) of isotropy transformations is a Gateaux analytic Lie group.

Proof. Let us first show that for any non-negative integer ¢ and any regular
sequence 7, the subset G7(n) of isotropic local transformations of class C(m) is
a group. This is a well known result for analytic transformations. Let ¢ and

¥ be elements of G7(n). Denote by ™' the inverse of the scale transformation

™. The transformations ™ ¢ and ™ ¢ being analytic, ™ ¢ o™ ¢ is analytic and

T("¢ o™ 1)) is a tranformation of class C(w). But by lemma 5.1, we have

got =" (" )" (" §) < (" §0" ).

We conclude that the composition is well-defined inside the class C(7).

For the inversion, let us first remark that any transformation ¢ in Goy(n)
can be decomposed as ¢ = L o1, where L is linear and ¢ belongs to G1(n).
Moreover if ¢ is of class C(m), then so is 1 = L™t o ¢. Since the inverse of ¢ takes
the form ¢! = ¢~ o L1, all we need to do in order prove that the inversion
respects the class C(m) is to prove that property for transformations in G1(n). As
before consider ™ ¢ that is analytic whenever v is of class C(r). Since (™ )
is analytic "[(" 1) "!] is of class C(7). By lemma 5.2

= ()T < ()]

which proves that ¢! is also of class C(mr).

Therefore, for any non-negative integer ¢ and any regular sequence m, the
set G7(n) is a group.

We now define an analytic manifold structure on G7(n). Consider first
G§(n) the full isotropy group of transformations of class C(7), which is the set of

series .
=D (> #)d
i=1 Jal>1
of class C(m) for which det (¢%) # 0. As such, it is an open subset of the space of
series of class C(7), which we identify with the Lie algebra L£f(n) of infinitesimal
transformations of class C(7). This provides in a natural way an analytic manifold
structure to G¥(n).
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When ¢ > 0, G7(n) is not an open subset of £7(n) and the above method
is therefore no longer applicable. We must proceed differently. Let V be the
canonical flat Riemannian connection in R". The corresponding exponential
mapping (Ezpy), associates to each analytic vector field X the local analytic
mapping

Ezpy(X) :z — (Expy).(X(x)).
With our choice of connection, we have Expy(X) =1+ X. We now define Expy
for formal vector fields in LJ(n) by the same formula. The mapping Fzpy is a
bijection between L7(n) and G7(n) for all regular sequences 7 and all integers
q > 0. It thus defines the analytic manifold structure of G7(n). In particular, the
topology of G7(n) for ¢ > 0 is nothing but the topology induced by Gf(n).

Next, we establish the Gateaux analyticity of the multiplication in G§(n).
It is convenient for this purpose to associate to each series

s = Z 532‘181-

of class C(m) the bounded subset Big of Lf(n) of series A = > X!, 2*0; satisfying
| Ny |<] &, | for all indices ¢, . The collection of bounded subsets Bjg| forms a
basis for the bornology of £7(n) in the sense that each bounded subset is contained
in some Bz .

Let @ = ¢"2%0; and ¥ = Y 9" 2%0; be elements of GJ(n). We have

ol =1 (poy),z";
where

jre{l,...,n},peN “ ;5]] g
7 7 C\i n
(o), = (¢' 0t), = > as ()5 ().
nih +- +n“’—|a|
|| +n LBl - +n o 1Bol' =17

and the constants C' are non-negative integers. It follows that

[El=) 16|

is the maximal element in Bjz) with respect to the composition. Indeed for any
pair ®;, ®, of series belonging respectively to Bz, |, Biz,, we have

(I)IO(I)2<<|EI |O‘EQ|
In other words, we have
Bizy 0 Biz,) € Bizifofzs s

and the composition is a bounded mapping.

Now given two transformations ®, and ¥, of Gf(n), their product can
be uniquely decomposed as a series Y fnz, of homogeneous polynomials of
degree n in a neighbourhood of zg = (®g, ¥y) in L](n). The positiveness of the
coefficients implies that

frazo(Biz|) C Biag 12| © Bluy 121 C By
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where | Q |= (| & | + | E|)o(] Yo | + | E |). Hence each homogeneous
polynomial appearing the decomposition is continuous by virtue of Theorem 2.12.
Using Definition 2.5, we conclude that the multiplication is Gateaux analytic.
Indeed, observe that for any 0 <t < 1, we have

(Do + Bt|@|) o (o + Bt|r|) C ®go ¥y + By

where | T |=(| @ |+ |O|)o(| Yo |+ |T|)— | Po|o| ¥ |. It follows that the
image of any bounded sequence in G§(n) x G§(n) converging to (®y, Vo) by the
multiplication map converges to ®y o ¥y in G§(n). Hence the multiplication is
Gateaux analytic in the group Gf(n) by Theorem 2.14. The Gateaux analyticity
of the multiplication in G} (n) for any ¢ > 0 is established similarly.

We now establish the analyticity of the inversion. We first consider the
groups G7(n) with ¢ > 0. To each transformation

Eapy(S) =T+ ) £2°0;
lf<2

we associate as before a bounded subset Bz of L7 (n), consisting of those series

for which | v, |[<| &, | for all i, . This time the maximal element in Bz for the
inversion is — | = |. Indeed, it follows from the positiveness of the coefficients .J
introduced in the proof of Lemma 5.2 shows that

Ezpg' o [Ezpy (Bjg)] ' C Bpepotomapy (21

In particular the inversion is a bounded mapping.
Given a transformation ®, = FErpy(Z) in G7(n) its inverse can be
uniquely decomposed as a series

o0

Z gn,Eg

n=0
of homogeneous polynomials of degree n. We have
.20 (Bia)) € Brugpst1mapy (— 20/~ j0)) 1]

so that each of these homogeneous polynomials is continuous (Theorem 2.12). In
addition, we have for any 0 <t <1

Exzpg' [((Exzpy (S0 + Byo)) '] C Expy' [Expy(S0) '] + Bya),
where
| A |= Bapg' [Bapy(— [ Zo | — [ Q)] = Bapg' (Bapy (= | Zo [)7).

It follows that the inversion in G7(n), ¢ > 1 is continuous and thus Gateaux
analytic(theorem 2.14).
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Finally, for the full isotropy group Gj(n), we proceed as follows. The Lie
algebra L7 (n) can be decomposed as a direct sum L] (n) = L LT (n) where L is
the Lie sub-algebra of vector fields with homogeneous linear coefficients. Consider
the map

idy, ®Ea:pv ) C L§(n) — G§(n)
given by
idr, ® Expy(A+Z) = Ao Expy(Z)

for A€ L and = € LT (n). We can check as before that this map is an analytic
isomorphism. But

(Ao Bapy(2))™" = (Bapy=) o A7

Since the inversion is analytic in G7(n) and the composition is analytic in G§(n)
we conclude that the inversion is Gateaux analytic in the full group Gj(n). n

Exponential mapping and regularity: If V is a local analytic vector field in
R™ and f an analytic function, Vf denotes as usual df()).

Proposition 5.4. The exponential map sends, whenever defined, positive vec-
tor fields into positive transformations and preserves the class C(n). It is, for
each non-negative integer q, an entire Gateaux analytic mapping from L”( ) into
GT(n) given by (EzpV)(2',...,2") = (w',...,w") with w' = (I + Y 2, V)7
forall1 <i<n. Symbolz'cally, we have

21
ExpV =1+ V"

Proof. Let ¢; denote the exponential Expt) of tV. By deﬁmtlon b =Vod
where the dot denotes the derivative with respect to t. Hence d)t =V*o ¢, for
the k-th derivative. Taylor’s formula applied to ¢; at ¢ = 0 gives the formal
expansion ExpV(z) = (I + .07, LV")(z). If we put ExpV = > (ExpV): 2%9; we

n=1 n!
obtain
]1 JP

(ExpV);, = > B (Vi)™ (),

"6p
|ﬁ1|+ +n? o |Bpl' =0’

where teh coefficients E are positive integers. Using the scale transformation 7,
the convergence of the exponential mapping for analytic pseudogroups and the
method introduced in the proof of Theorem 5.3 we obtain that the exponential
mapping from L7(n) into G7(n) is an entire Gateaux analytic mapping. n

This Proposition shall in fact be extended as follows:

Theorem 5.5.  For any given continuous path (resp. of class C*¥) v of the
Lie algebra L7 (n) (q > 0), the the left logarithmic derivative ordinary differential
equation g~'g = v, with initial condition given by g(0) = e, admits a unique solu-
tion. This solution vy, is of class C (resp. C*™!). Moreover the correspondence
v > 7, 1S continuous and Gdteaux analytic (entire). It is given by the expansion

t
Yo(t) = ]+/ v(m)dr + - / / V(Tpat) - 0(T1)dTpyy - - dm +- - -
0
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Proof.  The uniqueness is a well-known fact [24]. Following Picard’s method,
we set go = I and define g, recursively as ¢,.1 = vg,,. We thus obtain

t t Tn
gn—}-l(t) :I+/ v(’rl)dﬁ ++// U(Tn_|_1)'"U(Tl)dTn+1"'dT1.
0 0 Jo

We claim that the solution <, is nothing but the limit as n tends to infinity of
gn in the locally convex topology of L7(n) . If V and W are two vector fields of
L™ (n), let VW denote, by abuse of notation, the vector field Y i  (VW")9;. The
non-associative algebra structure defined on £"(n) by (V, W) — VW admits the
same filtration as the Lie algebra structure. That is to say £,(n)-L,(n) C L,14(n).
Hence the convergence is clear in the formal Lie groups G,(n) for ¢ > 0. Since
moreover,
Lo(n)/£1(n) - £y(n)/Lpi1(n) € Lp(m)/Lyir (),

the convergence comes from the finite dimensional theory for ¢ = 0. Now remark
that the range by v of the compact segment Z is bounded in the Silva space £} (n).
Hence there exists a positive formal vector field v,,,, belonging to C(7) such that
| v(t) | < Upae for all ¢ in Z. We conclude that | v, (t) | < Exptvy,, for all ¢ in 7
which proves that the class C(m) is also preserved. u

General isotropy group structure: We now summarize results obtained in
Section 7.

Theorem 5.6. For every reqular sequence m and every non-negative integer q,
the general isotropy group Gg(n) 1s a reqular Gateaux analytic Lie group modelled
on the Silva space Lj(n).

6. Lie’s third fundamental theorem

Recall the following result concerning the formal structure of isotropy groups, [33].

Theorem 6.1.  The isotropy subgroup Go(n) of G(n) is, in the one-dimensional
case a non-CBH exponential Lie group and, for n > 1 an analytic Lie group of
second kind and second order. In all cases G1(n) is a CBH Lie subgroup and G(n)
is a Lie pseudogroup of the second kind and second order. That is Go(1) ¢ CBH
but Go(1) € EXP, and G(n > 1) € CBH* C EXP?.

By making use of Ecalle’s results on the iterative theory [12], one can show
that for most regular sequences 7, G™(I') is of second order, its Lie subgroup
GT(T") being then a CBH Lie group. For a regular sequence 7 = {m,}, let us
define dr as dm = {nm,}. The following is a re-formulation of Theorem 3 in
Chapter II of [12].

Theorem 6.2.  For any given integer q > 0, the logarithm is well defined in
Gy(D) and sends G5(T) into LI™(T'). For all Gevrey sequences © of index 6 > 1
the Lie subalgebra L9 (T') is of CBH type. Hence G®(T) is a Lie pseudogroup of
second kind and order 2.

Lie’s second fundamental theorem: Let us define a compatible chart of a Lie
group G with Lie algebra £ to be a pair (U, ¢) consisting of an open neighbour-
hood U of the origin in £ and of a pointed local diffecomorphism ¢ : (0,U) — (e, G)
compatible with the underlying manifold structure of G. We will need the follow-
ing (see [30],[31][32]).
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Theorem 6.3. Lie Il Let G be a Lie group with Lie algebra L having (U, ¢) as
compatible chart. Let H — L be a closed Lie subalgebra. Suppose that ¢~ o d® ¢
restricted to (V NH) x (V NH) takes its values in H for some open set V C U.
Then H 1is the Lie algebra of a unique connected Lie subgroup H of G.

Charts of the second kind and countable order: Let I' be a flat Lie
pseudogroup and let Exp, denote the restriction to the vector subspace

Lq-1(T)/L,(T)

of the exponential mapping. Consider the left product exponential mapping PExp,
defined in £y(n) with values in Gy(n), that associates to X = Y7, X} the formal
local diffeomorphism

PExp, (X) = lim Expy (Xy) ® - - ® Exp; (X1).

It is clear that (Lo(n), PExp,) is a compatible chart for the formal isotropy group
GO (TL) .

Proposition 6.4.  Let m be any regular sequence. The left product exponential
mapping PEzp, s well defined and realizes a local Gateaux analytic isomorphism
between x§(n) and Gf(n).

Remark 6.5. It is sufficient to restrict our attention to the subalgebra xT(n)
and its associated group G7(n).

The proof of Proposition 6.4 rests on the following lemmas.

Lemma 6.6. The inverse formal mapping LogP, sends any transformation of
the form I — X where X 1is positive into a negative formal vector field.

Lemma 6.7.  Let ¢ be any local diffeomorphism of the form I — X, X being a

positive vector field. Then A = ¢ o ExpX =1 — ZkZI ﬁX’““.

Proof. @ Wehave A = ExpX—XoExpX. But X is Ad(ExpX) invariant. Hence
dExpX (X) = X o ExpX with dExpX (X) =X 4+ ), X" from Proposition
5.4. This completes the proof. - [

The proof of Lemma 6.6 follows from a recurrence based on Lemma 6.7.

Lemma 6.8.  The formal exponential mapping PEzp, : x(n) — G(n) that
associates to X = Z;ﬁil Xy, the infinite product ExpX_,0ExpXjo---oErpX,o---
sends positive formal vector fields into positive formal transformations. Moreover
if g = PExp,X with X = (Xy,...,Xy) and X; = Z\C§|:2 alz® positive, then
o 2 -

Proof.  This is a simple consequence of Lemma 5.1 and Proposition 5.4. [ ]
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Proof.  (of Proposition 6.4). Let g = I + Z be an arbitrary formal transfor-
mation of class 7w tangent at order 1 to the identity. From lemma 6.6 it is clear
that LogP,(g) belongs to xT(n) if LogP,(| g |) does, where | g | = I —| Z |. Since
| g | € GT(n) and GT(n) is a group | g |~ € G7(n). But

| g | = PExp,(—LogP,| g |)

and —LogP,| g | is positive according to Lemma 6.6. Lemma 6.8 leads to the
conclusion that —LogP, | ¢ | belongs to xT(n) completing the proof. |

The Lie-Cartan extension for isotropy algebras: The resulst of Section 6
may be summarized as follows:

Theorem 6.9. Lie III Let w be any reqular sequence and I' a flat transitive Lie
pseudogroup of infinite type. For any given non-negative integer q, the isotropy
Lie subalgebra L7(T) of the formal Lie algebra L(T') is the Lie algebra of a
unique connected and simply connected reqular Gateaux-analytic Lie group ég(l“)
of the second kind and of countable order. A canonical chart for the analytic Lie
pseudogroup G§(I') is given by ExpXgo---o ErxpX,---.

7. Examples

We will say for short that a Lie pseudogroup is of the second kind and countable
order if its isotropy Lie subpseudogroup is a Lie group of the second kind and
countable order.

Example 7.1.  The isotropy Lie group of local holomorphic transformations of
C" leaving the origin invariant is a Gateaux holomorphic Lie group of the second
kind and countable order.

In what follows M is a differentiable manifold M of dimension 7.

Example 7.2. Let w be a smooth volume form defined on M. Then the
isotropy Lie group of analytic volume preserving local transformations Pj,.(w) =
{¢ € Diff},.(M)/¢p*w = w} is a Lie group of the second kind and countable order.
The same holds for the one-dimensional extension

Proc(w) = {¢ € Diffyo(M)/¢*w = Iw, A € R}.

Example 7.3. Let 2 be a closed C* two-form defined on M and satisfying
Q" #£0, Q" =0, r <n being constant. According to Darboux’s theorem, there
exist local coordinates w!, ... ,w" such that

Q = dw' Adw? + -+ dw* A dw?.
Hence the Lie pseudogroup of local analytic transformations

Proc(©2) = {¢ € Diff;

loc

(M)/¢™Q2 = Q}

is a Lie pseudogroup of second kind and countable order.
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Example 7.4. Hamiltonian Lie pseudogroups of analytic local transformations
are Lie pseudogroups of the second kind and countable order.

Example 7.5. Let a be a smooth Pfaffian form on M of constant rank r. By
Pfaff’s theorem there exists a local coordinate system w?,...,w" such that

a = dw' + w?dw? + - - - + W dw* .

The local Lie pseudogroup P.(a) = {¢ € Diff,.(M)/¢p*a = a} is not a flat tran-
sitive Lie pseudogroup. But it decomposes into an extension involving Py, (da).
Hence it is a Lie pseudogroup of second kind and countable order.

Example 7.6. The Poisson Lie algebra of local real analytic functions of a
symplectic manifold is a Lie algebra integrable into a Lie pseudogroup of second
kind and countable order.

Let us now consider a Lie-Poisson structure associated with a » dimensional
Lie algebra G. The Lie-Poisson bracket defined on the dual G* is defined by
{f,h}(z) =< z,[df (z),dh(z)] > for any x € G* [25].

Theorem 7.7. The local analytic Lie-Poisson algebra P associated with any
finite dimensional Lie algebra G 1is integrable into a unique connected and simply
connected Gateaur analytic reqular Lie group of the second kind and countable
order.

Proof. Let a be the mapping that associates to each function f € P its
associated Hamiltonian vector field X ;. It is well known that X is an infinitesimal
automorphism of the Lie-Poisson structure. If cfj, 1,5,k = 1,...,r are the
structure constants of G relative to a basis, the Lie-Poisson bracket can take the
coordinate form

{f,h} =Y ca*ofo;h.

i,j k=1

As a consequence the local Lie pseudogroup Aut(P) of automorphisms of the Lie-
Poisson structure is a flat isotropy group. This is equally true for the image of
P by the mapping «. Hence this latter is integrable into a unique connected
and simply connected Gateaux analytic regular Lie group I of the second kind
and countable order. The Poisson algebra P splits naturally into the direct sum
Ker(a) @ a(P). Since Ker(«) is nothing but the centre of P, we conclude that
P is integrable into the direct product of Lie groups Ker(«)xI. The result follows
from the regularity of I. ]

Remark 7.8.  The natural topology for the Lie algebra of local smooth vector
fields defined near the origin in R™ is a (non-strict) inductive limit topology of
Fréchet spaces [33]. In this topology the Lie algebra of analytic local vector fields
is a dense Lie subalgebra. Our results can be regarded as density theorems in the
smooth case.
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