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A Connected Lie Group Equals the Square
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Abstract. It is shown that in every connnected real Lie group every element
is the product of two elements in the exponential image.

More than one hundred years ago, F. Engel and E. Study considered the
question of the surjectivity of the exponential function of Lie groups ([2],[3],
compare also the remarks in [14]). Interestingly, a general solution of this problem
is not found yet though there exist equivalent criteria for the surjectivity of special
classes of Lie groups (compare [12]). M. Moskowitz and R. Sacksteder first
formulated the fact that every real connected Lie group is equal to (exp g)2 ([7])
and provided a proof in the final version of their paper using control theory like
methods. Using partly well-known decomposition results on Lie groups, we shall
provide a short proof for this result.

In the whole article, G denotes a real connected Lie group. A subgroup
K ⊆ G is called compactly embedded if Ad(K) is relatively compact in GL(g). It
is shown in [10] that there exist maximal compactly embedded subgroups and that
all maximal compactly embedded subgroups are closed and connected. The last
property ensures that all maximal compactly embedded subgroups are conjugate to
each other. Moreover, it is well-known that every compactly embedded connected
subgroup K has surjective exponential function: Indeed, K = K ′Z0 , where Z0

denotes the identity component of the center. Moreover, K ′ is compact, hence has
surjective exponential function. This implies the surjectivity of the exponential
function of K .

First, let us assume that G is semisimple. The Iwasawa decomposition says
that every semisimple Lie group can be written as KAM where K is maximal com-
pactly embedded, A is abelian connected and consists of Ad-semisimple elements
with spec ad(a) ⊆ R for every a ∈ a , M is nilpotent connected, and AM is solv-
able ([4]). By Dixmier’s and Saito’s Theorem ([1],[9]), S := AM = exp(a + m).
Thus, G = exp k exp s .

Now we recall the Levi decomposition: If G is a real connected Lie group,
then for every maximal semisimple subgroup (called Levi factor) L we have G =
LRad(G) and L ∩ Rad(G) discrete. All Levi factors are conjugate to each other.
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This follows directly from the Levi decomposition of real finite-dimensional Lie
algebras (see e.g. Korollar II.4.8 of [5]).

A Cartan subalgebra h ⊂ g of a real finite dimensional Lie algebra g is a
nilpotent subalgebra which equals its own normalizer ng(h). Cartan subgroups are
defined in various ways which in case of connected Lie groups are all equivalent
(compare [8]). We will use the following definition: H ⊆ G is a Cartan subgroup
if h := L(H) is a Cartan subalgebra and for all g ∈ H and all x ∈ h we have
Ad(g) ad(x)s = ad(x)s Ad(g) where ad(x)s is the semisimple part of the Jordan
decomposition of ad(x).

Theorem 1.9 (ii) of [13] states that for all Cartan subgroups H the in-
tersection H ∩ Rad(G) is connected. Since H ∩ Rad(G) is nilpotent, we have
H ∩ Rad(G) = exp(h ∩ rad(g)). Theorem 1.11 of [13] says that for each Cartan
subgroup H of G there exists a Levi factor L such that H ∩ L is a Cartan sub-
group of L , H = (H ∩ L)(H ∩ Rad(G)), and H ∩ Rad(G) ⊆ ZG(L). This leads
to the following:

Lemma 1. If h is a Cartan subalgebra of a real finite-dimensional Lie algebra g

and n the nilradical of g, then rad(g) = (h∩rad(g))+n. If H is a Cartan subgroup
of a real Lie group G and N the nilradical, then Rad(G) = (H ∩ Rad(G))N .

Proof. We choose l such that h = (h∩ l)⊕ (h∩ rad(g)) (compare Theorem 1.8
of [13]). We observe that g′ ⊆ l + n . Moreover, g = h + g′ = (h ∩ rad(g)) + n + l ,
hence rad(g) = (h ∩ rad(g)) + n . The proof for Lie groups works similarly.

Thus, with the above notation we obtain G = KS(H ∩ Rad(G))N =
K(H ∩Rad(G))SN = exp k exp(h∩ rad(g)) exp s exp n . Since [k, h∩ rad(g)] = {0} ,
we get exp k exp(h ∩ rad(g)) = exp(k + (h ∩ rad(g))). Moreover, SN is a solvable
connected Lie group and spec adg(s) ⊆ R for each s ∈ s by Proposition 3.7 of
[11]. Again by Dixmier’s and Saito’s Theorem we get SN = exp(s + n) because
by Proposition 3.7 of [11], every element x ∈ s + n satisfies spec ad(x) ⊆ R .

Definition 2. An element x of a real finite-dimensional Lie algebra is called
exp-regular if spec adx ∩ 2πiZ = {0} . The set of all exp-regular elements of g is
denoted by reg exp.

Taken together, we have proved the following:

Theorem 3. If G is a real connected Lie group, then G = (exp g)2 . Moreover,
for every element g ∈ G there is an exp-regular element x and an element y in
g with g = exp x exp y .

Theorem 4. If G is a connected real Lie group and for every g ∈ G there is
an exp-regular x ∈ g and a y ∈ g with g = exp x exp y , then there are exp-regular
u,w ∈ g with g = expu expw .

Proof. Since reg exp is dense in g (for example by Lemma 2 of [6]), the image
exp(reg exp) is dense in exp g . Since exp is regular at each x ∈ reg exp, the set
exp(reg exp) is open in G , hence also in exp g . The openess of exp(reg exp) implies
that there is a symmetric 1-neighborhood U such that expx · U ⊆ exp(reg exp).
The density implies that exp y · U ∩ exp reg exp 6= Ø. So there is a u ∈ U such
that (expx)u−1 and u exp y are in exp(reg exp). This implies the assertion.
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