On the Riemann-Lie Algebras and Riemann-Poisson Lie Groups

Mohamed Boucetta*

Communicated by J. Hilgert

Abstract

A Riemann-Lie algebra is a Lie algebra \mathcal{G} such that its dual \mathcal{G}^{*} carries a Riemannian metric compatible (in the sense introduced by the author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763-768) with the canonical linear Poisson structure of \mathcal{G}^{*}. The notion of Riemann-Lie algebra has its origins in the study, by the author, of Riemann-Poisson manifolds (see Differential Geometry and its Applications, Vol. 20, Issue 3(2004), 279-291). In this paper, we show that, for a Lie group G, its Lie algebra \mathcal{G} carries a structure of Riemann-Lie algebra iff G carries a flat left-invariant Riemannian metric. We use this characterization to construct examples of Riemann-Poisson Lie groups (a Riemann-Poisson Lie group is a Poisson Lie group endowed with a left-invariant Riemannian metric compatible with the Poisson structure).

1. Introduction

Riemann-Lie algebras first arose in the study by the author of Riemann-Poisson manifolds (see [2]). A Riemann-Poisson manifold is a Poisson manifold (P, π) endowed with a Riemannian metric \langle,$\rangle such that the couple (\pi,\langle\rangle$,$) is compatible$ in the sense introduced by the author in [1]. The notion of Riemann-Lie algebra appeared when we looked for the Riemannian metrics compatible with the canonical Poisson structure on the dual of a Lie algebra. We pointed out (see [2]) that the dual space \mathcal{G}^{*} of a Lie algebra \mathcal{G} carries a Riemannian metric compatible with the linear Poisson structure iff the Lie algebra \mathcal{G} carries a structure which we called Riemann-Lie algebra. Moreover, the isotropy Lie algebra at a point on a Riemann-Poisson manifold is a Riemann-Lie algebra. In particular, the dual Lie algebra of a Riemann-Poisson Lie group is a Riemann-Lie algebra (a RiemannPoisson Lie group is a Poisson Lie group endowed with a left-invariant Riemannian metric compatible with the Poisson structure). In this paper, we will show that a Lie algebra \mathcal{G} carries a structure of Riemann-Lie algebra iff \mathcal{G} is a semi-direct

[^0]product of two abelian Lie algebras. Hence, according to a well-known result of Milnor [5], we deduce that, for a Lie group G, its Lie algebra carries a structure of Riemann-Lie algebra iff G carries a flat left-invariant Riemannian metric. We apply this geometrical characterization to construct examples of Riemann-Poisson Lie groups. In particular, we give many examples of bialgebras $\left(\mathcal{G},[],, \mathcal{G}^{*},[,]^{*}\right)$ such that both $(\mathcal{G},[]$,$) and \left(\mathcal{G}^{*},[,]^{*}\right)$ are Riemann-Lie algebras.

2. Definitions and main results

Notations. Let G be a connected Lie group and ($\mathcal{G},[]$,$) its Lie algebra. For any$ $u \in \mathcal{G}$, we denote by u^{l} (resp. u^{r}) the left-invariant (resp. right-invariant) vector field of G corresponding to u. We denote by θ the right-invariant Maurer-Cartan form on G given by

$$
\begin{equation*}
\theta\left(u^{r}\right)=-u, \quad u \in \mathcal{G} . \tag{1}
\end{equation*}
$$

Let $\langle;\rangle$ be a scalar product on \mathcal{G} i.e. a bilinear, symmetric, non-degenerate and positive definite form on \mathcal{G}.

Let us enumerate some mathematical objets which are naturally associated with \langle,$\rangle :$

1. an isomorphism $\#: \mathcal{G}^{*} \longrightarrow \mathcal{G}$;
2. a scalar product \langle,\rangle^{*} on the dual space \mathcal{G}^{*} by

$$
\begin{equation*}
\langle\alpha, \beta\rangle^{*}=\langle \#(\alpha), \#(\beta)\rangle \quad \alpha, \beta \in \mathcal{G}^{*} \tag{2}
\end{equation*}
$$

3. a left-invariant Riemannian metric \langle,\rangle^{l} on G by

$$
\begin{equation*}
\left\langle u^{l}, v^{l}\right\rangle^{l}=\langle u, v\rangle \quad u, v \in \mathcal{G} ; \tag{3}
\end{equation*}
$$

4. a left-invariant contravariant Riemannian metric $\langle,\rangle^{* l}$ on G by

$$
\begin{equation*}
\langle\alpha, \beta\rangle_{g}^{* l}=\left\langle T_{e}^{*} L_{g}(\alpha), T_{e}^{*} L_{g}(\beta)\right\rangle^{*} \tag{4}
\end{equation*}
$$

where $\alpha, \beta \in \Omega^{1}(G)$ and L_{g} is the left translation of G by g.
The infinitesimal Levi-Civita connection associated with $(\mathcal{G},[],,\langle\rangle$,$) is the$ bilinear map $A: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}$ given by

$$
\begin{equation*}
2\left\langle A_{u} v, w\right\rangle=\langle[u, v], w\rangle+\langle[w, u], v\rangle+\langle[w, v], u\rangle, \quad u, v, w \in \mathcal{G} . \tag{5}
\end{equation*}
$$

Note that A is the unique bilinear map from $\mathcal{G} \times \mathcal{G}$ to \mathcal{G} which verifies:

1. $A_{u} v-A_{v} u=[u, v]$;
2. for any $u \in \mathcal{G}, A_{u}: \mathcal{G} \longrightarrow \mathcal{G}$ is skew-adjoint i.e.

$$
\left\langle A_{u} v, w\right\rangle+\left\langle v, A_{u} w\right\rangle=0, \quad v, w \in \mathcal{G} .
$$

The terminology used here is motivated by the fact that the Levi-Civita connection ∇ associated with $\left(G,\langle,\rangle^{l}\right)$ is given by

$$
\begin{equation*}
\nabla_{u^{l}} v^{l}=\left(A_{u} v\right)^{l} \quad u, v \in \mathcal{G} . \tag{6}
\end{equation*}
$$

We will introduce now a Lie subalgebra of \mathcal{G} which will play a crucial role in this paper.

For any $u \in \mathcal{G}$, we denote by $a d_{u}: \mathcal{G} \longrightarrow \mathcal{G}$ the endomorphism given by $a d_{u}(v)=[u, v]$, and by $a d_{u}^{t}: \mathcal{G} \longrightarrow \mathcal{G}$ its adjoint given by

$$
\left\langle a d_{u}^{t}(v), w\right\rangle=\left\langle v, a d_{u}(w)\right\rangle \quad v, w \in \mathcal{G} .
$$

The space

$$
\begin{equation*}
S_{\langle,\rangle}=\left\{u \in \mathcal{G} ; a d_{u}+a d_{u}^{t}=0\right\} \tag{7}
\end{equation*}
$$

is obviously a subalgebra of \mathcal{G}. We call $S_{\langle,\rangle}$the orthogonal subalgebra associated with $(\mathcal{G},[],,\langle\rangle$,$) .$

Remark 2.1. The scalar product \langle,$\rangle is bi-invariant if and only if \mathcal{G}=S_{\langle,\rangle}$. In this case \mathcal{G} is the product of an abelian Lie algebra and a semi-simple and compact Lie algebra (see [5]). The general case where \langle,$\rangle is not positive definite has been$ studied by A. Medina and P. Revoy in [4] and they called a Lie algebra \mathcal{G} with an inner product \langle,$\rangle such that \mathcal{G}=S_{\langle,\rangle}$an orthogonal Lie algebra which justifies the terminology used here.

Let $(\mathcal{G},[],,\langle\rangle$,$) be a Lie algebra endowed with a scalar product.$
The triple $(\mathcal{G},[],,\langle\rangle$,$) is called a Riemann-Lie algebra if$

$$
\begin{equation*}
\left[A_{u} v, w\right]+\left[u, A_{w} v\right]=0 \tag{8}
\end{equation*}
$$

for all $u, v, w \in \mathcal{G}$ and where A is the infinitesimal Levi-Civita connection associated to $(\mathcal{G},[],,\langle\rangle$,$) .$

From the relation $A_{u} v-A_{v} u=[u, v]$ and the Jacobi identity, we deduce that (8) is equivalent to

$$
\begin{equation*}
[u,[v, w]]=\left[A_{u} v, w\right]+\left[v, A_{u} w\right] \tag{9}
\end{equation*}
$$

for any $u, v, w \in \mathcal{G}$. We refer the reader to [2] for the origins of this definition.
Briefly, if $(\mathcal{G},[],,\langle\rangle$,$) is a Lie algebra endowed with a scalar product.$ The scalar product \langle,$\rangle defines naturally a contravariant Riemannian metric on$ the Poisson manifold \mathcal{G}^{*} which we denote also by \langle,$\rangle . If we denote by \pi^{l}$ the canonical Poisson tensor on $\mathcal{G}^{*},\left(\mathcal{G}^{*}, \pi^{l},\langle\rangle,\right)$ is a Riemann-Poisson manifold iff the triple $(\mathcal{G},[],,\langle\rangle$,$) is a Riemann-Lie algebra.$

Characterization of Riemann-Lie algebras. With the notations and the definitions above, we can state now the main result of this paper.

Theorem 2.2. Let G be a Lie group, $(\mathcal{G},[]$,$) its Lie algebra and \langle$,$\rangle a scalar$ product on \mathcal{G}. Then, the following assertions are equivalent:

1) $(\mathcal{G},[],,\langle\rangle$,$) is a Riemann-Lie algebra.$
2) $\left(\mathcal{G}^{*}, \pi^{l},\langle\rangle,\right)$ is a Riemann-Poisson manifold (π^{l} is the canonical Poisson tensor on \mathcal{G}^{*} and \langle,$\left.\rangle is considered as a contravariant metric on \mathcal{G}^{*}\right)$.
3) The 2-form $d \theta \in \Omega^{2}(G, \mathcal{G})$ is parallel with respect the Levi-Civita connection ∇ i.e. $\nabla d \theta=0$.
4) $\left(G,\langle,\rangle^{l}\right)$ is a flat Riemannian manifold.
5) The orthogonal subalgebra $S_{\langle,\rangle}$of $(\mathcal{G},[],,\langle\rangle$,$) is abelian and \mathcal{G}$ split as an orthogonal direct sum $S_{\langle,\rangle} \oplus \mathcal{U}$ where \mathcal{U} is a commutative ideal.

The equivalence "1) $\Leftrightarrow 2$)" of this theorem was proven in [2] and the equivalence " 4$) \Leftrightarrow 5$)" was proven by Milnor in [5]. We will prove the equivalence " 1$) \Leftrightarrow 3$)" and the equivalence " 1$) \Leftrightarrow 5$)".

The equivalence " 1$) \Leftrightarrow 3$)" is a direct consequence of the following formula which it is easy to verify:

$$
\begin{equation*}
\nabla d \theta\left(u^{l}, v^{l}, w^{l}\right)_{g}=A d_{g}\left([u,[v, w]]-\left[A_{u} v, w\right]-\left[v, A_{u} w\right]\right), \quad u, v, w \in \mathcal{G}, g \in G . \tag{10}
\end{equation*}
$$

If G is compact and connected, the condition $\nabla d \theta=0$ implies that $d \theta$ is harmonic and, according to the Hodge Theorem must vanishes since it is exact. Now, the vanishing of $d \theta$ is equivalent to G being abelian and hence we get the following lemma which will be used in the proof of the equivalence "1) $\Leftrightarrow 5$)" in Section 3.

Lemma 2.3. Let G be a compact, connected and non abelian Lie group. Then the Lie algebra of G does not admit any structure of Riemann-Lie algebra.

A proof of the equivalence " 1$) \Leftrightarrow 5$)" will be given in Section 3.
Examples of Riemann-Poisson Lie groups. This subsection is devoted to the construction, using Theorem 2.2, of some examples of Riemann-Poisson Lie groups. A Riemann-Poisson Lie group is a Poisson Lie group with a left-invariant Riemannian metric compatible with the Poisson structure (see [2]).

We refer the reader to [6] for background material on Poisson Lie groups.
Let G be a Poisson Lie group with Lie algebra \mathcal{G} and π the Poisson tensor on G. Pulling π back to the identity element e of G by left translations, we get a map $\pi_{l}: G \longrightarrow \mathcal{G} \wedge \mathcal{G}$ defined by $\pi_{l}(g)=\left(L_{g^{-1}}\right)_{*} \pi(g)$ where $\left(L_{g}\right)_{*}$ denotes the tangent map of the left translation of G by g. Let

$$
d_{e} \pi: \mathcal{G} \longrightarrow \mathcal{G} \wedge \mathcal{G}
$$

be the intrinsic derivative of π at e given by

$$
v \mapsto L_{X} \pi(e),
$$

where X can be any vector field on G with $X(e)=v$.
The dual map of $d_{e} \pi$

$$
[,]_{e}: \mathcal{G}^{*} \wedge \mathcal{G}^{*} \longrightarrow \mathcal{G}^{*}
$$

is exactly the Lie bracket on \mathcal{G}^{*} obtained by linearizing the Poisson structure at e. The Lie algebra $\left(\mathcal{G}^{*},[,]_{e}\right)$ is called the dual Lie algebra associated with the Poisson Lie group (G, π).

We consider now a scalar product \langle,\rangle^{*} on \mathcal{G}^{*}. We denote by $\langle,\rangle^{* l}$ the left-invariant contravariant Riemannian metric on G given by (4).

We have shown (cf. [2] Lemma 5.1) that $\left(G, \pi,\langle,\rangle^{* l}\right)$ is a Riemann-Poisson Lie group iff, for any $\alpha, \beta, \gamma \in \mathcal{G}^{*}$ and for any $g \in G$,

$$
\begin{equation*}
\left[A d_{g}^{*}\left(A_{\alpha}^{*} \gamma+a d_{\pi_{l}(g)(\alpha)}^{*} \gamma\right), A d_{g}^{*}(\beta)\right]_{e}+\left[A d_{g}^{*}(\alpha), A d_{g}^{*}\left(A_{\beta}^{*} \gamma+a d_{\pi_{l}(g)(\beta)}^{*} \gamma\right)\right]_{e}=0 \tag{11}
\end{equation*}
$$

where $A^{*}: \mathcal{G}^{*} \times \mathcal{G}^{*} \longrightarrow \mathcal{G}^{*}$ is the infinitesimal Levi-Civita connection associated to $\left(\mathcal{G}^{*},[,]_{e},\langle,\rangle^{*}\right)$ and where $\pi_{l}(g)$ also denotes the linear map from \mathcal{G}^{*} to \mathcal{G} induced by $\pi_{l}(g) \in \mathcal{G} \wedge \mathcal{G}$.

This complicated equation can be simplified enormously in the case where the Poisson tensor arises from a solution of the classical Yang-Baxter equation. However, we need to work more in order to give this simplification.

Let G be a Lie group and let $r \in \mathcal{G} \wedge \mathcal{G}$. We will also denote by $r: \mathcal{G}^{*} \longrightarrow \mathcal{G}$ the linear map induced by r. Define a bivector π on G by

$$
\pi(g)=\left(L_{g}\right)_{*} r-\left(R_{g}\right)_{*} r \quad g \in G
$$

(G, π) is a Poisson Lie group if and only if the element $[r, r] \in \mathcal{G} \wedge \mathcal{G} \wedge \mathcal{G}$ defined by

$$
\begin{equation*}
[r, r](\alpha, \beta, \gamma)=\alpha([r(\beta), r(\gamma)])+\beta([r(\gamma), r(\alpha)])+\gamma([r(\alpha), r(\beta)]) \tag{12}
\end{equation*}
$$

is $a d$-invariant. In particular, when r satisfies the Yang-Baxter equation

$$
\begin{equation*}
[r, r]=0 \tag{Y-B}
\end{equation*}
$$

it defines a Poisson Lie group structure on G and, in this case, the bracket of the dual Lie algebra \mathcal{G}^{*} is given by

$$
\begin{equation*}
[\alpha, \beta]_{e}=a d_{r(\beta)}^{*} \alpha-a d_{r(\alpha)}^{*} \beta, \quad \alpha, \beta \in \mathcal{G}^{*} . \tag{13}
\end{equation*}
$$

We will denote by [$]_{r}$ this bracket.
We will give now another description of the solutions of the Yang-Baxter equation which will be useful latter.

We observe that to give $r \in \mathcal{G} \wedge \mathcal{G}$ is equivalent to give a vectorial subspace $S_{r} \subset \mathcal{G}$ and a non-degenerate 2-form $\omega_{r} \in \wedge^{2} S_{r}^{*}$.

Indeed, for $r \in \mathcal{G} \wedge \mathcal{G}$, we put $S_{r}=\operatorname{Im} r$ and $\omega_{r}(u, v)=r\left(r^{-1}(u), r^{-1}(v)\right)$ where $u, v \in S_{r}$ and $r^{-1}(u)$ is any antecedent of u by r.

Conversely, let (S, ω) be a vectorial subspace of \mathcal{G} with a non-degenerate 2-form. The 2-form ω defines an isomorphism $\omega^{b}: S \longrightarrow S^{*}$ by $\omega^{b}(u)=\omega(u,$.$) ,$ we denote by $\#: S^{*} \longrightarrow S$ its inverse and we put

$$
r=\# \circ i^{*}
$$

where $i^{*}: \mathcal{G}^{*} \longrightarrow S^{*}$ is the dual of the inclusion $i: S \hookrightarrow \mathcal{G}$.
With this observation in mind, the following proposition gives another description of the solutions of the Yang-Baxter equation.

Proposition 2.4. Let $r \in \mathcal{G} \wedge \mathcal{G}$ and $\left(S_{r}, \omega_{r}\right)$ its associated subspace. The following assertions are equivalent:

1) $[r, r]=0$.
2) $r\left([\alpha, \beta]_{r}\right)=[r(\alpha), r(\beta)]$. ([, $]_{r}$ is the bracket given by (13)).
3) S_{r} is a subalgebra of \mathcal{G} and

$$
\delta \omega_{r}(u, v, w):=\omega_{r}(u,[v, w])+\omega_{r}(v,[w, u])+\omega_{r}(w,[u, v])=0
$$

for any $u, v, w \in S_{r}$.

Proof. The proposition follows from the following formulas:

$$
\begin{equation*}
\gamma\left(r\left([\alpha, \beta]_{r}\right)-[r(\alpha), r(\beta)]\right)=-[r, r](\alpha, \beta, \gamma), \quad \alpha, \beta, \gamma \in \mathcal{G}^{*} \tag{14}
\end{equation*}
$$

and, if S is a subalgebra,

$$
\begin{equation*}
[r, r](\alpha, \beta, \gamma)=-\delta \omega_{r}(r(\alpha), r(\beta), r(\gamma)) \tag{15}
\end{equation*}
$$

This proposition shows that to give a solution of the Yang-Baxter equation is equivalent to give a symplectic subalgebra of \mathcal{G}. We recall that a symplectic algebra (see [3]) is a Lie algebra S endowed with a non-degenerate 2 -form ω such that $\delta \omega=0$.

Remark 2.5. Let G be a Lie group, \mathcal{G} its Lie algebra and S an even dimensional abelian subalgebra of \mathcal{G}. Any non-degenerate 2 -form ω on S verifies the assertion 3) in Proposition 2.1 and hence (S, ω) defines a solution of the YangBaxter equation and then a structure of Poisson Lie group on G.

The following proposition will be crucial in the simplification of the equation (11).

Proposition 2.6. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Lie algebra endowed with a scalar$ product, $r \in \mathcal{G} \wedge \mathcal{G}$ a solution of $(Y-B)$ and $\left(S_{r}, \omega_{r}\right)$ its associated symplectic Lie algebra. Then, $S_{r} \subset S_{\langle,\rangle}$iff the infinitesimal Levi-Civita connection A^{*} associated with $\left(\mathcal{G}^{*},[,]_{r},\langle,\rangle^{*}\right)$ is given by

$$
\begin{equation*}
A_{\alpha}^{*} \beta=-a d_{r(\alpha)}^{*} \beta, \quad \alpha, \beta \in \mathcal{G}^{*} . \tag{16}
\end{equation*}
$$

Moreover, if $S_{r} \subset S_{\langle,\rangle}$, the curvature of A^{*} vanishes and hence $\left(\mathcal{G}^{*},[,]_{r},\langle,\rangle^{*}\right)$ is a Riemann-Lie algebra.

Proof. $\quad A^{*}$ is the unique bilinear map from $\mathcal{G}^{*} \times \mathcal{G}^{*}$ to \mathcal{G}^{*} such that:

1) $A_{\alpha}^{*} \beta-A_{\beta}^{*} \alpha=[\alpha, \beta]_{r}$ for any $\alpha, \beta \in \mathcal{G}^{*}$;
2) the endomorphism $A_{\alpha}^{*}: \mathcal{G}^{*} \longrightarrow \mathcal{G}^{*}$ is skew-adjoint with respect to \langle,\rangle^{*}. The bilinear map $(\alpha, \beta) \mapsto-a d_{r(\alpha)}^{*} \beta$ verifies 1) obviously and verifies 2) iff $S_{r} \subset S_{\langle,\rangle}$.

If $A_{\alpha}^{*} \beta=-a d_{r(\alpha)}^{*} \beta$, the curvature of A^{*} is given by

$$
R(\alpha, \beta) \gamma=A_{[\alpha, \beta]_{r}}^{*} \gamma-\left(A_{\alpha}^{*} A_{\beta}^{*} \gamma-A_{\beta}^{*} A_{\alpha}^{*} \gamma\right)=a d_{r\left([\alpha, \beta]_{r}\right)-[r(\alpha), r(\beta)]}^{*} \gamma=0
$$

from Proposition 2.4 2). We conclude by Theorem 2.2.

Proposition 2.7. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Lie algebra with a scalar product. Let$ $r \in \mathcal{G} \wedge \mathcal{G}$ be a solution of $(Y-B)$ such that S_{r} is a subalgebra of the orthogonal subalgebra $S_{\langle,\rangle}$. Then S_{r} is abelian.

Proof. S_{r} is unimodular and symplectic and then solvable (see [3]). Also S_{r} carries a bi-invariant scalar product so S_{r} must be abelian (see [5]).

We can now simplify the equation (11) and give the construction of RiemannPoisson Lie groups announced before.

Let G be a Lie group, $(\mathcal{G},[]$,$) its Lie algebra and \langle$,$\rangle a scalar product$ on \mathcal{G}. We assume that the orthogonal subalgebra $S_{\langle,\rangle}$contains an abelian even dimensional subalgebra S endowed with a non-degenerate 2-form ω.

As in Remark 2.5, (S, ω) defines a solution r of $(Y-B)$ and then a Poisson Lie tensor π on G. It is easy to see that, for any $g \in G$,

$$
\pi^{l}(g)=r-A d_{g}(r) .
$$

This implies that (11) can be rewritten

$$
\begin{array}{r}
{\left[A d_{g}^{*}\left(A_{\alpha}^{*} \gamma+a d_{r(\alpha)}^{*} \gamma\right), A d_{g}^{*}(\beta)\right]_{r}+\left[A d_{g}^{*}(\alpha), A d_{g}^{*}\left(A_{\beta}^{*} \gamma+a d_{r(\beta)}^{*} \gamma\right)\right]_{r}=} \\
{\left[A d_{g}^{*}\left(a d_{A d_{g}(r)(\alpha)}^{*} \gamma\right), A d_{g}^{*}(\beta)\right]_{r}+\left[A d_{g}^{*}(\alpha), A d_{g}^{*}\left(a d_{A d_{g}(r)(\beta)}^{*} \gamma\right)\right]_{r} .}
\end{array}
$$

Now, since $S \subset S_{\langle,\rangle}$, we have by Proposition 2.6

$$
A_{\alpha}^{*} \gamma+a d_{r(\alpha)}^{*} \gamma=0
$$

for any $\alpha, \gamma \in \mathcal{G}^{*}$. On other hand, it is easy to get the formula

$$
\left.A d_{g}^{*}\left[a d_{r(\alpha)}^{*} \beta\right]=a d_{\left(A d_{g}-1\right.}^{*}\right)\left(A d_{g}^{* \alpha)}\left(A d_{g}^{*} \beta\right), \quad g \in G, \alpha, \beta \in \mathcal{G}^{*} .\right.
$$

Finally, $\left(G, \pi,\langle,\rangle^{* l}\right)$ is a Riemann-Poisson Lie group iff

$$
\left[a d_{r(\alpha)}^{*} \gamma, \beta\right]_{r}+\left[\alpha, a d_{r(\beta)}^{*} \gamma\right]_{r}=0, \quad \alpha, \beta, \gamma \in \mathcal{G}^{*}
$$

But, also since $A_{\alpha}^{*} \gamma+a d_{r(\alpha)}^{*} \gamma=0$, this condition is equivalent to $\left(\mathcal{G}^{*},[]_{r},\langle,\rangle^{*}\right)$ is a Riemann-Lie algebra which is true by Proposition 2.6. So, we have shown:

Theorem 2.8. Let G be a Lie group, ($\mathcal{G},[]$,$) its Lie algebra and \langle$,$\rangle a scalar$ product on \mathcal{G}. Let S be an even dimensional abelian subalgebra of the orthogonal subalgebra $S_{\langle,\rangle}$and ω a non-degenerate 2-form on S. Then, the solution of the Yang-Baxter equation associated with (S, ω) defines a structure of Poisson Lie group (G, π) and $\left(G, \pi,\langle,\rangle^{* l}\right)$ is a Riemann-Poisson Lie group.

Let us enumerate some important cases where this theorem can be used.

1) Let G be a compact Lie group and \mathcal{G} its Lie algebra. For any biinvariant scalar product \langle,$\rangle on the Lie algebra \mathcal{G}, S_{\langle,\rangle}=\mathcal{G}$. By Theorem 2.8, we can associate to any even dimensional abelian subalgebra of \mathcal{G} a Riemann-Poisson Lie group structure on G.
2) Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra. By Theorem 2.2, the$ orthogonal subalgebra $S_{\langle,\rangle}$is abelian and any even dimensional subalgebra of $S_{\langle,\rangle}$ gives rise to a structure of a Riemann-Poisson Lie group on any Lie group whose the Lie algebra is \mathcal{G}. Moreover, we get a structure of bialgebra $\left(\mathcal{G},[],, \mathcal{G}^{*},[,]_{r}\right)$ where both \mathcal{G} and \mathcal{G}^{*} are Riemann-Lie algebras.

Finally, we observe that the Riemann-Lie groups constructed above inherit the properties of Riemann-Poisson manifolds (see [2]). Namely, the symplectic leaves of these Poisson Lie groups are Kählerian and their Poisson structures are unimodular.

3. Proof of the equivalence " 1$) \Leftrightarrow 5$)" in Theorem 2.2

In this section we will give a proof of the equivalence "1) $\Leftrightarrow 5$)" in Theorem 2.2. The proof is a sequence of lemmas. Namely, we will show that, for a Riemann-Lie algebra $(\mathcal{G},[],,\langle\rangle$,$) , the orthogonal subalgebra S_{\langle,\rangle}$is abelian. Moreover, $S_{\langle,\rangle}$is the \langle,$\rangle -orthogonal of the ideal [\mathcal{G}, \mathcal{G}]$. This result will be the key of the proof.

We begin by a characterization of Riemann-Lie subalgebras.
Proposition 3.1. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra and \mathcal{H}$ a subalgebra of \mathcal{G}. For any $u, v \in \mathcal{H}$, we put $A_{u} v=A_{u}^{0} v+A_{u}^{1} v$, where $A_{u}^{0} v \in \mathcal{H}$ and $A_{u}^{1} v \in \mathcal{H}^{\perp}$. Then, $(\mathcal{H},[],,\langle\rangle$,$) is a Riemann-Lie algebra if and only if, for any$ $u, v, w \in \mathcal{H},\left[A_{u}^{1} v, w\right]+\left[v, A_{u}^{1} w\right] \in \mathcal{H}^{\perp}$.

Proof. We have, from (9), that for any $u, v, w \in \mathcal{H}$

$$
[u,[v, w]]=\left[A_{u}^{0} v, w\right]+\left[v, A_{u}^{0} w\right]+\left[A_{u}^{1} v, w\right]+\left[v, A_{u}^{1} w\right] .
$$

Now $A^{0}: \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{H}$ is the infinitesimal Levi-Civita connection associated with the restriction of \langle,$\rangle to \mathcal{H}$ and the proposition follows.

We will introduce now some objects which will be useful latter.
Let $(\mathcal{G},[],,\langle\rangle$,$) a Lie algebra endowed with a scalar product.$
From (5), we deduce that the infinitesimal Levi-Civita connection A associated to \langle,$\rangle is given by$

$$
\begin{equation*}
A_{u} v=\frac{1}{2}[u, v]-\frac{1}{2}\left(a d_{u}^{t} v+a d_{v}^{t} u\right) \quad u, v \in \mathcal{G} . \tag{17}
\end{equation*}
$$

On other hand, the orthogonal with respect to \langle,$\rangle of the ideal [\mathcal{G}, \mathcal{G}]$ is given by

$$
\begin{equation*}
[\mathcal{G}, \mathcal{G}]^{\perp}=\bigcap_{u \in \mathcal{G}} \operatorname{ker} a d_{u}^{t} . \tag{18}
\end{equation*}
$$

Let us introduce, for any $u \in \mathcal{G}$, the endomorphism

$$
\begin{equation*}
D_{u}=a d_{u}-A_{u} . \tag{19}
\end{equation*}
$$

We have, by a straightforward calculation, the relations

$$
\begin{aligned}
D_{u}(v) & =\frac{1}{2}[u, v]+\frac{1}{2}\left(a d_{u}^{t} v+a d_{v}^{t} u\right), \\
D_{u}^{t}(v) & =\frac{1}{2}[u, v]+\frac{1}{2}\left(a d_{u}^{t} v-a d_{v}^{t} u\right) .
\end{aligned}
$$

From these relations, we remark that, for any $u, v \in \mathcal{G}, D_{u}^{t}(v)=-D_{v}^{t}(u)$ and then

$$
\begin{equation*}
\forall u \in \mathcal{G}, D_{u}^{t}(u)=0 \tag{20}
\end{equation*}
$$

We remark also that

$$
D_{u}^{t}=D_{u} \quad \Leftrightarrow \quad \forall v \in \mathcal{G}, a d_{v}^{t} u=0 .
$$

So, by (18), we get

$$
\begin{equation*}
[\mathcal{G}, \mathcal{G}]^{\perp}=\left\{u \in \mathcal{G} ; D_{u}^{t}=D_{u}\right\} . \tag{21}
\end{equation*}
$$

Now, we prove a sequence of results which will give a proof of the equivalence "1) $\Leftrightarrow 5$)" in Theorem 2.2.

Proposition 3.2. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra. Then Z(\mathcal{G})^{\perp}$ $(Z(\mathcal{G})$ is the center of $\mathcal{G})$ is an ideal of \mathcal{G} which contains the ideal $[\mathcal{G}, \mathcal{G}]$. In particular,

$$
\mathcal{G}=Z(\mathcal{G}) \oplus Z(\mathcal{G})^{\perp}
$$

Proof. For any $u \in Z(\mathcal{G})$ and $v \in \mathcal{G}$, from (17) and the fact that A_{u} is skew-adjoint, $A_{u} v=-\frac{1}{2} a d_{v}^{t} u \in Z(\mathcal{G})^{\perp}$. By (8), for any $w \in \mathcal{G}$

$$
\left[A_{u} v, w\right]=\left[A_{w} v, u\right]=0
$$

so $A_{u} v \in Z(\mathcal{G})$ and then $A_{u} v=-\frac{1}{2} a d_{v}^{t} u=0$ which shows that $u \in[\mathcal{G}, \mathcal{G}]^{\perp}$. So $Z(\mathcal{G}) \subset[\mathcal{G}, \mathcal{G}]^{\perp}$ and the proposition follows.

From this proposition and the fact that for a nilpotent Lie algebra \mathcal{G} $Z(\mathcal{G}) \cap[\mathcal{G}, \mathcal{G}] \neq\{0\}$, we get the following lemma.

Lemma 3.3. A nilpotent Lie algebra \mathcal{G} carries a structure of Riemann-Lie algebra if and only if \mathcal{G} is abelian.

We can now get the following crucial result.
Lemma 3.4. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra. Then the orthogonal$ Lie subalgebra $S_{\langle,\rangle}$is abelian.

Proof. \quad By (17), $A_{u} v=\frac{1}{2}[u, v]$ for any $u, v \in S_{\langle,\rangle}$. So, by Proposition 3.1, $S_{\langle,\rangle}$ is a Riemann-subalgebra. By (9), we have, for any $u, v, w \in S_{\langle,\rangle}$,

$$
[u,[v, w]]=\left[A_{u} v, w\right]+\left[v, A_{u} w\right]=\frac{1}{2}[[u, v], w]+\frac{1}{2}[v,[u, w]]=\frac{1}{2}[u,[v, w]]
$$

and then $\left[S_{\langle,\rangle},\left[S_{\langle,\rangle}, S_{\langle,\rangle}\right]\right]=0$ i.e. $S_{\langle,\rangle}$is a nilpotent Lie algebra and then abelian by Lemma 3.3.

Lemma 3.5. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra. Then$

$$
[\mathcal{G}, \mathcal{G}]^{\perp}=\left\{u \in \mathcal{G} ; D_{u}=0\right\} .
$$

Proof. Firstly, we notice that, by (21), $[\mathcal{G}, \mathcal{G}]^{\perp} \supset\left\{u \in \mathcal{G} ; D_{u}=0\right\}$. On other hand, remark that the relation (8) can be rewritten

$$
\left[D_{u}(v), w\right]+\left[v, D_{u}(w)\right]=0
$$

for any $u, v, w \in \mathcal{G}$. So, we can deduce immediately that $\left[\operatorname{ker} D_{u}, \operatorname{Im} D_{u}\right]=0$ for any $u \in \mathcal{G}$.

Now we observe that, for any $u \in[\mathcal{G}, \mathcal{G}]^{\perp}$, the endomorphism D_{u} is autoadjoint and then diagonalizeable on \mathbb{R}. Let $u \in[\mathcal{G}, \mathcal{G}]^{\perp}, \lambda \in \mathbb{R}$ be an eigenvalue of D_{u} and $v \in \mathcal{G}$ an eigenvector associated with λ. We have

$$
\left\langle D_{u}(v), v\right\rangle=\lambda\langle v, v\rangle \stackrel{(\alpha)}{=}-\left\langle A_{v} u, v\right\rangle \stackrel{(\beta)}{=}-\langle[v, u], v\rangle \stackrel{(\gamma)}{=} 0 .
$$

So $\lambda=0$ and we obtain that D_{u} vanishes identically. Hence the lemma follows.
The equality (α) is a consequence of the definition of D_{u}, and the equality (β) follows from the definition of A. We observe that $v \in I m D_{u}$ and $u \in \operatorname{ker} D_{u}$ since $D_{u}(u)=D_{u}^{t}(u)=0$ (see (20)) and the equality (γ) follows from the remark above.

Lemma 3.6. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra. Then$

$$
S_{\langle,\rangle}=[\mathcal{G}, \mathcal{G}]^{\perp} .
$$

Proof. From Lemma 3.5, for any $u \in[\mathcal{G}, \mathcal{G}]^{\perp}, A_{u}=a d_{u}$ and then $a d_{u}$ is skewadjoint. So $[\mathcal{G}, \mathcal{G}]^{\perp} \subset S_{\langle,\rangle}$. To prove the second inclusion, we need to work harder than the first one.

Firstly, remark that one can suppose that $Z(\mathcal{G})=\{0\}$. Indeed, $\mathcal{G}=Z(\mathcal{G}) \oplus$ $Z(\mathcal{G})^{\perp}$ (see Proposition 3.2), $Z(\mathcal{G})^{\perp}$ is a Riemann-Lie algebra (see Proposition 3.1), $[\mathcal{G}, \mathcal{G}]=\left[Z(\mathcal{G})^{\perp}, Z(\mathcal{G})^{\perp}\right]$ and $S_{\langle,\rangle}=Z(\mathcal{G}) \oplus S_{\langle,\rangle}^{\prime}$ where $S_{\langle,\rangle}^{\prime}$ is the orthogonal subalgebra associated to $\left(Z(\mathcal{G})^{\perp},\langle\rangle,\right)$.

We suppose now that $(\mathcal{G},[],,\langle\rangle$,$) is a Riemann-Lie algebra such that$ $Z(\mathcal{G})=\{0\}$ and we want to prove the inclusion $[\mathcal{G}, \mathcal{G}]^{\perp} \supset S_{\langle,\rangle}$. Notice that it suffices to show that, for any $u \in S_{\langle,\rangle}, A_{u}=a d_{u}$.

The proof requires some preparation. Let us introduce the subalgebra K given by

$$
K=\bigcap_{u \in S_{\langle,\rangle}} \operatorname{ker} a d_{u} .
$$

Firstly, we notice that K contains $S_{\langle,\rangle}$because $S_{\langle,\rangle}$is abelian (see Lemma 3.4).
On other hand, we remark that, for any $u \in S_{\langle,\rangle}$, the endomorphism A_{u} leaves invariant K and K^{\perp}. Indeed, for any $v \in K$ and any $w \in S_{\langle,\rangle}$, we have

$$
\left[w, A_{u} v\right] \stackrel{(\alpha)}{=}\left[w, A_{v} u\right] \stackrel{(\beta)}{=}-\left[A_{w} u, v\right] \stackrel{(\gamma)}{=} 0
$$

and then $A_{u} v \in K$, this shows that A_{u} leaves invariant K. Furthermore, A_{u} being skew-adjoint, we have $A_{u}\left(K^{\perp}\right) \subset K^{\perp}$.

The equality (α) follows from the relation $A_{u} v=A_{v} u+[u, v]=A_{u} v$, the equality (β) follows from (8) and (γ) follows from the relation $A_{w} u=\frac{1}{2}[w, u]=0$.

With this observation in mind, we consider the representation $\rho: S_{\langle,\rangle} \longrightarrow$ so $\left(K^{\perp}\right)$ given by

$$
\rho(u)=a d_{u \mid K^{\perp}} \quad u \in S_{\langle,\rangle} .
$$

It is clear that

$$
\begin{equation*}
\bigcap_{u \in S_{(,\rangle}} \operatorname{ker} \rho(u)=\{0\} . \tag{*}
\end{equation*}
$$

This relation and the fact that $S_{\langle,\rangle}$is abelian imply that $\operatorname{dim} K^{\perp}$ is even and that there is an orthonormal basis $\left(e_{1}, f_{1}, \ldots, e_{p}, f_{p}\right)$ of K^{\perp} such that

$$
\begin{equation*}
\forall i \in\{1, \ldots, p\}, \forall u \in S_{\langle,\rangle}, \quad a d_{u} e_{i}=\lambda^{i}(u) f_{i} \quad \text { and } \quad a d_{u} f_{i}=-\lambda^{i}(u) e_{i}, \tag{**}
\end{equation*}
$$

where $\lambda^{i} \in S_{\langle,\rangle}^{*}$.
Now, for any $u \in S_{\langle,\rangle}$, since A_{u} leaves K^{\perp} invariant, we can write

$$
\begin{aligned}
& A_{u} e_{i}=\sum_{j=1}^{p}\left(\left\langle A_{u} e_{i}, e_{j}\right\rangle e_{j}+\left\langle A_{u} e_{i}, f_{j}\right\rangle f_{j}\right), \\
& A_{u} f_{i}=\sum_{j=1}^{p}\left(\left\langle A_{u} f_{i}, e_{j}\right\rangle e_{j}+\left\langle A_{u} f_{i}, f_{j}\right\rangle f_{j}\right) .
\end{aligned}
$$

From (9), we have for any $v \in S_{\langle,\rangle}$and for any $i \in\{1, \ldots, p\}$,

$$
\begin{aligned}
{\left[u,\left[v, e_{i}\right]\right] } & =\left[A_{u} v, e_{i}\right]+\left[v, A_{u} e_{i}\right], \\
{\left[u,\left[v, f_{i}\right]\right] } & =\left[A_{u} v, f_{i}\right]+\left[v, A_{u} f_{i}\right] .
\end{aligned}
$$

Using the the equality $A_{u} v=0$ and $(* *)$ and substituting we get

$$
\begin{aligned}
-\lambda^{i}(u) \lambda^{i}(v) e_{i} & =\sum_{j=1}^{p} \lambda^{j}(v)\left\langle A_{u} e_{i}, e_{j}\right\rangle f_{j}-\sum_{j=1}^{p} \lambda^{j}(v)\left\langle A_{u} e_{i}, f_{j}\right\rangle e_{j}, \\
-\lambda^{i}(u) \lambda^{i}(v) f_{i} & =\sum_{j=1}^{p} \lambda^{j}(v)\left\langle A_{u} f_{i}, e_{j}\right\rangle f_{j}-\sum_{j=1}^{p} \lambda^{j}(v)\left\langle A_{u} f_{i}, f_{j}\right\rangle e_{j}
\end{aligned}
$$

Now, it is clear from $(*)$ that, for any $i \in\{1, \ldots, p\}$, there exists $v \in S_{\langle,\rangle}$such that $\lambda^{i}(v) \neq 0$. Using this fact and the relations above, we get

$$
A_{u} e_{i}=\lambda^{i}(u) f_{i} \quad \text { and } \quad A_{u} f_{i}=-\lambda^{i}(u) e_{i} .
$$

So we have shown that, for any $u \in S_{\langle,\rangle}$,

$$
A_{u \mid K^{\perp}}=a d_{u \mid K^{\perp}} .
$$

Now, for any $u \in S_{\langle,\rangle}$and for any $k \in K, a d_{u}(k)=0$. So, to complete the proof of the lemma, we will show that, for any $u \in S_{\langle,\rangle}$and for any $k \in K$, $A_{u} k=0$. This will be done by showing that $A_{u} k \in Z(\mathcal{G})$ and conclude by using the assumption $Z(\mathcal{G})=\{0\}$.

Indeed, for any $h \in K$, by (8)

$$
\left[A_{u} k, h\right]=\left[A_{h} k, u\right] .
$$

Since $A_{u}(K) \subset K$ and since K is a subalgebra, $\left[A_{u} k, h\right] \in K$. Now, $K \subset \operatorname{ker} a d_{u}$ and $a d_{u}$ is skew-adjoint so $\left[A_{h} k, u\right] \in \operatorname{Imad}_{u} \subset K^{\perp}$. So $\left[A_{u} k, h\right]=0$. On other hand, for any $f \in K^{\perp}$, we have, also from (8),

$$
\left[A_{u} k, f\right]=\left[A_{k} u, f\right]=\left[A_{f} u, k\right]=0
$$

since $A_{f} u=[f, u]+A_{u} f=[f, u]+[u, f]=0$.
We deduce that $A_{u} k \in Z(\mathcal{G})$ and then $A_{u} k=0$. The proof of the lemma is complete.

Lemma 3.7. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra such that Z(\mathcal{G})=0$. Then

$$
\mathcal{G} \neq[\mathcal{G}, \mathcal{G}] .
$$

Proof. Let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra such that Z(\mathcal{G})=0$. We will show that the assumption $\mathcal{G}=[\mathcal{G}, \mathcal{G}]$ implies that the Killing form of \mathcal{G} is strictly negative definite and then \mathcal{G} is semi-simple and compact which is in contradiction with lemma 2.3.

Let $u \in \mathcal{G}$ fixed. Since A_{u} is skew-adjoint, there is an orthonormal basis $\left(a_{1}, b_{1}, \ldots, a_{r}, b_{r}, c_{1}, \ldots, c_{l}\right)$ of \mathcal{G} and $\left(\mu_{1}, \ldots, \mu_{r}\right) \in \mathbb{R}^{r}$ such that, for any $i \in$ $\{1, \ldots, r\}$ and any $j \in\{1, \ldots, l\}$,

$$
A_{u} a_{i}=\mu_{i} b_{i}, \quad A_{u} b_{i}=-\mu_{i} a_{i} \quad \text { and } \quad A_{u} c_{j}=0
$$

Moreover, $\mu_{i}>0$ for any $i \in\{1, \ldots, r\}$.
By applying (9), we can deduce, for any $i, j \in\{1, \ldots, r\}$ and for any $k, h \in\{1, \ldots, l\}$, the relations:

$$
\begin{aligned}
{\left[u,\left[a_{i}, a_{j}\right]\right] } & =\mu_{i}\left[b_{i}, a_{j}\right]+\mu_{j}\left[a_{i}, b_{j}\right], \quad\left[u,\left[b_{i}, b_{j}\right]\right]=-\mu_{j}\left[b_{i}, a_{j}\right]-\mu_{i}\left[a_{i}, b_{j}\right], \\
{\left[u,\left[a_{i}, b_{j}\right]\right] } & =-\mu_{j}\left[a_{i}, a_{j}\right]+\mu_{i}\left[b_{i}, b_{j}\right], \quad\left[u,\left[b_{i}, a_{j}\right]\right]=-\mu_{i}\left[a_{i}, a_{j}\right]+\mu_{j}\left[b_{i}, b_{j}\right], \\
{\left[u,\left[c_{k}, a_{j}\right]\right] } & =\mu_{j}\left[c_{k}, b_{j}\right], \quad\left[u,\left[c_{k}, b_{j}\right]\right]=-\mu_{j}\left[c_{k}, a_{j}\right], \quad\left[u,\left[c_{k}, c_{h}\right]\right]=0
\end{aligned}
$$

From these relations we deduce

$$
\begin{aligned}
a d_{u} \circ a d_{u}\left(\left[a_{i}, a_{j}\right]\right) & =-\left(\mu_{i}^{2}+\mu_{j}^{2}\right)\left[a_{i}, a_{j}\right]+2 \mu_{i} \mu_{j}\left[b_{i}, b_{j}\right] \\
a d_{u} \circ a d_{u}\left(\left[b_{i}, b_{j}\right]\right) & =2 \mu_{i} \mu_{j}\left[a_{i}, a_{j}\right]-\left(\mu_{i}^{2}+\mu_{j}^{2}\right)\left[b_{i}, b_{j}\right] \\
a d_{u} \circ a d_{u}\left(\left[b_{i}, a_{j}\right]\right) & =-\left(\mu_{i}^{2}+\mu_{j}^{2}\right)\left[b_{i}, a_{j}\right]-2 \mu_{i} \mu_{j}\left[a_{i}, b_{j}\right] \\
a d_{u} \circ a d_{u}\left(\left[a_{i}, b_{j}\right]\right) & =-2 \mu_{i} \mu_{j}\left[b_{i}, a_{j}\right]-\left(\mu_{i}^{2}+\mu_{j}^{2}\right)\left[a_{i}, b_{j}\right] \\
a d_{u} \circ a d_{u}\left(\left[c_{k}, a_{j}\right]\right) & =-\mu_{j}^{2}\left[c_{k}, a_{j}\right] \\
a d_{u} \circ a d_{u}\left(\left[c_{k}, b_{j}\right]\right) & =-\mu_{j}^{2}\left[c_{k}, b_{j}\right], \\
a d_{u} \circ a d_{u}\left(\left[c_{k}, c_{h}\right]\right) & =0 .
\end{aligned}
$$

By an obvious transformation we obtain

$$
\begin{aligned}
a d_{u} \circ a d_{u}\left(\left[a_{i}, a_{j}\right]+\left[b_{i}, b_{j}\right]\right) & =-\left(\mu_{i}-\mu_{j}\right)^{2}\left(\left[a_{i}, a_{j}\right]+\left[b_{i}, b_{j}\right]\right), \\
a d_{u} \circ a d_{u}\left(\left[a_{i}, a_{j}\right]-\left[b_{i}, b_{j}\right]\right) & =-\left(\mu_{i}+\mu_{j}\right)^{2}\left(\left[a_{i}, a_{j}\right]-\left[b_{i}, b_{j}\right]\right), \\
a d_{u} \circ a d_{u}\left(\left[b_{i}, a_{j}\right]+\left[a_{i}, b_{j}\right]\right) & =-\left(\mu_{i}+\mu_{j}\right)^{2}\left(\left[b_{i}, a_{j}\right]+\left[a_{i}, b_{j}\right]\right), \\
a d_{u} \circ a d_{u}\left(\left[b_{i}, a_{j}\right]-\left[a_{i}, b_{j}\right]\right) & =-\left(\mu_{i}-\mu_{j}\right)^{2}\left(\left[b_{i}, a_{j}\right]-\left[a_{i}, b_{j}\right]\right), \\
a d_{u} \circ a d_{u}\left(\left[c_{k}, a_{j}\right]\right) & =-\mu_{j}^{2}\left[c_{k}, a_{j}\right], \\
a d_{u} \circ a d_{u}\left(\left[c_{k}, b_{j}\right]\right) & =-\mu_{j}^{2}\left[c_{k}, b_{j}\right], \\
a d_{u} \circ a d_{u}\left(\left[c_{k}, c_{h}\right]\right) & =0 .
\end{aligned}
$$

Suppose now $\mathcal{G}=[\mathcal{G}, \mathcal{G}]$. Then the family of vectors

$$
\begin{aligned}
& \left\{\left[a_{i}, a_{j}\right]+\left[b_{i}, b_{j}\right],\left[a_{i}, a_{j}\right]-\left[b_{i}, b_{j}\right],\left[b_{i}, a_{j}\right]+\left[a_{i}, b_{j}\right]\right. \\
& \left.\left[b_{i}, a_{j}\right]-\left[a_{i}, b_{j}\right],\left[c_{k}, a_{i}\right],\left[c_{k}, b_{j}\right],\left[c_{k}, c_{h}\right] ; i, j \in\{1, \ldots, r\}, h, k \in\{1, \ldots, l\}\right\} \text { spans }
\end{aligned}
$$

\mathcal{G} and then $a d_{u} \circ a d_{u}$ is diagonalizeable and all its eigenvalues are non positive. Now its easy to deduce that $a d_{u} \circ a d_{u}=0$ if and only if $a d_{u}=0$. Since $Z(\mathcal{G})=0$ we have shown that, for any $u \in \mathcal{G} \backslash\{0\}, \operatorname{Tr}\left(a d_{u} \circ a d_{u}\right)<0$ and then the Killing form of \mathcal{G} is strictly negative definite and then \mathcal{G} is semi-simple compact. We can conclude with Lemma 2.3.

Proof of the equivalence " 1) $\Leftrightarrow 5$)" in Theorem 2.2.
It is an obvious and straightforward calculation to show that 5) $\Rightarrow 1$).

Conversely, let $(\mathcal{G},[],,\langle\rangle$,$) be a Riemann-Lie algebra. By Proposition 3.2,$ we can suppose that $Z(\mathcal{G})=\{0\}$.

We have, from Lemma 3.7 and Lemma 3.6, $\mathcal{G} \neq[\mathcal{G}, \mathcal{G}]$ which implies $S_{\langle,\rangle} \neq 0$ and $\mathcal{G}=S_{\langle,\rangle} \oplus[\mathcal{G}, \mathcal{G}]$. Moreover, $[\mathcal{G}, \mathcal{G}]$ is a Riemann-Lie algebra (see Proposition 3.1) and we can repeat the argument above to deduce that eventually \mathcal{G} is solvable which implies that $[\mathcal{G}, \mathcal{G}]$ is nilpotent and then abelian by Lemma 3.3 and the implication follows.

Remark 3.8. The pseudo-Riemann-Lie algebras are completely different from the Riemann-Lie algebras. Indeed, the 3-dimensional Heisenberg Lie algebra which is nilpotent carries a Lorentzian Lie algebra structure. On other hand, the non trivial 2-dimensional Lie algebra carries a Lorentzian inner product whose curvature vanishes and does not carry any structure of a pseudo-Riemann-Lie algebra.

References

[1] Boucetta, M., Compatibilité des structures pseudo-riemanniennes et des structures de Poisson, C. R. Acad. Sci. Paris, 333, Série I, (2001) 763768.
[2] -, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geometry and its Applications, 20 (2004), 279291.
[3] Lichnerowicz, A., and A. Medina, On Lie groups with left-invariant symplectic or Kählerian structures, Letters in Mathematical Physics 16 (1988), 225-235.
[4] Medina, A., and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Ec. Norm. Sup., 4ème série, 18 (1985), 553-561.
[5] Milnor, J., Curvature of Left invariant metrics on Lie groups, Advances in Mathematics 21 (1976), 293-329.
[6] Lu, J. H., and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geometry, 31 (1990), 501-526.
M. Boucetta

Faculté des sciences et techniques
Gueliz
BP 549 Marrakech Morocco
boucetta@fstg-marrakech.ac.ma

Received March 2, 2004
and in final form July 23, 2004

[^0]: * Recherche menée dans le cadre du Programme Thématique d'Appui à la Recherche Scientifique PROTARS III.

