Polynomial Identities in Smash Products

Yuri Bahturin* and Victor Petrogradsky ${ }^{\dagger}$

Communicated by E. Zelmanov

Abstract

Suppose that a group G acts by automorphisms on a (restricted) Lie algebra L over a field K of positive characteristic. This gives rise to smash products $U(L) \# K[G]$ and $u(L) \# K[G]$. We find necessary and sufficient conditions for these smash products to satisfy a nontrivial polynomial identity.

1. Introduction: polynomial identities in group algebras and enveloping algebras

The first observation on the polynomial identities in enveloping algebras was made by V. N. Latyshev [9]. He proved that the universal enveloping algebra of a finite dimensional Lie algebra over a field of characteristic zero satisfies a nontrivial identical relation if and only if this Lie algebra is abelian. Later Yu. Bahturin has noticed in [1] that the condition of finite dimensionality is inessential.
D. S. Passman has obtained the complete description of group algebras satisfying polynomial identities.

Theorem 1.1. ([11]) The group algebra $K[G]$ of a group G satisfies a nontrivial polynomial identity if and only if the following conditions are satisfied:

1. there exists a normal subgroup $A \subset G$ of finite index;
2. A is abelian if char $K=0$, and the commutator subgroup A^{\prime} is a finite abelian p-group if char $K=p>0$.

Yu. Bahturin has settled the problem of the existence of nontrivial identities for the universal enveloping algebra fields of positive characteristic.

Theorem 1.2. ([2]) Let L be a Lie algebra over a field K of positive characteristic. Then the universal enveloping algebra $U(L)$ satisfies a nontrivial polynomial identity if and only if the following conditions are satisfied:

[^0]1. there exists an abelian ideal $H \subset L$ of finite codimension;
2. all inner derivations $\operatorname{ad} x, x \in L$ are algebraic of bounded degree.

Petrogradsky [15] and Passman [14] have specified restricted Lie algebras (also called Lie p-algebras) L such that the restricted enveloping algebra $u(L)$ satisfies a nontrivial polynomial identity.

Theorem 1.3. ([14], [15]) Let L be a Lie p-algebra. Then the restricted enveloping algebra $u(L)$ satisfies a nontrivial polynomial identity if and only if there exist restricted ideals $Q \subset H \subset L$ such that:

1. $\operatorname{dim} L / H<\infty, \operatorname{dim} Q<\infty$;
2. H / Q is abelian;
3. Q is abelian with nilpotent p-mapping.

See also further developments for Lie p-superalgebras [16] and color Lie p-superalgebras [3].

The main body of this paper consists of the proof of our main result which completely describes smash products $u(L) \# K[G]$ that are PI rings (Theorem 3.1). We start with establishing some identical relations that nicely suit our purposes (Section 4). As an important ingredient we begin developing a delta-theory for smash products (Section 5). Next we describe the structure of delta-sets in our case (Section 6).

But the first results in this paper (Section 2) deal with necessary and sufficient conditions under which the smash product $U(L) \# K[G]$ satisfies a nontrivial identity (Theorem 2.3). Actually, this result, as well as Theorem 2.1 could be derived from a result on general smash products by Handelman - Lawrence - Schelter (see [7]) and probably by Passman [13]. But we prefer to keep our proofs here since they are relevant to the techniques of delta-sets used in the next sections for the proof of the main result (Theorem 3.1).

2. Polynomial identities in smash products $U(L) \# K[G]$

We denote the ground field by K. Suppose that a group G acts on an associative algebra A by automorphisms: $\varphi: G \rightarrow \operatorname{Aut}(A), \varphi(g): x \mapsto \varphi(g)(x), g \in G, x \in$ A. We set $g * x=\varphi(g)(x)$. Now one can form the smash product $R=A \# K[G]$. This is a vector space $R=A \otimes_{K} K[G]$ endowed with multiplication

$$
\left(a_{1}, g_{1}\right) \cdot\left(a_{2}, g_{2}\right)=\left(a_{1}\left(g_{1} * a_{2}\right), g_{1} g_{2}\right), \quad a_{1}, a_{2} \in A, g_{1}, g_{2} \in G .
$$

By linearity also the group ring $K[G]$ acts on A :

$$
\left(\alpha_{1} g_{1}+\cdots+\alpha_{m} g_{m}\right) * a=\alpha_{1}\left(g_{1} * a\right)+\cdots+\alpha_{m}\left(g_{m} * a\right), \quad g_{i} \in G, \alpha_{i} \in K, a \in A .
$$

Now suppose that G acts on a Lie algebra L by automorphisms. Then this action is naturally extended to the action on the universal enveloping algebra $U(L)$ and we can form the smash product $U(L) \# K[G]$. Such algebras are important because
each cocommutative Hopf algebra over an algebraically closed field of characteristic zero can be presented as a smash product $U(L) \# K[G]$ (Kostant, Cartier, et al., see [10]).

The conditions for the existence of nontrivial identities for the smash products $U(L) \# K[G]$ can be derived from [7]. Our next formulation is from [8].

Theorem 2.1. Let G be a group, L a Lie algebra over a field K of characteristic 0 , and G acts on L by automorphisms. Then $U(L) \# K[G]$ satisfies a nontrivial polynomial identity if and only if the following conditions are satisfied:

1. L is abelian;
2. there exists an abelian normal subgroup $A \subset G$ of finite index;
3. A acts trivially on L.

The proof in [8] as well as the original proof of the theorem about the identical relations in $U(L)$ [2] (see also [1], [3]) is based on the following classical result.

Theorem 2.2. (Posner, [5]) Let R be a prime algebra with unit over a field satisfying some nontrivial polynomial identity. Let C be the center of R and Q the field of quotients of C. Then the algebra $R^{Q}=Q \otimes_{C} R$ of central quotients of R is finite-dimensional central simple over Q and coincides with the left and the right classical rings of quotients of R. Moreover, R and R^{Q} satisfy the same identities.

The goal of this section is to prove a result similar to the one just formulated in the case of the fields of positive characteristic. Again we mention a possibility of deriving this result from [7].

Theorem 2.3. Let G be a group, L a Lie algebra over a field K of characteristic $p>0$ and G act on L by automorphisms. Then $U(L) \# K[G]$ satisfies a nontrivial polynomial identity if and only if the following conditions are satisfied:

1. there exists an abelian G-invariant ideal $H \subset L$ of finite codimension and all derivatives ad $x, x \in L$ are algebraic of bounded degree;
2. there exists a normal subgroup $A \subset G$ of finite index with the commutator subgroup A^{\prime} being a finite abelian p-group.
3. A acts trivially on L.

Let us comment on this result. We observe that $K[G]$ and $U(L)$ are the subrings of $U(L) \# K[G]$ and thus Theorems 1.1 and 1.2 apply. This gives us the structure for G and L described in the first two claims except for the fact that H is G-invariant. So, the most essential here is the third claim.

We start with recalling the notion of delta-sets. They provide us with the key instrument to the study of identities of enveloping algebras. One defines the sets of elements of "finite width"

$$
\begin{aligned}
\delta_{n}(L) & =\{x \in L \mid \operatorname{dim}[x, L] \leq n\}, \quad n \in \mathbb{N} \\
\delta(L) & =\bigcup_{n=1}^{\infty} \delta_{n}(L) .
\end{aligned}
$$

These sets have appeared in [2] as Lie algebra analogues of delta-sets for the groups. Those delta-sets were crucial in the study identical relations for group rings [11], [12]. Namely, if G is a group then one can define the sets of elements having finitely many conjugates as follows

$$
\begin{aligned}
\delta_{n}(G) & =\left\{g \in G| | g^{G} \mid \leq n\right\}, \quad n \in \mathbb{N} ; \\
\delta(G) & =\bigcup_{n=1}^{\infty} \delta_{n}(G) .
\end{aligned}
$$

Lemma 2.4. ([3]) Let L be a Lie algebra. Then the delta-sets have the following properties.

1. if $x \in \delta_{i}(L), y \in \delta_{j}(L)$ then $\alpha x+\beta y \in \delta_{i+j}(L), \alpha, \beta \in K$;
2. if $x \in \delta_{i}(L), y \in L$ then $[x, y] \in \delta_{2 i}(L)$;
3. let $x \in \delta_{i}(L)$ and suppose that L is a restricted Lie algebra. Then $x^{[p]} \in$ $\delta_{i}(L)$;
4. $\delta_{i}(L)$ is invariant under the automorphisms of $L, i \in \mathbb{N}$;
5. $\delta(L)$ is a (restricted) invariant ideal of L.

Recall that a subalgebra is called invariant if it is stable under all automorphisms and restricted if closed under the p-map.

We use this lemma to prove Theorem 2.3
Proof. First, let us check that our conditions are sufficient. Let f_{1}, \ldots, f_{k} form a basis of L modulo H. By the hypothesis, each ad f_{i} annihilates some nonzero polynomial $q_{i}(t), i=1, \ldots, k$. Recall that a polynomial of the form $q(t)=\sum_{i=0}^{s} \alpha_{i} t^{p^{i}}$ is called a p-polynomial [6]. Such polynomials have the following property. Let x be an element of an associative algebra over the field of characteristic p, viewed as a Lie algebra under the bracket operation $[a, b]=a b-b a$. Then

$$
\begin{equation*}
\operatorname{ad}(q(x))=\operatorname{ad}\left(\sum_{i=0}^{s} \alpha_{i} x^{p^{i}}\right)=\sum_{i=0}^{s} \alpha_{i}(\operatorname{ad} x)^{p^{i}}=q(\operatorname{ad} x) . \tag{1}
\end{equation*}
$$

Any polynomial is a divisor of some nonzero p-polynomial [6]. So, we may assume that $q_{i}(t)$ are some p-polynomials. By (1) $z_{i}=q_{i}\left(f_{i}\right), i=1, \ldots, k$ are central elements in $U(L)$. Let $d_{i}, i=1, \ldots, k$, be the degrees of polynomials q_{i}. We denote by B the ring generated by $U(H)$ along with z_{1}, \ldots, z_{k}. Then ${ }_{B} U(L)$ is a free B-module with a finite basis $\left\{f_{1}^{i_{1}} \cdots f_{k}^{i_{k}} \mid 0 \leq i_{j}<d_{j}, 1 \leq j \leq k\right\}$ [6]. Let g_{1}, \ldots, g_{s} be the right coset representatives of A in G. Since A acts trivially on the whole of L we obtain that $\widetilde{B}=B \otimes K[A]$ is a commutative subring of $R=U(L) \# K[G]$. Also, ${ }_{\tilde{B}} R$ is a free module with a basis $\left\{f_{1}^{\alpha_{1}} \cdots f_{k}^{\alpha_{k}} g_{j} \mid 0 \leq \alpha_{i}<\right.$ $\left.d_{i}, 1 \leq j \leq s\right\}$ and rank $t=d_{1} \cdots d_{k} s$.

We identify any $x \in R$ with an operator of the right multiplication: $R \rightarrow R$, $a \mapsto a x, a \in R$. This yields an embedding of R into a matrix ring over the commutative ring \widetilde{B} :

$$
R \subset \operatorname{End}_{\widetilde{B}} R \cong \mathrm{M}_{t}(\widetilde{B}) \cong \mathrm{M}_{t}(K) \otimes_{K} \widetilde{B}
$$

By Regev's Theorem about tensor products of PI-rings [17] we conclude that $R=U(L) \# K[G]$ is a PI-ring.

Now suppose that $U(L) \# K[G]$ satisfies a nontrivial polynomial identity.
First, let us prove that there exists a G-invariant abelian ideal $H \subset L$ of finite codimension. We need to recall the steps of the proof of Theorem 1.2 in [2] (see also this construction in [15], [16], and [3]).

1) The existence of a nontrivial identity in $U(L)$ implies that for some number m we have $\delta(L)=\delta_{m}(L)$ and $\operatorname{dim} L / \delta(L)<\infty$. We set $D=\delta(L)$.
2) We apply P.M.Neumann's Theorem on bilinear maps (see Theorem 6.7 below) and conclude that the commutator subalgebra $D^{2}=[D, D]$ is finitedimensional. We set $C=C_{D}\left(D^{2}\right)=\left\{x \in D \mid\left[x, D^{2}\right]=0\right\}$. Then $\operatorname{dim} D / C<\infty$, and $C^{3}=0$.
3) We again use the identity in the enveloping algebra for C and prove that $\operatorname{dim} C / H<\infty$, where $H=Z(C)$ is the center of C.

One can trace these steps and see by Lemma 2.4 that all these subalgebras are invariant ideals. Hence, we obtain the G-invariant abelian ideal $H \subset L$ of finite codimension.

Next, we apply Theorem 1.1 and obtain a subgroup of finite index $B \subset G$ such that the commutator subgroup B^{\prime} is a finite abelian p-group. Now our task is reduced to the following. We consider the smash product $U(L) \# K[B]$ and find a subgroup of finite index $A \subset B$ acting trivially on the whole of L. Let $\left\{U_{n}(L) \mid n=0,1,2 \ldots\right\}$ be the standard filtration on the universal enveloping algebra. Then it induces a filtration on the smash product, the associated graded algebra is also PI and

$$
\operatorname{gr}\left\{U_{n}(L) \# K[B] \mid n=0,1,2, \ldots\right\} \cong\left(\operatorname{gr}\left\{U_{n}(L) \mid n=0,1,2, \ldots\right\}\right) \# K[B] .
$$

But $\operatorname{gr}\left\{U_{n}(L) \mid n=0,1,2, \ldots\right\} \cong U(\bar{L})$, where \bar{L} is an abelian Lie algebra with the same vector space L. So, we may assume that L is abelian so that $U(L)$ is a polynomial ring.

Let $g \in B$ be an element of infinite order. We claim that there exists $m>0$ such that g^{m} acts trivially on L. Let $\langle g\rangle$ be the cyclic subgroup generated by g. By way of contradiction suppose that $\langle g\rangle$ acts faithfully on L. One easily verifies that the ring $R=U(L) \#\langle g\rangle$ has no zero divisors, hence is prime. Let C be the center of R and consider some central element $c=\sum_{i} c_{i} g^{i} \in C, c_{i} \in U(L)$. Suppose that there exists $c_{j} \neq 0, j \neq 0$. Since $\langle g\rangle$ acts faithfully on L we find $a \in L$ with $g^{j} * a \neq a$. Remark that $\left(g^{j} * a-a\right) c_{j} \neq 0$ because $U(L)$ has no zero divisors. Then

$$
\begin{equation*}
[c, a]=\sum_{i} c_{i} g^{i} a-a \sum_{i} c_{i} g^{i}=\sum_{i}\left(g^{i} * a-a\right) c_{i} g^{i} \neq 0 . \tag{2}
\end{equation*}
$$

This is a contradiction with the fact that c is central. Therefore $c_{i}=0$ for $i \neq 0$, so $C \subset U(L)$. Let Q be the field of fractions for C. Then the elements $g^{i}, i \in \mathbb{N}$ are linearly independent over Q in the ring of fractions for R. This contradicts Posner's theorem. Hence for any $g \in B$ there exists m such that g^{m} acts trivially on L.

Let us consider an arbitrary finitely generated subgroup $W \subset B$. Suppose that the action of W on L is faithful. Then our argument implies that the generating elements of W are of finite order. In view of the structure of B we conclude that W is finite. Now we consider the ring $R_{0}=U(L) \# K[W]$ and apply one result on the smash products of type $A \# H$, where H is a finite dimensional Hopf algebra [10, p. 55]. Namely, $A \# H$ is a prime ring if and only if A is a faithful left and right $A \# H$-module and the invariant subring A^{H} is prime. Of course, in our case $U(L)^{K[W]}$ is prime. Let us check the conditions of faithful action. If $H=K[W]$ then the left and right actions are defined by

$$
\begin{aligned}
(a \# g) \cdot b & =a(g * b), \quad a, b \in A, g \in W \\
a \cdot(b \# g) & =g^{-1} *(a b), \quad a, b \in A, g \in W .
\end{aligned}
$$

Suppose that a nonzero element

$$
\begin{equation*}
a_{1} g_{1}+\cdots+a_{m} g_{m}, \quad 0 \neq a_{i} \in U(L), g_{i} \in W, \tag{3}
\end{equation*}
$$

acts trivially on the left on $U(L)$. Let m be taken minimal among nonzero elements (3) that act trivially on $U(L)$. Then

$$
\begin{equation*}
a_{1}\left(g_{1} * x\right)+\cdots+a_{m}\left(g_{m} * x\right)=0, \quad x \in U(L) . \tag{4}
\end{equation*}
$$

We replace x by $x y$ and multiply (4) by $g_{1} * y$ on the right. Here we also use the commutativity of $U(L)$.

$$
\begin{aligned}
& a_{1}\left(g_{1} * x\right)\left(g_{1} * y\right)+\cdots+a_{m}\left(g_{m} * x\right)\left(g_{m} * y\right)=0, \quad x, y \in U(L) \\
& a_{1}\left(g_{1} * x\right)\left(g_{1} * y\right)+\cdots+a_{m}\left(g_{m} * x\right)\left(g_{1} * y\right)=0, \quad x, y \in U(L) \\
& a_{2}\left(\left(g_{2}-g_{1}\right) * y\right)\left(g_{2} * x\right)+\cdots+a_{m}\left(\left(g_{m}-g_{1}\right) * y\right)\left(g_{m} * x\right)=0, x, y \in U(L) .
\end{aligned}
$$

Since $U(L)$ has no zero divisors and by the choice of m in (3) we conclude that $\left(g_{2}-g_{1}\right) * y=0$ for all $y \in U(L)$, contradicting to the fact that W acts faithfully on L. We can check that the right action is faithful in the same way.

Now we can apply Posner's theorem. The same computation (2) shows that the center C of R is contained in $U(L)$.

Let Q be the field of fractions for C. Again all elements $g \in W$ are linearly independent over Q in the ring of quotients R_{Q} for R. Let d be the degree of a nontrivial polynomial identity satisfied by the smash product $U(L) \# K[G]$. By Posner's theorem $|W| \leq \operatorname{dim}_{Q} R_{Q} \leq[d / 2]$.

Let now W be an arbitrary finitely generated subgroup of B. We set $\mathrm{St}_{W} L=\{w \in W \mid w * x=x, x \in L\}$. Then by the above arguments $\left|W: \mathrm{St}_{W} L\right| \leq$ $s=[d / 2]$. Consider $A_{1}=\operatorname{St}_{B} L=\{b \in B \mid b * x=x, x \in L\}$. We claim that $\left|B: A_{1}\right| \leq s$. By way of contradiction suppose that $\left|B: A_{1}\right|>s$, then we can take elements $g_{1}, \ldots, g_{s+1} \in B$ lying in different left classes modulo A_{1}. We consider the subgroup W generated by g_{1}, \ldots, g_{s+1}. Then these elements belong to different cosets of $\mathrm{St}_{W} L \subset A_{1}$, proving $\left|W: \mathrm{St}_{W} L\right|>s$, a contradiction with the above. Thus we should have $\left|B: A_{1}\right| \leq s$ and by construction A_{1} acts trivially on L.

To finish the proof it is enough to choose a normal subgroup of finite index $A \subset A_{1}$.

3. Polynomial identities in the smash products $u(L) \# K[G]$

The main goal of this paper is to prove the following result.
Theorem 3.1. Suppose that a group G acts by automorphisms on a Lie palgebra L. Then $u(L) \# K[G]$ is a PI-algebra if and only if

1. there exist G-invariant restricted subalgebras $Q \subset H \subset L$ with
(a) $\operatorname{dim} L / H<\infty, \operatorname{dim} Q<\infty$;
(b) $[H, H] \subset Q$;
(c) Q is abelian with a nilpotent p-mapping.
2. there exists a subgroup $A \subset G$ with
(a) $|G: A|<\infty$;
(b) the commutator subgroup A^{\prime} is a finite abelian p-group;
3. A acts trivially on H / Q.

We remark that $K[G]$ and $u(L)$ are the subrings of $u(L) \# K[G]$ and we can apply Theorems 1.1 and 1.3. This gives us the structure of G and L described in the first two claims except for the fact that H, Q are G-invariant. But the most difficult here is the third claim about the action of G on L.

While studying polynomial identities for $u(L)$, a crucial example is the infinite-dimensional Heisenberg algebra. By $\delta_{i j}$ we mean the Kronecker symbol.

Example 3.2. ([15, 16, 3]) We consider the infinite-dimensional Heisenberg Lie algebra

$$
L=\left\langle x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots, z \mid\left[x_{i}, y_{j}\right]=\delta_{i j} z,\left[x_{i}, z\right]=\left[y_{j}, z\right]=0, i, j \in \mathbb{N}\right\rangle_{K}
$$

Then the existence of a nontrivial identity for $u(L)$ depends on the value of the p-map on the central element z

1. if $z^{[p]}=0$, then $u(L)$ satisfies a nontrivial identity $(X Y-Y X)^{p} \equiv 0$;
2. if $z^{[p]}=z$, then $u(L)$ does not satisfy any nontrivial identity.

Let us illustrate our main result by examples. These examples are similar to the Heisenberg algebra, we only need to remember that G acts by automorphisms on L.

Example 3.3. Let $L=\left\langle y, x_{j}, x_{j}^{[p]}, \ldots, x_{j}^{\left[p^{k}\right]}, \ldots \mid j=1,2, \ldots ; y^{[p]}=0\right\rangle_{K}$ be an abelian restricted Lie algebra and the group $G=\left(\mathbb{Z}_{p}\right)^{\mathbb{N}}$ acts on L as

$$
g_{i} * x_{j}=x_{j}+\delta_{i j} y ; \quad g_{i} * x_{j}^{\left[p^{k}\right]}=x_{j}^{\left[p^{k}\right]}, k \geq 1 ; \quad g_{i} * y=y ;
$$

where $g_{i}=(0, \ldots, 0,1,0, \ldots)$, with 1 on i-th place, $i \in \mathbb{N}$. We consider the smash product $R=u(L) \# K[G]$. Then

1. R satisfies the identity $(X Y-Y X)^{p} \equiv 0$;
2. G acts faithfully on L.

Proof. We have $\left[g, x_{j}\right]=g x_{j}-x_{j} g=\left(g * x_{j}-x_{j}\right) g=\lambda y g, \lambda \in K, g \in G$. Remark that all other pairs of generating elements for R commute. Therefore, any commutator $[a, b], a, b \in R$ contains as a factor the central element y. Recall that $y^{p}=0$, therefore R satisfies the claimed identity.

Let us check the second claim. For $g=\left(n_{1}, n_{2}, \ldots, n_{i}, \ldots\right) \in G$ one has $g * x_{j}=x_{j}+n_{j} y$, so that G acts faithfully on L.

This example fits into the wording of the theorem by setting $A=G, H=L$, $Q=\langle y\rangle_{K}$. This example shows that the action of A on Q may be nontrivial. Moreover, one can check that we cannot avoid this by taking a somewhat smaller subgroup $A_{1} \subset A$ of finite index and a subalgebra $H_{1} \subset H$ of finite codimension.

Let us change the p-mapping on y in the previous example.
Example 3.4. Let $L=\left\langle y, x_{j}, x_{j}^{[p]}, \ldots, x_{j}^{\left[p^{k}\right]}, \ldots \mid j=1,2, \ldots, y^{[p]}=y\right\rangle_{K}$ be an abelian restricted Lie algebra and the group $G=\left(\mathbb{Z}_{p}\right)^{\mathbb{N}}$ act on L by

$$
g_{i} * x_{j}^{\left[p^{k}\right]}=x_{j}^{\left[p^{k}\right]}+\delta_{i j} y, k \geq 0 ; \quad g_{i} * y=y .
$$

Then $R=u(L) \# K[G]$ does not satisfy any nontrivial identity.
Proof. If R is PI then it must satisfy the identity given below in Lemma 4.2 and so we have

$$
F_{2}\left(x_{1}, \ldots, x_{n}, g_{1}, \ldots, g_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{1}-1\right) * x_{\pi(1)} \cdots\left(g_{n}-1\right) * x_{\pi(n)}=y^{n} \neq 0
$$

because only the summand for the identity permutation is nontrivial. This contradiction proves that R is not PI.

The same argument applies also for the following example.
Example 3.5. Let $L=\left\langle y, e_{1}, e_{2}, \ldots \mid e_{j}^{[p]}=e_{j}, j \in \mathbb{N} ; y^{[p]}=y\right\rangle_{K}$ be an abelian restricted Lie algebra and the group $G=\left(\mathbb{Z}_{p}\right)^{\mathbb{N}}$ act on L by

$$
g_{i} * e_{j}=e_{j}+\delta_{i j} y, \quad g_{i} * y=y .
$$

Then $R=u(L) \# K[G]$ does not satisfy any identity.
By $\omega K[G]$ we denote the augmentation ideal of the group ring $\omega K[G]=$ $\left\{\sum_{i} \alpha_{i} g_{i} \mid \sum_{i} \alpha_{i}=0 ; \alpha_{i} \in K, g_{i} \in G\right\}$. If L is a Lie p-algebra then by $\omega u(L)$ we denote also the augmentation ideal of the restricted enveloping algebra $\omega u(L)=$ $u(L) L=L u(L)$.

Next we prove the sufficiency in Theorem 3.1.
Proof. We set $R=u(L) \# K[G], R_{1}=u(H) \# K[A], R_{0}=u(Q) \# K\left[A^{\prime}\right]$.
Let I be the subring of R_{0} generated by Q and $\left\{h-1 \mid h \in A^{\prime}\right\}$; this is an ideal of codimension 1 in R_{0}. First, let us prove that I is nilpotent. We have $(\omega u(Q))^{q}=0$ for some q since Q is abelian finite dimensional with a nilpotent p-mapping. Also $\left(\omega K\left[A^{\prime}\right]\right)^{t}=0$ for some number t because A^{\prime} is an abelian finite
p-group. Thus $Q=Q_{0} \supset Q_{1} \supset \cdots \supset Q_{t}=0$, where $Q_{i}=\left(\omega K\left[A^{\prime}\right]\right)^{i} Q$. Now let us look at the commutators of the nilpotent elements of $\omega u(Q)$ and $\omega K\left[A^{\prime}\right]$.
$(h-1) z=h z h^{-1} h-z=(h * z) h-z=((h-1) * z+z) h-z=z(h-1)+((h-1) * z) h$,
where $h \in A^{\prime}$ and $z \in Q_{i}$, in this case $(h-1) * z \in Q_{i+1}$. This relation yields that these two commutative nilpotent subrings generate a nilpotent subring. Indeed, consider a product consisting of $z_{i} \in Q$ and $\left(h_{j}-1\right)$ where $h_{j} \in A^{\prime}$. By the above relation the number of z 's is bounded by $s_{1}=q-1$. Also, the number of factors $\left(h_{j}-1\right)$ is bounded by $s_{2}=(t-1)+(t-1)(q-1)$. Hence, $I^{s}=0$ for $s=1+s_{1}+s_{2}=q t$.

Second, we claim that R_{1} is a PI-algebra. We consider the left ideal $J=R_{1} I=R_{1}\left(Q+\omega K\left[A^{\prime}\right]\right)$. The following commutator relations hold for arbitrary $x \in H, z \in Q, g \in A$, and $h \in A^{\prime}$

$$
\begin{aligned}
z x & =x z+[z, x], & & {[z, x] \in Q ; } \\
z g & =g g^{-1} z g=g\left(g^{-1} * z\right), & & g^{-1} * z \in Q ; \\
(h-1) g & =g\left(g^{-1} h g-1\right), & & g^{-1} h g \in A^{\prime} ; \\
(h-1) x & =h\left(x-h^{-1} x h\right)+x(h-1) & & \\
& =h\left(\left(1-h^{-1}\right) * x\right)+x(h-1), & & \left(1-h^{-1}\right) * x \in Q,
\end{aligned}
$$

the latter relation being true because A acts trivially on H / Q. These relations describe the commutators of all possible products of the form $u \cdot v$ where u, v are the generating elements of subrings I and R_{1}, respectively. It follows that $I R_{1} \subset R_{1} I$. By symmetry we have a two-sided ideal $J=R_{1} I=I R_{1} \triangleleft R_{1}$ and $J^{s}=\left(R_{1} I\right)^{s} \subset R_{1} I^{s}=0$. Next we use the fact that $R_{1} / J \cong u(H / Q) \# K\left[A / A^{\prime}\right]$. By assumption of the theorem this is a commutative algebra. Therefore, R_{1} satisfies the identity $(X Y-Y X)^{s} \equiv 0$.

Let f_{1}, \ldots, f_{k} form a basis of L modulo H. Let $g_{1}, \ldots, g_{k_{0}}$ be the right coset representatives of A in G. Now ${ }_{R_{1}} R$ is a free R_{1}-module with the finite basis $\left\{f_{1}^{\alpha_{1}} \cdots f_{k}^{\alpha_{k}} g_{j} \mid 0 \leq \alpha_{t}<p, 1 \leq j \leq k_{0}\right\}$, the rank being $r=p^{k} k_{0}$. Indeed, suppose that we have a relation

$$
\begin{equation*}
\sum_{\alpha j} r_{\alpha j} f_{1}^{\alpha_{1}} \cdots f_{k}^{\alpha_{k}} g_{j}=0, \quad r_{\alpha j} \in R_{1} \tag{5}
\end{equation*}
$$

Let $A=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$, then

$$
\begin{align*}
& \sum_{\alpha j}\left(\sum_{\lambda} u_{\alpha j \lambda} a_{\lambda}\right) f_{1}^{\alpha_{1}} \cdots f_{k}^{\alpha_{k}} g_{j}=0, \quad u_{\alpha j \lambda} \in u(H) ; \\
& \sum_{j \lambda}\left(\sum_{\alpha} u_{\alpha j \lambda}\left(a_{\lambda} * f_{1}\right)^{\alpha_{1}} \cdots\left(a_{\lambda} * f_{k}\right)^{\alpha_{k}}\right) a_{\lambda} g_{j}=0 \\
& \sum_{\alpha} u_{\alpha j \lambda}\left(a_{\lambda} * f_{1}\right)^{\alpha_{1}} \cdots\left(a_{\lambda} * f_{k}\right)^{\alpha_{k}}=0 . \tag{6}
\end{align*}
$$

Since H is G-invariant the elements $\left\{a_{\lambda} * f_{1}, \ldots, a_{\lambda} * f_{k}\right\}$ form a basis of L modulo H. We apply PBW-Theorem to (6) and obtain that $u_{\alpha j \lambda}=0$. Hence, (5) is trivial.

If we identify any $x \in R$ with the right multiplication by x we obtain an embedding of R into a matrix ring over the PI-ring R_{1} :

$$
R \subset \operatorname{End}\left(R_{1} R\right) \cong \mathrm{M}_{r}\left(R_{1}\right) \cong \mathrm{M}_{r}(K) \otimes_{K} R_{1}
$$

By Regev's Theorem on the tensor product of PI-rings [17] we conclude that $R=U(L) \# K[G]$ is a PI-ring.

4. Useful identities

We start with constructing a special identity. It is similar to the identities used in the study of identical relations of restricted enveloping algebras [3].

Lemma 4.1. Suppose that R is a PI-algebra over an arbitrary field. Then it satisfies a nontrivial identity of the form

$$
F\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi} Y_{1} X_{\pi(1)} \cdots Y_{n} X_{\pi(n)} \equiv 0, \quad \alpha_{\pi} \in K, \alpha_{e}=1
$$

Proof. Let $A=A\left(X_{1}, \ldots, X_{m}, \ldots, Y_{1}, \ldots, Y_{m}, \ldots,\right)$ be the free associative algebra. For any permutation $\pi \in S_{n}$ we define a monomial

$$
\begin{equation*}
f_{\pi}=Y_{1} X_{\pi(1)} \cdots Y_{n} X_{\pi(n)} \in A \tag{7}
\end{equation*}
$$

We denote by $P_{m}\left(Z_{1}, \ldots, Z_{m}\right)$ the subspace of all multilinear polynomials in m variables Z_{1}, \ldots, Z_{m} in the free associative algebra $\bar{A}=\bar{A}\left(Z_{1}, \ldots, Z_{m}, \ldots\right)$ in a countable set of variables $Z_{1}, \ldots, Z_{m}, \ldots$ By $P_{m}^{\prime}\left(Z_{1}, \ldots, Z_{m}\right)$ we denote the subspace of elements in $P_{m}\left(Z_{1}, \ldots, Z_{m}\right)$ that are the left hand sides of identities for R. Let R satisfy a nontrivial identity of degree d. The following estimate is well-known [1]

$$
\begin{equation*}
\operatorname{dim} P_{m}\left(Z_{1}, \ldots, Z_{m}\right) / P_{m}^{\prime}\left(Z_{1}, \ldots, Z_{m}\right)<d^{2 m}, \quad m \in \mathbb{N} \tag{8}
\end{equation*}
$$

Let us apply this estimate to A. We consider the subspace $P_{2 n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots\right.$, $\left.Y_{n}\right) \subset A$ of multilinear polynomials of degree $2 n$ depending on the variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$. This subspace contains n ! monomials of the form (7) which are linearly independent. We apply (8)

$$
\operatorname{dim} P_{2 n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right) / P_{2 n}^{\prime}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)<d^{4 n}, \quad n \in \mathbb{N}
$$

If $n!>d^{4 n}$ then $f_{\pi}, \pi \in S_{n}$ are linearly dependent modulo $P_{2 n}^{\prime}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots\right.$, $\left.Y_{n}\right)$, thus yielding the desired identity. Since $n!>(n / e)^{n}>(n / 3)^{n}$, the number $n=3 d^{4}$ is sufficiently large, and the result follows.

Next we construct some special weak identities for the smash products. A relation is called a weak identity of an algebra R if it vanishes whenever the selected indeterminates are replaced by the elements from the selected subsets of R. Let \widetilde{A} be the free associative algebra generated by the set of symbols $\left\{z_{i} * X_{j} \mid i, j \in \mathbb{N}\right\}$. We consider weak identities as the elements from \widetilde{A}. We say that a weak identity is nontrivial if it is a nonzero element of \widetilde{A}.

Lemma 4.2. Let $R=u(L) \# K[G]$ be a PI-algebra. Then it satisfies the following weak identities
1.

$$
\begin{aligned}
& F_{1}\left(X_{1}, \ldots, X_{n}, z_{1}, \ldots, z_{n}\right) \\
= & \sum_{\pi \in S_{n}} \alpha_{\pi}\left(z_{1} * X_{\pi(1)}\right) \cdots\left(z_{n} * X_{\pi(n)}\right) \\
\equiv & 0 ; X_{1}, \ldots, X_{n} \in u(L) ; z_{1}, \ldots, z_{n} \in K[G] .
\end{aligned}
$$

2.

$$
\begin{aligned}
& F_{2}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right) \\
= & \sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{1} * X_{\pi(1)}-X_{\pi(1)}\right) \cdots\left(g_{n} * X_{\pi(n)}-X_{\pi(n)}\right) \\
\equiv & 0 ; X_{1}, \ldots, X_{n} \in u(L) ; g_{1}, \ldots, g_{n} \in G .
\end{aligned}
$$

where $\alpha_{\pi} \in K$, and $\alpha_{e}=1$.
Proof. We take the identity of the previous lemma, set $Y_{1}=g_{1}, Y_{2}=$ $g_{1}^{-1} g_{2}, \ldots, Y_{n}=g_{n-1}^{-1} g_{n}, g_{i} \in G$, and multiply on the right by g_{n}^{-1}. The for all $X_{1}, \ldots, X_{n} \in u(L)$ and $g_{1}, \ldots, g_{n} \in G$ we get

$$
F_{1}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{1} * X_{\pi(1)}\right) \cdots\left(g_{n} * X_{\pi(n)}\right) \equiv 0
$$

By linearity we can substitute elements of the group ring for g_{1}, \ldots, g_{n}. Thus we derive the first identity.

We decompose $F_{2}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right), g_{1}, \ldots, g_{n} \in G$, into 2^{n} summands, each being the result of substitution of the identity element $e \in G$ into $F_{1}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right)$ on some places $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq n$:

$$
\begin{aligned}
& F_{2}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right)= \\
& =\left.\sum_{s=0}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq n}(-1)^{s} F_{1}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right)\right|_{g_{i_{1}}=\cdots=g_{i s}=e} \equiv 0 .
\end{aligned}
$$

We remark that the following decomposition holds

$$
\begin{align*}
& F_{1}\left(X_{1}, \ldots, X_{n}, z_{1}, \ldots, z_{n}\right) \\
= & \sum_{i=1}^{n}\left(z_{1} * X_{i}\right) H_{i}\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{n}, z_{2}, \ldots, z_{n}\right) ; \tag{9}\\
= & \sum_{\pi(1)=i} \alpha_{\pi}\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{n}, z_{2}, \ldots, z_{n}\right)
\end{align*}
$$

where H_{i} are the polynomials of the same type as F_{1}. Moreover, if F_{1} is nontrivial then some H_{i} is also nontrivial. Similar decompositions also hold true for polynomials of type F and F_{2}.

Suppose that L is a restricted Lie algebra. Fix some basis in L. Then we have the standard PBW-basis for the restricted enveloping algebra $u(L)$ [6]. Let
$u_{n}(L)$ denote the span of all basis monomials for $u(L)$ of length not greater than n. Now we have the standard filtration $u_{0}(L) \subset u_{1}(L) \subset \cdots \subset u_{n}(L) \subset \cdots$. It induces the filtration for $R=u(L) \# K[G]$

$$
\begin{aligned}
& R_{0} \subset R_{1} \subset \cdots \subset R_{n} \subset \cdots ; \quad R_{n}=u_{n}(L) K[G], n=0,1,2, \cdots \\
& \operatorname{gr} R=\underset{i=0}{\oplus} \bar{R}_{i}, \quad \bar{R}_{i}=R_{i} / R_{i-1}, \quad i=0,1, \ldots
\end{aligned}
$$

Observe that $\operatorname{gr} R \cong \operatorname{gr}\left\{u_{n}(L) \mid n=0,1,2 \ldots\right\} \# K[G]$ where the action of G on the vector space $\bar{L} \cong u_{1}(L) / u_{0}(L)$ is the same as the action of G on L. Recall also that $\operatorname{gr}\left\{u_{n}(L) \mid n=0,1,2 \ldots\right\}$ is isomorphic to the ring of truncated polynomials.

Lemma 4.3. Let $R=u(L) \# K[G]$ be a PI-algebra. Then $\mathrm{gr} R$ satisfies a weak identity

$$
\begin{array}{r}
F_{3}\left(X_{1}, \ldots, X_{n}, z_{1}, \ldots, z_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(z_{\pi(n)} * X_{n}\right) \cdots\left(z_{\pi(1)} * X_{1}\right) \equiv 0 \\
X_{1}, \ldots, X_{n} \in u(L), \quad z_{1}, \ldots, z_{n} \in K[G]
\end{array}
$$

where $\alpha_{\pi} \in K$, and $\alpha_{e}=1$.
Proof. We rewrite $F_{1}\left(X_{1}, \ldots, X_{n}, z_{1}, \ldots, z_{n}\right)$ using the commutativity of $\operatorname{gr} u(L)$.

The nontrivial elements of the form F_{3} can be also decomposed as

$$
\begin{align*}
& F_{3}\left(X_{1}, \ldots, X_{n}, z_{1}, \ldots, z_{n}\right) \\
= & \sum_{i=1}^{n}\left(z_{i} * X_{n}\right) H_{i}\left(X_{1}, \ldots, X_{n-1}, z_{1}, \ldots \hat{z}_{i}, \ldots, z_{n}\right) ; \tag{10}\\
= & \sum_{\pi(n)=i} \alpha_{\pi}\left(z_{\pi(n-1)} * X_{n-1}\right) \cdots\left(z_{\pi(1)} * X_{1}\right),
\end{align*}
$$

where H_{i} are the polynomials of the same type as F_{3} and some H_{i} is also nontrivial.

5. Delta-theory for smash products

Recall that there are some delta-sets inside G and L that have been effectively used in the study of the inner structure of G and L; the notation δ, Δ was used for these sets in [3], [11], [14]. A definition of delta-sets for Hopf algebras in terms of their inner actions can be found in [4].

Suppose that a group G acts on a Lie algebra L by automorphisms. In this section we introduce four more families of delta-sets defined with respect to this action. We specially reserve the symbol \mathcal{D} for the pairing between $K[G]$ and L.

First, we define a series of delta-sets inside L :

$$
\begin{aligned}
\mathcal{D}_{m, G}(L) & =\{x \in L \mid \operatorname{dim} K[G] * x \leq m\}, \quad m \in \mathbb{N} ; \\
\mathcal{D}_{G}(L) & =\bigcup_{m=1}^{\infty} \mathcal{D}_{m, G}(L) \subset L
\end{aligned}
$$

Another series of delta-sets lives inside G :

$$
\begin{aligned}
\mathcal{D}_{m, L}(G) & =\{g \in G \mid \operatorname{dim}(g-1) * L \leq m\}, \quad m=0,1,2 \ldots \\
\mathcal{D}_{L}(G) & =\bigcup_{m=0}^{\infty} \mathcal{D}_{m, L}(G) \subset G .
\end{aligned}
$$

Finally, we define families of delta-sets inside the group ring $K[G]$ and the restricted enveloping algebra $u(L)$:

$$
\begin{aligned}
\mathcal{D}_{m, L}(K[G]) & =\{a \in K[G] \mid \operatorname{dim}(a * L) \leq m\}, \quad m=0,1,2, \ldots ; \\
\mathcal{D}_{L}(K[G]) & =\bigcup_{m=0}^{\infty} \mathcal{D}_{m, L}(K[G]) \subset K[G] . \\
\mathcal{D}_{m, G}(u(L)) & =\{v \in u(L) \mid \operatorname{dim} K[G] * v \leq m\}, \quad m \in \mathbb{N} ; \\
\mathcal{D}_{G}(u(L)) & =\bigcup_{m=1}^{\infty} \mathcal{D}_{m, G}(u(L)) \subset u(L) .
\end{aligned}
$$

In our study of identities in smash products we shall use essentially three families except those inside $u(L)$. For convenience we often omit subscripts L, G and simply write, for example, $\mathcal{D}(L)$ instead of $\mathcal{D}_{G}(L)$.

One can easily check the following properties of these sets.

Lemma 5.1. The sets $\mathcal{D}_{i}(L)$ satisfy

1. if $x \in \mathcal{D}_{i}(L), y \in \mathcal{D}_{j}(L)$ then $\alpha x+\beta y \in \mathcal{D}_{i+j}(L), \alpha, \beta \in K$;
2. if $x \in \mathcal{D}_{i}(L), y \in \mathcal{D}_{j}(L)$ then $[x, y] \in \mathcal{D}_{i \cdot j}(L)$; and $x^{[p]} \in \mathcal{D}_{i^{p}}(L)$;
3. $\mathcal{D}_{i}(L)$ are G-invariant;
4. $\mathcal{D}(L)$ is a restricted G-invariant subalgebra in L.

Proof. For example, let us prove the second claim. In this case $K[G] *[x, y]=$ $\langle g *[x, y] \mid g \in G\rangle_{K}=\langle[g * x, g * y] \mid g \in G\rangle_{K} \subset[K[G] * x, K[G] * y]$, so $\operatorname{dim} K[G] *$ $[x, y] \leq \operatorname{dim}([K[G] * x) \cdot \operatorname{dim}([K[G] * y) \leq i j$.

Lemma 5.2. The sets $\mathcal{D}_{i}(G)$ satisfy

1. if $g \in \mathcal{D}_{i}(G), h \in \mathcal{D}_{j}(G)$ then $g h \in \mathcal{D}_{i+j}(G)$;
2. if $g \in \mathcal{D}_{i}(G)$, then $g^{-1} \in \mathcal{D}_{i}(G)$;
3. if $g \in \mathcal{D}_{i}(G), h \in G$ then $h^{-1} g h \in \mathcal{D}_{i}(G)$;
4. $1 \in \mathcal{D}_{i}(G)$ for all $i \geq 0$;
5. $\mathcal{D}(G)$ is a normal subgroup in G.

Proof. In order to prove claims 1), 2), and 3) we observe that for arbitrary $g, h \in G$ one has

$$
\begin{aligned}
& (g h-1) * L=((g-1) h+h-1) * L \subset(g-1) * L+(h-1) * L ; \\
& \left(g^{-1}-1\right) * L=g^{-1} *((1-g) * L) ; \\
& \left(h^{-1} g h-1\right) * L=\left(h^{-1}(g-1) h\right) * L \subset h^{-1} *((g-1) * L) .
\end{aligned}
$$

Other claims are obvious.

Lemma 5.3. The sets $\mathcal{D}_{i}(K[G])$ satisfy

1. if $a \in \mathcal{D}_{i}(K[G]), b \in \mathcal{D}_{j}(K[G])$ then $\alpha a+\beta b \in \mathcal{D}_{i+j}(K[G]), \alpha, \beta \in K$;
2. $K[G] \cdot \mathcal{D}_{i}(K[G]) \cdot K[G] \subset \mathcal{D}_{i}(K[G])$;
3. $\mathcal{D}(K[G])$ is a two-sided ideal in $K[G]$.

Proof. Let us check the second claim. Suppose that $a \in \mathcal{D}_{i}(K[G])$, so $\operatorname{dim}(a *$ $L) \leq i$. Then for arbitrary $x, y \in K[G]$ we have $(x a y) * L \subset x *(a * L)$ and $\operatorname{dim}((x a y) * L) \leq i$. Hence, $x a y \in \mathcal{D}_{i}(K[G])$.

Lemma 5.4. The sets $\mathcal{D}_{i}(u(L))$ satisfy

1. if $v \in \mathcal{D}_{i}(u(L)), w \in \mathcal{D}_{j}(u(L))$ then $\alpha v+\beta w \in \mathcal{D}_{i+j}(u(L)), \alpha, \beta \in K$;
2. if $v \in \mathcal{D}_{i}(u(L)), w \in \mathcal{D}_{j}(u(L))$ then $v w \in \mathcal{D}_{i+j}(u(L))$;
3. $\mathcal{D}(u(L))$ is a subalgebra in $u(L)$.

Proof. is similar to that of Lemma 5.1.
Let us establish the relationship between $\mathcal{D}(G)$ and $\mathcal{D}(K[G])$.
Lemma 5.5. 1. $1+(\mathcal{D}(K[G]) \cap(G-1))=\mathcal{D}(G)$;
2. $K[G] \cdot \omega K[\mathcal{D}(G)]=\omega K[\mathcal{D}(G)] \cdot K[G] \subset \mathcal{D}(K[G])$.

Proof. The first claim follows directly from definitions. Let us prove the second one. We consider $v=\alpha_{1} g_{1}+\cdots+\alpha_{m} g_{m} \in \omega K[\mathcal{D}(G)], \alpha_{i} \in K, g_{i} \in \mathcal{D}(G)$. Then $\alpha_{1}+\cdots+\alpha_{m}=0$ and $v=\alpha_{1}\left(g_{1}-1\right)+\cdots+\alpha_{m}\left(g_{m}-1\right)$. There exists a number s such that $\left\{g_{1}, \ldots, g_{m}\right\} \subset \mathcal{D}_{s}(G)$. Let $w, u \in K[G]$ then

$$
(w v u) * L \subset w *\left(\left(g_{1}-1\right) * L+\cdots+\left(g_{m}-1\right) * L\right)
$$

and $w v u \in \mathcal{D}_{m s}(K[G])$.
But we lack any bounds in this lemma. We only suggest the following conjecture that would make Theorem 6.5 below unnecessary.
Conjecture Let $G=\mathcal{D}_{s}(G)$ then $\omega K[G]=\mathcal{D}_{t}(K[G])$ for some number $t=f(s)$.

On the other hand, the next example shows that the inclusion in Lemma 5.5 is strict: $K[G] \cdot \omega K[\mathcal{D}(G)] \neq \mathcal{D}(K[G])$.

Example 5.6. Let $L=\left\langle x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots \mid x_{i}^{[p]}=y_{i}^{[p]}=0, i \in \mathbb{N}\right\rangle_{K}$ be an abelian restricted Lie algebra. We consider the group $G=\left(\mathbb{Z}_{p}\right)^{\mathbb{N}}$ and set $g_{i}=(0, \ldots, 0,1,0, \ldots)$, with 1 on i-th place, $i \in \mathbb{N}$. Suppose that G acts on L by

$$
g_{i} * x_{j}=x_{j}+\xi_{i} y_{j}, \quad g_{i} * y_{j}=y_{j}, \quad i, j \in \mathbb{N},
$$

where $\left\{\xi_{i} \in K \mid i \in \mathbb{N}\right\}$ are the scalars linearly independent over \mathbb{Z}_{p}. We consider the smash product $R=u(L) \# K[G]$. Then

1. $\mathcal{D}(G)=\{e\}$;
2. $\mathcal{D}_{L}(K[G])=\mathcal{D}_{0, L}(K[G])$ and $\operatorname{dim} K[G] / \mathcal{D}(K[G])=2$;
3. R is not PI ;
4. R satisfies some weak identities of the type

$$
\begin{aligned}
& F_{2}\left(X_{1}, \ldots, X_{n}, h_{1}, \ldots, h_{n}\right) \\
= & \sum_{\pi \in S_{n}} \alpha_{\pi}\left(h_{1} * X_{\pi(1)}-X_{\pi(1)}\right) \cdots\left(h_{n} * X_{\pi(n)}-X_{\pi(n)}\right) \\
\equiv & 0 ; X_{1}, \ldots, X_{n} \in L, h_{1}, \ldots, h_{n} \in G .
\end{aligned}
$$

Proof. Let $e \neq g=\left(n_{1}, n_{2}, \ldots\right) \in G$, then $(g-1) * x_{j}=\lambda y_{j}$, where $\lambda=\sum_{i} n_{i} \xi_{i} \neq 0$ by assumption. Now the first claim follows by the definition of the delta-sets $\mathcal{D}_{i, L}(G)$.

To prove the second claim we take $z=\sum_{i} \alpha_{i} g_{i} \in K[G]$ and consider

$$
z * x_{j}=\left(\sum_{i} \alpha_{i}\right) x_{j}+\left(\sum_{i} \alpha_{i} \xi_{i}\right) y_{j}, \quad j \in \mathbb{N}
$$

Then $z \in \mathcal{D}_{m, L}(K[G])$ for some $m \geq 0$ if and only if $\sum_{i} \alpha_{i}=0$ and $\sum_{i} \alpha_{i} \xi_{i}=0$. Hence, $\mathcal{D}_{L}(K[G])=\mathcal{D}_{0, L}(K[G])$ and $\operatorname{dim} K[G] / \mathcal{D}_{L}(K[G])=2$.

Suppose that R is PI. We apply the first identity of Lemma 4.2 and substitute the values $a_{1}=x_{1}, a_{2}=x_{2} x_{3}, \ldots, a_{n}=x_{(n-1) n / 2+1} \cdots x_{n(n+1) / 2}$, and $g_{i_{1}}, \ldots, g_{i_{n}} \in G$:

$$
\begin{aligned}
& F_{1}\left(a_{1}, a_{2}, \ldots, a_{n}, g_{i_{1}}, \ldots, g_{i_{n}}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{i_{1}} * a_{\pi(1)}\right) \cdots\left(g_{i_{n}} * a_{\pi(n)}\right) \\
& =\left(\sum_{\pi \in S_{n}} \alpha_{\pi} \xi_{i_{1}}^{\pi(1)} \xi_{i_{2}}^{\pi(2)} \cdots \xi_{i_{n}}^{\pi(n)}\right) y_{1} \cdots y_{n(n+1) / 2}+\text { terms with } x \text {-s. }
\end{aligned}
$$

Therefore, $0 \neq f\left(X_{1}, \ldots, X_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi} X_{1}^{\pi(1)} X_{2}^{\pi(2)} \cdots X_{n}^{\pi(n)} \in K\left[X_{1}, \ldots, X_{n}\right]$ is annihilated by any substitution from the countable set of scalars $X_{i} \in\left\{\xi_{j} \mid j \in \mathbb{N}\right\}$, $i=1, \ldots, n$. This contradiction proves that R is not PI.

By linearity, the last claim can be checked for the action on x-s only. We remark that any element $h \in G$ acts as the generators g_{i}, namely $h * x_{i}=x_{i}+\mu_{h} y_{i}$, $\mu_{h} \in K, i \in \mathbb{N}$. Then

$$
\begin{aligned}
& F_{2}\left(x_{1}, \ldots, x_{n}, h_{1}, \ldots, h_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(h_{1} * x_{\pi(1)}-x_{\pi(1)}\right) \cdots\left(h_{n} * x_{\pi(n)}-x_{\pi(n)}\right) \\
& =\left(\sum_{\pi \in S_{n}} \alpha_{\pi}\right) \mu_{1} \mu_{2} \cdots \mu_{n} y_{1} y_{2} \cdots y_{n} .
\end{aligned}
$$

If $\sum_{\pi \in S_{n}} \alpha_{\pi}=0$, then we obtain a weak identity. ${ }^{3}$
Also, this example shows that it is not enough to study the action of G on L, but we also need to take into account the action of G on $u(L)$ as well (see the proof of Theorem 6.2 below).

Let us also establish the relationship between $\mathcal{D}(L)$ and $\mathcal{D}(u(L))$.
Lemma 5.7. 1. $\mathcal{D}(u(L)) \cap L=\mathcal{D}(L) ;$
2. $\omega u(\mathcal{D}(L)) \subset \mathcal{D}(u(L))$.

Proof. The first claim follows from definitions. The subalgebra $\omega u(\mathcal{D}(L))$ is generated by the elements from $\mathcal{D}(L)$. These elements have finite width by Lemma 5.4.

We suggest to study whether there exists some bounds similar to Conjecture above. Another interesting question is to investigate if the inclusion in Lemma 5.7 is strict.

6. Structure of delta-sets

In this section we establish crucial facts about the structure of three families of delta-sets, provided that the smash product $R=u(L) \# K[G]$ satisfies a nontrivial polynomial identity. ¿From now on we assume that the number n is fixed in Lemma 4.2 (remark that all lemmas of Section 4 fix the same number n).

Let us consider the associated graded algebra gr $R \cong(\operatorname{gr} u(L)) \# K[G]$. It satisfies the same weak identities of Lemmas 4.2, 4.3. We observe that the action of G on the space $u_{1}(L) / u_{0}(L) \cong L$ inside gr $u(L)$ remains the same. Therefore, we may assume that L is abelian with the trivial p-mapping, while studying the action of G on L in this section.

Let L be a restricted Lie algebra and some basis $L=\left\{e_{i} \mid i \in I\right\}$ be fixed. Suppose that the decomposition of $v \in u(L)$ via the standard basis for the restricted enveloping algebra depends on the elements $e_{i_{1}}, \ldots, e_{i_{s}}$. Then we denote the support of v by $\operatorname{supp} v=\left\{e_{i_{1}}, \ldots, e_{i_{s}}\right\}$.

Let G be a group and T a subset of G. We say that T has finite index in G if there exist $g_{1}, g_{2}, \ldots, g_{m} \in G$ with

$$
G=g_{1} T \cup g_{2} T \cup \cdots \cup g_{m} T
$$

We then define the index $|G: T|$ to be the minimum possible integer m with the above property[11], [12]. If T is a subgroup of G, then this agrees with the usual definition of index.

Lemma 6.1. ([11]) Let T be a subset of G with $|G: T| \leq m$. We set $T^{*}=T \cup\{1\} \cup T^{-1}$. Then

$$
\left(T^{*}\right)^{4^{m}}=\underbrace{T^{*} \cdot T^{*} \cdots \cdot T^{*}}_{4^{m} \text { times }}
$$

is a subgroup of G.

[^1]Theorem 6.2. Let $R=u(L) \# K[G]$ be a PI-algebra. Then there exists a subgroup $G_{0} \subset G$ with $\left|G: G_{0}\right|<n$ and $G_{0} \subset \mathcal{D}_{n^{3} 4^{n}, L}(G)$.

Proof. Let n be the number fixed in Lemma 4.3. Let us prove that $\mid G$: $\mathcal{D}_{n^{3}}(G) \mid<n$. We fix arbitrary $g_{1}, \ldots, g_{n} \in G$. It suffices to prove that there exist $i \neq j$ such that $g_{i}^{-1} g_{j} \in \mathcal{D}_{n^{3}}(G)$. We apply the weak identity of Lemma 4.3

$$
\begin{array}{r}
F_{3}\left(X_{1}, \ldots, X_{n}, g_{1}, \ldots, g_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{\pi(n)} * X_{n}\right) \cdots\left(g_{\pi(1)} * X_{1}\right) \equiv 0 \\
X_{1}, \ldots, X_{n} \in u(L)
\end{array}
$$

In the identical relations that follow we denote by $X^{\prime} s$, and $Y^{\prime} s$ the variables that range over some sets of elements inside $u(L)$.

Let us prove by induction on m the following. Suppose that $g_{1}, \ldots, g_{m} \in G$ are fixed and satisfy

$$
F_{3}\left(X_{1}, \ldots, X_{m}, g_{1}, \ldots, g_{m}\right) \equiv 0 ; \quad X_{i} \in u_{i}(L), i=1, \ldots, m
$$

where F_{3} is nontrivial. Then we claim that there exist $i \neq j$ such that $g_{i}^{-1} g_{j} \in$ $\mathcal{D}_{m^{3}}(G)$.

We consider $m=1$, we have $g_{1} * X_{1} \equiv 0, X_{1} \in L$. Then $L=0$ and the assertion is trivial.

Suppose that the statement is valid for $m-1, m>1$. We apply (10):

$$
\begin{align*}
& F_{3}\left(X_{1}, \ldots, X_{m}, g_{1}, \ldots, g_{m}\right) \\
= & \sum_{i=1}^{m}\left(g_{i} * X_{m}\right) H_{i}\left(X_{1}, \ldots, X_{m-1}, g_{1}, \ldots \hat{g}_{i}, \ldots, g_{m}\right) \\
\equiv & 0 ; X_{i} \in u_{i}(L), 1 \leq i \leq m \tag{11}
\end{align*}
$$

Without loss of generality we may assume that H_{m} is a non-trivial polynomial. Now we consider two cases. First, suppose that

$$
H_{m}\left(X_{1}, \ldots, X_{m-1}, g_{1}, \ldots, g_{m-1}\right) \equiv 0 ; \quad X_{i} \in u_{i}(L), i=1, \ldots, m-1
$$

Then by the inductive assumption there exist $i \neq j, 1 \leq i, j \leq m-1$ such that $g_{i}^{-1} g_{j} \in \mathcal{D}_{(m-1)^{3}}(G) \subset \mathcal{D}_{m^{3}}(G)$.

Second, there exist $a_{1} \in u_{1}(L), a_{2} \in u_{2}(L), \ldots, a_{m-1} \in u_{m-1}(L)$ such that $h_{m}=H_{m}\left(a_{1}, \ldots, a_{m-1}, g_{1}, \ldots, g_{m-1}\right) \neq 0$. Let $\left\{e_{i} \mid i \in I\right\}$ be an ordered basis for L. Since H_{m} is linear in $X^{\prime} s$, we can consider a_{1}, \ldots, a_{m-1} to be monomials in $\left\{e_{\alpha_{1}}, \ldots, e_{\alpha_{t}}\right\}$, where $t \leq 1+2+\cdots+m-1<m(m-1)$. We set

$$
V_{0}=\left\langle g_{i} * e_{\alpha_{j}} \mid 1 \leq i \leq m-1,1 \leq j \leq t\right\rangle_{K}
$$

Then $\operatorname{dim} V_{0} \leq t(m-1) \leq m(m-1)^{2}$. Now we substitute a_{1}, \ldots, a_{m-1} for X_{1}, \ldots, X_{m-1} in (11), set $X=X_{m}$, and obtain the relation

$$
\begin{align*}
& \sum_{i=1}^{m}\left(g_{i} * X\right) h_{i} \equiv 0, \quad X \in u_{m}(L) \tag{12}\\
& h_{m} \neq 0, \quad \operatorname{supp} h_{m} \subset V_{0} \tag{13}
\end{align*}
$$

By substituting $X Y$ for X we get

$$
\begin{equation*}
\sum_{i=1}^{m}\left(g_{i} * X\right)\left(g_{i} * Y\right) h_{i} \equiv 0, \quad X \in u_{m-1}(L), Y \in L \tag{14}
\end{equation*}
$$

Multiplying (12) by $g_{1} * Y$ and subtracting from (14) we obtain

$$
\begin{equation*}
\sum_{i=2}^{m}\left(g_{i} * X\right)\left(g_{i} * Y-g_{1} * Y\right) h_{i} \equiv 0, \quad X \in u_{m-1}(L), Y \in L \tag{15}
\end{equation*}
$$

Here we have two possibilities. First, $\left(g_{m}-g_{1}\right) * y \in V_{0}$ for all $y \in L$. Then $\left(g_{1}^{-1} g_{m}-1\right) * L \subset g_{1}^{-1} * V_{0}$, therefore $g_{1}^{-1} g_{m} \in \mathcal{D}_{b}(G)$, where $b=\operatorname{dim} V_{0} \leq$ $m(m-1)^{2}<m^{3}$. Second, there exists $y_{0} \in L$ such that $\left(g_{m}-g_{1}\right) * y_{0}=v_{1} \notin V_{0}$. We set $V_{1}=V_{0}+\left\langle v_{1}\right\rangle_{K}$ and change the basis of L outside V_{0} so that v_{1} coincides with some basis element. We fix $Y=y_{0}$ in (15), and by the construction of v_{1} and (13) we obtain

$$
\begin{align*}
& \sum_{i=2}^{m}\left(g_{i} * X\right) h_{i}^{(1)} \equiv 0, \quad X \in u_{m-1}(L) ; \tag{16}\\
& h_{i}^{(1)}=\left(g_{i} * y_{0}-g_{1} * y_{0}\right) h_{i}, \quad i=2, \ldots, m ; \\
& h_{m}^{(1)}=v_{1} h_{m} \neq 0, \quad \operatorname{supp} h_{m}^{(1)} \subset V_{1} .
\end{align*}
$$

We continue this process further by deleting in (16) the term for $i=2$.

$$
\sum_{i=3}^{m}\left(g_{i} * X\right)\left(g_{i} * Y-g_{2} * Y\right) h_{i}^{(1)} \equiv 0, \quad X \in u_{m-2}(L), Y \in L .
$$

Similarly, either $\left(g_{m}-g_{2}\right) * L \subset V_{1}$ and we are done (see below), or there exists $y_{1} \in L$ such that $\left(g_{m}-g_{2}\right) * y_{1}=v_{2} \notin V_{1}$. In the latter case we change the basis of L outside V_{1} so that v_{2} is one of the basis elements, set $V_{2}=V_{1}+\left\langle v_{2}\right\rangle_{K}$, $h_{i}^{(2)}=\left(g_{i} * y_{1}-g_{2} * y_{1}\right) h_{i}^{(1)}, i=3, \ldots, m$ and obtain the relation

$$
\begin{aligned}
& \sum_{i=3}^{m}\left(g_{i} * X\right) h_{i}^{(2)} \equiv 0, \quad X \in u_{m-2}(L) \\
& h_{m}^{(2)}=v_{2} h_{m}^{(1)} \neq 0, \quad \operatorname{supp} h_{m}^{(2)} \subset V_{2} .
\end{aligned}
$$

This process terminates with the relation

$$
\begin{align*}
& \left(g_{m} * X\right) h_{m}^{(m-1)} \equiv 0, \quad X \in u_{1}(L) \tag{17}\\
& h_{m}^{(m-1)} \neq 0 ; \\
& \operatorname{supp} h_{m}^{(m-1)} \subset V_{m-1}=V_{0}+\left\langle v_{1}, \ldots, v_{m-1}\right\rangle_{K} .
\end{align*}
$$

If we substitute $X=1$ in (17) then we obtain a contradiction. This contradiction proves that this process had to stop even before, and the desired relation holds: $g_{i}^{-1} g_{m} \in \mathcal{D}_{c}(G)$, where $c=\operatorname{dim} V_{i-1} \leq \operatorname{dim} V_{m-1} \leq m(m-1)^{2}+m-1 \leq m^{3}$.

If we set $T=\mathcal{D}_{n^{3}}(G)$, then we have proved that $|G: T| \leq n$. Remark that, by Lemma 5.2, $1 \in T$ and $T=T^{-1}$. We set $G_{0}=T^{4^{n}}$ and conclude that G_{0} is a subgroup by Lemma 6.1. Of course, $\left|G: G_{0}\right| \leq n$ and $G_{0} \subset \mathcal{D}_{n^{3} 4^{n}}(G)$ by Lemma 5.2.

Suppose that W is a subset in a vector space V. We say that W has finite codimension in V if there exist $v_{1}, \ldots, v_{m} \in V$ with $V=W+\left\langle v_{1}, \ldots, v_{m}\right\rangle_{K}$. If m is the minimum possible integer with such property then we set $\operatorname{dim} V / W=m$. We also introduce the notation $m \cdot W=\left\{w_{1}+\cdots+w_{m} \mid w_{i} \in W\right\}, m \in \mathbb{N}$.

Lemma 6.3. Let L be a vector space. Suppose that a subset $T \subset L$ is stable under multiplication by scalars and such that $\operatorname{dim} L / T \leq m$. Then $\langle T\rangle_{K}=4^{m} \cdot T$.

Proof. We prove this statement by induction on m. If $m=0$ then the assertion is trivial. Suppose that $\operatorname{dim} L / T=m$. Then there exist h_{1}, \ldots, h_{m} such that

$$
\begin{equation*}
L=T+\left\langle h_{1}, \ldots, h_{m}\right\rangle_{K} . \tag{18}
\end{equation*}
$$

If $2 \cdot T=T$ then T is a subspace. Otherwise there exist $t_{1}, t_{2} \in T$ with $t_{1}+t_{2} \notin T$. By (18) $t_{1}+t_{2}=t_{3}+\alpha_{1} h_{1}+\cdots+\alpha_{m} h_{m}, t_{3} \in T, \alpha_{i} \in K$, where one of scalars is nonzero. Let $\alpha_{m} \neq 0$, then $h_{m} \in 3 \cdot T+\left\langle h_{1}, \ldots, h_{m-1}\right\rangle_{K}$. We substitute in (18) and obtain $L=4 \cdot T+\left\langle h_{1}, \ldots, h_{m-1}\right\rangle_{K}$. By the inductive assumption $\langle 4 \cdot T\rangle_{K}=4^{m-1} \cdot(4 \cdot T) \subset 4^{m} \cdot T$. Lemma is proved.

Theorem 6.4. Let $R=u(L) \# K[G]$ be a PI-algebra. Then there exists a G invariant restricted subalgebra $L_{0} \subset L$ with $\operatorname{dim} L / L_{0}<n$ and $L_{0} \subset \mathcal{D}_{p^{n} 4^{n} n^{5}, G}(L)$.

Proof. Let n be the number fixed above. While studying the action of G on L, we temporarily assumethat L is abelian with the trivial p-mapping. First, let us prove that $\operatorname{dim} L / \mathcal{D}_{n^{2}}(L)<n$.

We fix arbitrary $a_{1}, \ldots, a_{n} \in L$. By Lemma 4.2 we have
$F_{1}\left(a_{1}, \ldots, a_{n}, g_{1}, \ldots, g_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{1} * a_{\pi(1)}\right) \cdots\left(g_{n} * a_{\pi(n)}\right) \equiv 0 ; \quad g_{1}, \ldots, g_{n} \in G$.
In this theorem g_{i} 's, g are the variables that range over G. Let us prove by induction on m the following. Suppose that $a_{1}, \ldots, a_{m} \in L$ are fixed and satisfy the condition

$$
\begin{array}{r}
F_{1}\left(a_{1}, \ldots, a_{m}, g_{1}, \ldots, g_{m}\right)=\sum_{\pi \in S_{m}} \alpha_{\pi}\left(g_{1} * a_{\pi(1)}\right) \cdots\left(g_{m} * a_{\pi(m)}\right) \tag{19}\\
\equiv 0 \\
g_{1}, \ldots, g_{m} \in G
\end{array}
$$

where $F_{1}\left(X_{1}, \ldots, X_{m}, g_{1}, \ldots, g_{m}\right)$ is some nontrivial polynomial. Then a_{1}, \ldots, a_{m} are linearly dependent modulo $\mathcal{D}_{m^{2}}(L)$.

In the case $m=1$ we have $g_{1} * a_{1} \equiv 0, g_{1} \in G$. Since G acts by automorphisms we have $a_{1}=0 \in \mathcal{D}_{1}(L)$.

Suppose that the statement is valid for $m-1, m>1$. We apply (9) to (19)

$$
\begin{align*}
& F_{1}\left(a_{1}, \ldots, a_{m}, g_{1}, \ldots, g_{m}\right) \\
= & \sum_{i=1}^{m}\left(g_{1} * a_{i}\right) H_{i}\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{m}, g_{2}, \ldots, g_{m}\right) \\
\equiv & 0 ; g_{1}, \ldots, g_{m} \in G . \tag{20}
\end{align*}
$$

Without loss of generality we assume that $H_{1}\left(X_{2}, \ldots, X_{m}, g_{2}, \ldots, g_{m}\right)$ is a nontrivial polynomial. Now two cases are possible. In the first case $H_{1}\left(a_{2}, \ldots, a_{m}, g_{2}, \ldots\right.$, $\left.g_{m}\right) \equiv 0$ for all $g_{2}, \ldots, g_{m} \in G$. Then by the inductive hypothesis a_{2}, \ldots, a_{m} are linearly dependent modulo $\mathcal{D}_{(m-1)^{2}}(L)$ and we are done. In the second case there exist $h_{2}, \ldots, h_{m} \in G$ such that $f_{1}=H_{1}\left(a_{2}, \ldots, a_{m}, h_{2}, \ldots, h_{m}\right) \neq 0$. We substitute these values into (20) and set $f_{i}=H_{i}\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{m}, h_{2}, \ldots, h_{m}\right)$, $i=1, \ldots, m$:

$$
\sum_{i=1}^{m}\left(g_{1} * a_{i}\right) f_{i} \equiv 0, \quad g_{1} \in G
$$

We discard the summands with $f_{i}=0$, set $g=g_{1}$, and rewrite our relation as follows

$$
\begin{equation*}
\sum_{i=1}^{r}\left(g * a_{i}\right) f_{i} \equiv 0, \quad g \in G ; \quad f_{i} \neq 0, i=1, \ldots, r \tag{21}
\end{equation*}
$$

We set $V=\left\langle g_{i} * a_{j} \mid 2 \leq i \leq m, 1 \leq j \leq m\right\rangle_{K}$, then $\operatorname{dim} V<m^{2}$ and f_{1}, \ldots, f_{r} belong to the subalgebra of $u(L)$ generated by V. Next we prove by induction on r that (21) implies linear dependence of a_{1}, \ldots, a_{r} modulo $\mathcal{D}_{m^{2}}(L)$.

If $r=1$ then

$$
\begin{equation*}
\left(g * a_{1}\right) f_{1} \equiv 0, \quad g \in G \tag{22}
\end{equation*}
$$

Let us prove that $G * a_{1} \subset V$, so $a_{1} \in \mathcal{D}_{m^{2}}(L)$. By way of contradiction suppose that there exists $d \in G$ with $d * a_{1}=e_{0} \notin V$. Choose an ordered basis for L whose first elements is e_{0}, followed by a basis of $V=\left\langle v_{1}, \ldots, v_{t}\right\rangle_{K}$. Now f_{1} is the sum of products, each product consists of $m-1$ factors of the type $g_{i} * a_{j} \in V$. Using the standard basis of the restricted enveloping algebra we have

$$
\begin{equation*}
f_{1}=\sum_{j} \alpha_{j} v_{j_{1}} \cdots v_{j_{m-1}}, \quad \alpha_{j} \in K \tag{23}
\end{equation*}
$$

Multiplying f_{1} by e_{0} we obtain a nonzero element. Thus, seting $g=d$ we arrive at a contradiction with (22).

We consider $r>1$. Suppose that $G * a_{r} \subset V$ in (21). Then $a_{r} \in \mathcal{D}_{m^{2}}(L)$ and the result follows. So, we assume that $e_{0}=d * a_{r} \notin V$ for some $d \in G$. By analogy with the preceding argument we choose an ordered basis for L. We set $d * a_{j}=\alpha_{j} e_{0}+w_{j}, j=1, \ldots, r-1, \alpha_{j} \in K$ and each w_{j} being a linear combination of the basis elements of L except e_{0}. By setting $g=d$ in (21) we obtain

$$
\begin{equation*}
e_{0}\left(\alpha_{1} f_{1}+\cdots+\alpha_{r-1} f_{r-1}+f_{r}\right)+w_{1} f_{1}+\cdots+w_{r-1} f_{r-1}=0 \tag{24}
\end{equation*}
$$

We set $f=\alpha_{1} f_{1}+\cdots+\alpha_{r-1} f_{r-1}+f_{r}$. Suppose that $f \neq 0$. By analogy with the preceding argument, f is of the form (23), which means that the first summand in (24) has degree m and may be written as

$$
\begin{equation*}
e_{0} f=\sum_{j} \alpha_{j} e_{0} v_{j_{1}} \cdots v_{j_{m-1}}, \quad \alpha_{j} \in K \tag{25}
\end{equation*}
$$

Other nonzero summands in (24), being written in the form (25), do not contain e_{0} as their factor. This is a contradiction. So, $f=\alpha_{1} f_{1}+\cdots+\alpha_{r-1} f_{r-1}+$ $f_{r}=0$. We express f_{r} from this relation and substitute into (21):

$$
\begin{array}{r}
\sum_{i=1}^{r-1}\left(g *\left(a_{i}-\alpha_{i} a_{r}\right)\right) f_{i} \equiv 0, \quad g \in G \\
f_{i} \neq 0, i=1, \ldots, r-1 .
\end{array}
$$

By the inductive assumption $a_{1}-\alpha_{1} a_{r}, \ldots, a_{r-1}-\alpha_{r-1} a_{r}$ are linearly dependent modulo $\mathcal{D}_{m^{2}}(L)$, therefore a_{1}, \ldots, a_{r} are also linearly dependent modulo this set.

Thus we have proved that $\operatorname{dim} L / \mathcal{D}_{n^{2}}(L)<n$. Now we return to the original structure of a Lie p-algebra on L. By Lemmas 6.3, 5.1 we construct a subspace $W_{1}=\left\langle\mathcal{D}_{n^{2}}(L)\right\rangle_{K}=4^{n} \cdot \mathcal{D}_{n^{2}}(L) \subset \mathcal{D}_{4^{n} n^{2}}(L)$. We consider the chain $W_{i}=W_{i-1}+\left[W_{i-1}, W_{1}\right], i=2,3 \ldots$. Due to the finiteness of codimension we have stabilization $\cup_{i=1}^{\infty} W_{i}=W_{n}$ and by Lemma 5.1 $W_{n} \subset \mathcal{D}_{4^{n} n^{4}}(L)$. By construction, W_{n} is a G-invariant subalgebra. To obtain a restricted subalgebra we consider its p-hull $L_{0}=\left(W_{n}\right)_{p}=\left\langle w^{\left[p^{s}\right]} \mid w \in W_{n}, s \geq 0\right\rangle_{K}$. Again by the codimension argument, we can assume here that $s \leq n$. By Lemma 5.1 we get $L_{0} \subset \mathcal{D}_{p^{n} 4^{n} n^{5}}(L)$, also $\operatorname{dim} L / L_{0}<n$. The theorem follows.

Theorem 6.5. Let $R=u(L) \# K[G]$ be a PI-algebra. Then there exists a twosided ideal $J \subset K[G]$ with $\operatorname{dim} K[G] / J<n$ and $J \subset \mathcal{D}_{4^{n} n^{2}, L}(K[G])$.

Proof. Similar to that for the previous theorem. Let n be the number fixed above. We may assume that L is abelian with the trivial p-mapping. First, let us prove that $\operatorname{dim} K[G] / \mathcal{D}_{n^{2}}(K[G])<n$.

We fix arbitrary $z_{1}, \ldots, z_{n} \in K[G]$. By Lemma 4.3 we have
$F_{3}\left(a_{1}, \ldots, a_{n}, z_{1}, \ldots, z_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(z_{\pi(n)} * a_{n}\right) \cdots\left(z_{\pi(1)} * a_{1}\right) \equiv 0 ; \quad a_{1}, \ldots, a_{n} \in L$.
In this theorem a_{i} 's, a denote the variables that range over L. We prove by induction on m the following. Let $z_{1}, \ldots, z_{m} \in K[G]$ be fixed and satisfy the condition

$$
\begin{array}{r}
F_{3}\left(a_{1}, \ldots, a_{m}, z_{1}, \ldots, z_{m}\right)=\sum_{\pi \in S_{m}} \alpha_{\pi}\left(z_{\pi(m)} * a_{m}\right) \cdots\left(z_{\pi(1)} * a_{1}\right) \equiv 0 \tag{26}\\
a_{1}, \ldots, a_{m} \in L
\end{array}
$$

where $F_{3}\left(X_{1}, \ldots, X_{m}, z_{1}, \ldots, z_{m}\right)$ is some nontrivial polynomial. Then z_{1}, \ldots, z_{m} are linearly dependent modulo $\mathcal{D}_{m^{2}}(K[G])$.

In the case $m=1$ we have $z_{1} * a_{1} \equiv 0, a_{1} \in L$. Then $z_{1} \in \mathcal{D}_{0}(K[G])$ and the result follows.

Suppose that the statement is valid for $m-1, m>1$. We apply decomposition (10) to the relation (26)

$$
\begin{align*}
& F_{3}\left(a_{1}, \ldots, a_{m}, z_{1}, \ldots, z_{m}\right) \\
= & \sum_{i=1}^{m}\left(z_{i} * a_{m}\right) H_{i}\left(a_{1}, \ldots, a_{m-1}, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{m}\right) \\
\equiv & 0 ; a_{1}, \ldots, a_{m} \in L \tag{27}
\end{align*}
$$

Without loss of generality we may assume that $H_{1}\left(X_{1}, \ldots, X_{m-1}, z_{2}, \ldots, z_{m}\right)$ is a nontrivial polynomial. We have two cases. 1) $H_{1}\left(a_{1}, \ldots, a_{m-1}, z_{2}, \ldots, z_{m}\right) \equiv 0$ for all $a_{1}, \ldots, a_{m-1} \in L$. Then by the inductive hypothesis z_{2}, \ldots, z_{m} are linearly dependent modulo $\mathcal{D}_{(m-1)^{2}}(K[G])$ and we are done. 2) There exist $b_{1}, \ldots, b_{m-1} \in$ L such that $H_{1}\left(b_{1}, \ldots, b_{m-1}, z_{2}, \ldots, z_{m}\right) \neq 0$. We substitute these values into (27) and set $f_{i}=H_{i}\left(b_{1}, \ldots, b_{m-1}, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{m}\right), i=1, \ldots, m$:

$$
\sum_{i=1}^{m}\left(z_{i} * a_{m}\right) f_{i} \equiv 0, \quad a_{m} \in L
$$

We omit the summands with $f_{i}=0$, denote $a=a_{m}$, and obtain

$$
\begin{equation*}
\sum_{i=1}^{r}\left(z_{i} * a\right) f_{i} \equiv 0, \quad a \in L ; \quad f_{i} \neq 0, i=1, \ldots, r . \tag{28}
\end{equation*}
$$

We set $V=\left\langle z_{i} * b_{j} \mid 1 \leq i \leq m, 1 \leq j<m-1\right\rangle_{K}$, then $\operatorname{dim} V<m^{2}$ and f_{1}, \ldots, f_{r} belong to the subalgebra of $u(L)$ generated by V. Next we prove by induction on r that (28) implies linear dependence of z_{1}, \ldots, z_{r} modulo $\mathcal{D}_{m^{2}}(K[G])$.

If $r=1$ then

$$
\begin{equation*}
\left(z_{1} * a\right) f_{1} \equiv 0, \quad a \in L \tag{29}
\end{equation*}
$$

Let us prove that $z_{1} * L \subset V$, so $z_{1} \in \mathcal{D}_{m^{2}}(K[G])$. By way of contradiction suppose that there exists $y \in L$ with $z_{1} * y=e_{0} \notin V$. We choose an ordered basis for L whose first element is e_{0}, followed by a basis of $V=\left\langle v_{1}, \ldots, v_{t}\right\rangle_{K}$. In the standard basis of the restricted enveloping algebra we have

$$
f_{1}=\sum_{j} \alpha_{j} v_{j_{1}} \cdots v_{j_{m-1}} \neq 0, \quad \alpha_{j} \in K
$$

Multiplying f_{1} by e_{0} we obtain a nonzero element. Thus, if we set $a=y$ then (29) leads to contradiction.

We consider $r>1$. Suppose that $z_{r} * L \subset V$ in (28). Then $z_{r} \in \mathcal{D}_{m^{2}}(K[G])$ and the result follows. So, we assume that $e_{0}=z_{r} * y \notin V$ for some $y \in L$. By analogy with the preceding argument we choose an ordered basis for L. We set $z_{j} * y=\alpha_{j} e_{0}+w_{j}, j=1, \ldots, r-1, \alpha_{j} \in K$ and each w_{j} being a linear combination of the basis elements of L except e_{0}. By setting $a=y$ in (28) we obtain

$$
\begin{equation*}
e_{0}\left(\alpha_{1} f_{1}+\cdots+\alpha_{r-1} f_{r-1}+f_{r}\right)+w_{1} f_{1}+\cdots+w_{r-1} f_{r-1}=0 . \tag{30}
\end{equation*}
$$

Let us set $f=\alpha_{1} f_{1}+\cdots+\alpha_{r-1} f_{r-1}+f_{r}$. Suppose that $f \neq 0$. By analogy with the preceding theorem the first summand in (30) has degree m and is written in the standard basis as

$$
e_{0} f=\sum_{j} \alpha_{j} e_{0} v_{j_{1}} \cdots v_{j_{m-1}}, \quad \alpha_{j} \in K
$$

Other nonzero summands in (30), being written in the standard basis, have no e_{0} as their factor. This is a contradiction. Therefore, $f=\alpha_{1} f_{1}+\cdots+\alpha_{r-1} f_{r-1}+f_{r}=0$. We express f_{r} from this relation and substitute into (28):

$$
\begin{array}{r}
\sum_{i=1}^{r-1}\left(\left(z_{i}-\alpha_{i} z_{r}\right) * a\right) f_{i} \equiv 0, \quad a \in L \\
f_{i} \neq 0, i=1, \ldots, r-1
\end{array}
$$

By the inductive assumption $z_{1}-\alpha_{1} z_{r}, \ldots, z_{r-1}-\alpha_{r-1} z_{r}$ are linearly dependent modulo $\mathcal{D}_{m^{2}}(K[G])$, therefore z_{1}, \ldots, z_{r} are also linearly dependent modulo this set.

Thus we have proved that $\operatorname{dim} K[G] / \mathcal{D}_{n^{2}}(K[G])<n$. By Lemma 6.3, we form a subspace by $J=\left\langle\mathcal{D}_{n^{2}}(K[G])\right\rangle_{K}=4^{n} \cdot \mathcal{D}_{n^{2}}(K[G])$. Due to Lemma $5.3 J$ is an ideal and $J \subset \mathcal{D}_{4^{n} n^{2}}(K[G])$. Of course, also $\operatorname{dim} K[G] / J<n$. The theorem is proved.

We can also describe the properties of the delta-sets as follows, but in this case it is not possible to evaluate the numbers n_{1}, n_{2}, n_{3} below.

Corollary 6.6. Let $R=u(L) \# K[G]$ be a PI-algebra and n be the number fixed above. Then there exist numbers n_{1}, n_{2}, n_{3} such that

$$
\begin{array}{ll}
\mathcal{D}_{L}(G)=\mathcal{D}_{n_{1}, L}(G), & \left|G: \mathcal{D}_{L}(G)\right|<n ; \\
\mathcal{D}_{G}(L)=\mathcal{D}_{n_{2}, G}(L), & \operatorname{dim} L / \mathcal{D}_{G}(L)<n ; \\
\mathcal{D}_{L}(K[G])=\mathcal{D}_{n_{3}, L}(K[G]), & \operatorname{dim} K[G] / \mathcal{D}_{L}(K[G])<n
\end{array}
$$

Proof. Let us check the first equality. For $T=\mathcal{D}_{n^{3}}(G)$, we have $|G: T|<n$ (Theorem 6.2). We consider $T_{i}=\left(\mathcal{D}_{i}(G)\right)^{4^{n}}, i \geq n^{3}$. By Lemma 6.1, we obtain the chain of subgroups and $T_{i} \subset \mathcal{D}_{4^{n} i}(G)$ by Lemma 5.2. Since $\left|G: T_{i}\right|<n$, this chain must stabilize. In other two cases similar chains also stabilize by the codimension argument.

Next we are going to use the next result on bilinear maps.
Theorem 6.7. (P. M. Neumann, [1]) Let $\varphi: U \times V \rightarrow W$ be a bilinear map, where U, V, W are vector spaces over a field K. Suppose that $\operatorname{dim} \varphi(u, V) \leq m$ for each $u \in U$ and $\operatorname{dim} \varphi(U, v) \leq l$ for all $v \in V$. Then $\operatorname{dim}\langle\varphi(U, V)\rangle_{K} \leq m l$.

The goal of three previous theorems has been to establish the following result.

Theorem 6.8. Let $R=u(L) \# K[G]$ be a PI-algebra. Then there exist a G invariant restricted subalgebra of finite codimension $L_{0} \subset L$ and a subgroup of finite index $G_{0} \subset G$ such that $\operatorname{dim}\left(\omega K\left[G_{0}\right] * L_{0}\right)<\infty$.

Proof. We apply Theorems 6.2, 6.4, and 6.5. These theorems yield us the subgroup of finite index $G_{0} \subset G$, the G-invariant restricted subalgebra L_{0} with $\operatorname{dim} L / L_{0}<n$, and the ideal $J \triangleleft K[G]$ with $\operatorname{dim} K[G] / J<n$. Also, their elements have finite width with respect to the action of G on L. Namely,

$$
\begin{array}{ll}
\operatorname{dim}((g-1) * L) \leq 4^{n} n^{3}, & g \in G_{0} ; \\
\operatorname{dim}(K[G] * x) \leq p^{n} 4^{n} n^{5}, & x \in L_{0} ; \tag{31}\\
\operatorname{dim}(z * L) \leq 4^{n} n^{2}, & z \in J .
\end{array}
$$

We have $\operatorname{dim} \omega K\left[G_{0}\right] /\left(J \cap \omega K\left[G_{0}\right]\right)<n$. Hence, there exist $g_{1}, \ldots, g_{n} \in G_{0}$ such that

$$
\omega K\left[G_{0}\right]=\left\langle\left(g_{1}-1\right), \ldots,\left(g_{n}-1\right)\right\rangle_{K}+J \cap \omega K\left[G_{0}\right] .
$$

Then

$$
\omega K\left[G_{0}\right] * L_{0} \subset\left(g_{1}-1\right) * L_{0}+\cdots+\left(g_{n}-1\right) * L_{0}+J * L_{0} .
$$

We use the conditions of finite width (31) and apply Theorem 6.7 to the bilinear mapping $\varphi: J \times L_{0} \rightarrow L_{0}, \varphi(z, x)=z * x, z \in J, x \in L_{0}$. Finally, we have

$$
\begin{aligned}
\operatorname{dim}\left(\omega K\left[G_{0}\right] * L_{0}\right) & \leq \operatorname{dim}\left(g_{1}-1\right) * L_{0}+\cdots+\operatorname{dim}\left(g_{n}-1\right) * L_{0}+\operatorname{dim}\left(J * L_{0}\right) \\
& \leq n \cdot 4^{n} n^{3}+4^{n} n^{2} \cdot p^{n} 4^{n} n^{5}<\infty
\end{aligned}
$$

7. Proof of the main result

If H is a subalgebra in a restricted Lie algebra L then by H_{p} we denote the p-hull. This is a minimal restricted subalgebra containing H, and in fact $H_{p}=\left\langle h^{\left[p^{i}\right]}\right| h \in$ $H, i=0,1,2, \ldots\rangle_{K}$.

Suppose that Z is a finite-dimensional abelian p-algebra. Then its structure is determined by the p-mapping, which satisfies the relation

$$
\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)^{[p]}=\lambda_{1}^{p} x_{1}^{[p]}+\lambda_{2}^{p} x_{2}^{[p]}, \quad x_{1}, x_{2} \in Z ; \lambda_{1}, \lambda_{2} \in K .
$$

For shortness we often write x^{p} instead of $x^{[p]}$. By $\mathcal{N}(Z)$ we denote the set of p-nilpotent elements of Z. Over an algebraically closed field there exists the following decomposition

$$
\begin{equation*}
Z=\left\langle e_{1}, \ldots, e_{q} \mid e_{i}^{p}=e_{i}\right\rangle_{K} \oplus \mathcal{N}(Z) \tag{32}
\end{equation*}
$$

Suppose that a group G acts on a space V and W is a G-invariant subspace. We set

$$
\begin{aligned}
V^{G} & =\{v \in V \mid g * v=v, g \in G\} ; \\
V^{G}(\bmod W) & =\{v \in V \mid g * v=v(\bmod W), g \in G\} .
\end{aligned}
$$

Proposition 7.1. Let $R=u(L) \# K[G]$ be a PI-algebra, L has a finite dimensional central restricted ideal Z with $[L, L] \subset \mathcal{N}(Z)$, and $\omega K[G] * L \subset Z$. Then there exists a subgroup of finite index $B \subset G$ such that

$$
\operatorname{dim} L /\left(L^{B}(\bmod \mathcal{N}(Z))\right)<\infty
$$

Proof. We suppose that the ground field K is algebraically closed. Let us factor out $\mathcal{N}(Z)$ and for simplicity keep the same notations. By (32) we have

$$
\begin{equation*}
Z=\left\langle e_{1}, \ldots, e_{q} \mid e_{i}^{p}=e_{i}\right\rangle_{K} . \tag{33}
\end{equation*}
$$

Recall that x is called a p-element if $x^{p}=x$. An easy check shows that there are only finitely many p-elements in (33), namely $\left\{n_{1} e_{1}+\cdots+n_{q} e_{q} \mid n_{i} \in\{0,1, \ldots, p-\right.$ $1\}\}$. Then $\operatorname{Aut}(Z) \subset S_{p^{q}}$. Hence, there exists a subgroup of finite index $B \subset G$ acting trivially on Z.

Let us prove by induction on $q=\operatorname{dim} Z$ that $\operatorname{dim} L / L^{B}<\infty$. Let $q=1$, then $Z=\left\langle e_{0}\right\rangle_{K}$ where $e_{0}^{p}=e_{0}$. We have

$$
g * x=x+\beta(g, x) e_{0}, \quad \beta(g, x) \in K, g \in B, x \in L
$$

We observe that $\beta: B \times L \rightarrow(K,+)$ is the mapping into the additive group of the field, which is K-linear by the second argument. We set $L_{1}=L$. If
$\beta\left(B, L_{1}\right) \neq 0$ then there exist $g_{1} \in B, x_{1} \in L_{1}$ such that $\beta\left(g_{1}, x_{1}\right)=1$. We consider $L_{2}=\left\{x \in L_{1} \mid \beta\left(g_{1}, x\right)=0\right\}$, then $\operatorname{dim} L_{1} / L_{2}=1$. If again $\beta\left(B, L_{2}\right) \neq 0$ then there exist $g_{2} \in B, x_{2} \in L_{2}$ such that $\beta\left(g_{2}, x_{2}\right)=1$. Then we define $L_{3}=\left\{x \in L_{2} \mid \beta\left(g_{2}, x\right)=0\right\}$ and $\operatorname{dim} L_{2} / L_{3}=1$, etc. Suppose that we can make n steps. Then we have the elements $g_{1}, \ldots, g_{n} \in B ; x_{1} \in L_{1}, \ldots, x_{n} \in L_{n}$ such that

$$
\begin{equation*}
\left(g_{i}-1\right) * x_{i}=e_{0}, i=1, \ldots, n ; \quad\left(g_{i}-1\right) * x_{j}=0,1 \leq i<j \leq n . \tag{34}
\end{equation*}
$$

We apply identity of Lemma 4.2

$$
\begin{equation*}
F_{2}\left(x_{1}, \ldots, x_{n}, g_{1}, \ldots, g_{n}\right)=\sum_{\pi \in S_{n}} \alpha_{\pi}\left(g_{1}-1\right) * x_{\pi(1)} \cdots\left(g_{n}-1\right) * x_{\pi(n)}=e_{0}^{n} \equiv 0 \tag{35}
\end{equation*}
$$

because by (34) the only nontrivial term is given by the identity permutation.
Of course, (35) is a contradiction. This contradiction proves that we cannot make n steps. Therefore, for some $i \in\{1, \ldots, n\}$ we have $\beta\left(B, L_{i}\right)=0$. We remark that $L_{i}=L^{B}$ and $\operatorname{dim} L / L^{B}<n$. Since B acts trivially on Z, we have $Z \subset L^{B}$; also we observe that L^{B} is a restricted subalgebra.

Now suppose that $\operatorname{dim} Z=q>1$. Set $D=\left\langle e_{2}, \ldots, e_{q}\right\rangle_{K}$. We consider $\widetilde{L}=L / D, \widetilde{Z}=Z / D$. We set $L_{1}=L^{B}(\bmod D)$, by the inductive assumption for $q=1$, we have $\operatorname{dim} L / L_{1}<\infty$. Hence, $\omega K[B] * L_{1} \subset D$. We apply inductive assumption for $D \subset L_{1}$, where $\operatorname{dim} D=q-1$, and obtain that $\operatorname{dim} L_{1} / L_{1}^{B}<\infty$. It remains to remark that $L_{1}^{B}=L^{B}$. Now we have proved that if K is algebraically closed then there exist the subgroup of finite index $B \subset G$ and the number l such that $\operatorname{dim} L /\left(L^{B}(\bmod \mathcal{N}(Z))\right)<l$.

Now we consider the case of an arbitrary field K. Note that we can extend K by adjoining finitely many roots of p-polynomials and obtain the decomposition (32) (see [6]). Let $\bar{K} \supset K$ be such an extension and $\operatorname{dim}_{K} \bar{K}=m$. Given a K-space V we set $\bar{V}=\bar{K} \otimes_{K} V$. Then $\operatorname{dim}_{K} \bar{L} /\left(\bar{L}^{B}(\bmod \mathcal{N}(\bar{Z}))\right)<t=l m$. Pick arbitrary $x_{1}, \ldots, x_{t} \in L$. Then there exist $\alpha_{1}, \ldots, \alpha_{t} \in K$ such that $\alpha_{1} x_{1}+\cdots+\alpha_{t} x_{t} \in \bar{L}^{B}(\bmod \mathcal{N}(\bar{Z}))$. This means that for any $g \in B$ we have

$$
(g-1) *\left(\alpha_{1} x_{1}+\cdots+\alpha_{t} x_{t}\right) \in \mathcal{N}(\bar{Z}) \cap L \subset \mathcal{N}(Z) .
$$

This relation reads also as $\operatorname{dim}_{K} L /\left(L^{B}(\bmod \mathcal{N}(Z))\right)<t$. This concludes the proof.

Now we come back to the proof Theorem 3.1.
Proof. The sufficiency was proved above. Now suppose that $u(L) \# K[G]$ satisfies a nontrivial polynomial identity.

First, let us prove that there exist G-invariant restricted subalgebras $Q_{*} \subset$ $H_{*} \subset L$ satisfying conditions 1) of Theorem. We recall the steps of the proof of Theorem 1.3 in [15] (see also this construction in [16] and [3]).

1) The existence of a nontrivial identity in $u(L)$ implies that for some number m we have $\delta(L)=\delta_{m}(L)$ and $\operatorname{dim} L / \delta(L)<\infty$. We set $D=\delta(L)$.
2) We apply Theorem 6.7 on bilinear maps and conclude that the commutator subalgebra $D^{2}=[D, D]$ is finite dimensional. We set

$$
C=C_{D}\left(D^{2}\right)=\left\{x \in D \mid\left[x, D^{2}\right]=0\right\}
$$

Then $\operatorname{dim} D / C<\infty$, and $C^{3}=0$.
3) We have $\operatorname{dim} C^{2}<\infty$ and $\left(C^{2}\right)_{p}$ is a finitely generated abelian p-algebra. By the structure of such algebras $Q_{*}=\mathcal{N}\left(\left(C^{2}\right)_{p}\right)$ is finite dimensional. Then the proof shows that $H_{*}=C\left(C, Q_{*}\right)=\left\{x \in C \mid[x, C] \subset Q_{*}\right\}$ has finite codimension in C.

We trace these steps and see by Lemma 2.4 that D, C, Q_{*}, and H_{*} are restricted invariant subalgebras. Hence, we obtain the required G-invariant restricted subalgebras $Q_{*} \subset H_{*} \subset L$, where H_{*} is nilpotent of step 2.

Second, we apply results of Section 6.. By Theorem 6.8 there exist the G invariant restricted subalgebra of finite codimension $L_{0} \subset L$ and the subgroup of finite index $G_{0} \subset G$ such that $\operatorname{dim}\left(\omega K\left[G_{0}\right] * L_{0}\right)<\infty$. Without loss of generality we may assume that G_{0} to be normal in G. We set $Q_{0}=Q_{*} \cap L_{0}, H_{0}=H_{*} \cap L_{0}$.

Next we consider $Q_{1}=Q_{0}+\omega K\left[G_{0}\right] * H_{0} \subset H_{0}$, by this construction $\operatorname{dim} Q_{1}<\infty$. We observe that Q_{1} is a subalgebra, since $\left[H_{0}, H_{0}\right] \subset Q_{0}$. Let us check that Q_{1} is restricted. By the axioms of the p-map [6]

$$
\begin{equation*}
(x+y)^{[p]}=x^{[p]}+y^{[p]}+\sum_{i=1}^{p-1} s_{i}(x, y), \quad x, y \in H_{0} \tag{36}
\end{equation*}
$$

where each $s_{i}(x, y)$ is the linear span of commutators in x, y of length p. Since H_{0} is nilpotent of step 2 , all $s_{i}(x, y)$ are equal to zero in the case $p>2$ or belong to Q_{0} for $p=2$. We compute

$$
\begin{aligned}
((g-1) * x)^{[p]} & =(g * x-x)^{[p]}=(g * x)^{[p]}-x^{[p]} \\
& =g *\left(x^{[p]}\right)-x^{[p]}=(g-1) *\left(x^{[p]}\right), \quad g \in G_{0}, \quad x \in H_{0}
\end{aligned}
$$

where in the case $p=2$ we have some additional summands from Q_{0}. For arbitrary $x \in Q_{1}$ we treat x^{p} again by (36) and conclude that Q_{1} is restricted. We also easily observe that Q_{1} is G-invariant because H_{0}, Q_{0} are G-invariant and G_{0} is a normal subgroup of G in which case $G \cdot \omega K\left[G_{0}\right]=\omega K\left[G_{0}\right] \cdot G$.

We set $H_{1}=C_{H_{0}}\left(Q_{1}\right)=\left\{x \in H_{0} \mid\left[x, Q_{1}\right]=0\right\}$. Then H_{1} is G-invariant, $\operatorname{dim} H_{0} / H_{1}<\infty, Q_{1}$ is central in $H_{1},\left[H_{1}, H_{1}\right] \subset Q_{0} \subset \mathcal{N}\left(Q_{1}\right)$, and $\omega K\left[G_{0}\right] * H_{1} \subset$ Q_{1}. Now we can apply Proposition 7.1 to the smash product $K\left[G_{0}\right] \# H_{1}$ where $Z=Q_{1}$. We obtain the subgroup of finite index $G_{1} \subset G_{0}$ and the subalgebras

$$
\begin{equation*}
Q=\mathcal{N}\left(Q_{1}\right), \quad H=H_{1}^{G_{1}}(\bmod Q) \tag{37}
\end{equation*}
$$

where $\operatorname{dim} H_{1} / H<\infty$. The proof of Proposition 7.1 allows us to assume that G_{1} is normal in G. The construction (37) shows that Q, H are G-invariant and that G_{1} acts trivially on H / Q.

Finally, we use Theorem 1.1 and find the subgroup $A \subset G_{1}$ such that the conditions 2) of Theorem are satisfied.

References

[1] Bahturin, Yu.A., "Identical Relations in Lie Algebras," VNV Science Press, 1987.
[2] -, Identities in the universal envelopes of Lie algebras, J. Austral. Math. Soc. 18 (1974), 10-21.
[3] Bahturin, Yu.A., A. A. Mikhalev, V. M. Petrogradsky, M. V. Zaicev, "Infinite Dimensional Lie Superalgebras," De Gruyter Exp. Math. 7, de Gruyter, Berlin, 1992.
[4] Bergen, J., D. S. Passman, Delta methods in enveloping rings. II, J. Algebra 156 (1993), 494-534.
[5] Jacobson, N., "PI-algebras," Lecture Notes in Mathematics 441 SpringerVerlag, Berlin-New York, 1975.
[6] Jacobson, N., "Lie algebras," Dover Publications, Inc., New York, 1979.
[7] Handelman, D., J. Lawrence, W. Schelter, Skew group rings, Houston J. Math. 4(1978), 175-198.
[8] Kochetov, M., On identities for coalgebras and Hopf algebras, Comm. Algebra 28 (2000), 1211-1221.
[9] Latyšev, V. N., Two remarks on PI-algebras, Sibirsk. Mat. Ž. 4 (1963) 1120-1121.
[10] Montgomery, S., "Hopf Algebras and their Actions on Rings," CBMS Regional Conference Series in Mathematics 82, American Mathematical Society, Providence, RI, 1993.
[11] Passman, D. S., Group rings satisfying a polynomial identity, J. Algebra 20 (1972), 103-117.
[12] -, "The Algebraic Structure of Group Rings," Krieger Publ. Co., Inc., Melbourne, Fla., 1985.
[13] -, "Infinite Crossed Products," Academic Publishers, 1988.
[14] —, Enveloping algebras satisfying a polynomial identity, J. Algebra 134 (1990), 469-490.
[15] Petrogradsky, V. M., The existence of an identity in a restricted envelope, Mat. Zametki 49 (1991), 84-93.
[16] Petrogradsky, V. M., Identities in the enveloping algebras for modular Lie superalgebras, J. Algebra 145 (1992), 1-21.
[17] Regev, A., Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152.

Yu. Bahturin
Department of Mathematics
and Statistics
Memorial University of Newfoundland
St. John's, NF A1C 5S7 Canada
bahturin@mun.ca

[^2]
[^0]: * The authors acknowledge partial support by Dean of Science Start-up Funds, Memorial University of Newfoundland
 \dagger The second author is partially supported by RFBR grants \# 98-01-01020, \# 99-01-00233; Ministry of Education of Russia grant \# 98-7

[^1]: ${ }^{3}$ This example was produced in collaboration with M. Kotchetov

[^2]: V. M. Petrogradsky

 Faculty of Mathematics
 Ulyanovsk State University
 Lev Tolstoy 42
 432700 Ulyanovsk
 Russia
 vmp@mmf.ulsu.ru

