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Abstract. Let G/T be the flag manifold of a compact semisimple Lie group
G modulo a maximal torus T C G. We express the height function on the
2-dimensional integral cohomology H?(G/T) of G/T in terms of the geometry
of the root systems of the Lie groups.
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1. Introduction

Let G be a compact connected semi-simple Lie group of rank n with a
fixed maximal torus 7' C G. The homogeneous space G /T is a smooth manifold,
known as the complete flag manifold of G. In general, if H is the centralizer of a
one-parameter subgroup of G, the homogeneous space G/H is called a generalized
flag manifold of G.

Let H*(G/T) be the integral cohomology of G/T" . The height function
hg : H*(G/T) — Z on the 2-dimensional cohomology is defined by

heg(z) = max{m | 2™ # 0}.
We study the following problem: Evaluate the function hg : H*(G/T) — Z for a
given G.

For the case G = SU(n), the special unitary group of order n, the prob-
lem has been studied by several authors. Monk [13], Ewing and Liulevicius [9]
independently described the set hgllj(n) (n — 1). This partial result was used by
Hoffman [10] in classifying endomorphisms of the ring H*(SU(n)/T). Broughton,
Hoffman and Homer computed the function hgy,) in [1], and the result was ap-
plied in [11] to characterize the action of cohomology automorphisms of SU(n)/H
on H*(SU(n)/H).

A thorough understanding of the function hg may lead to a general way to
study the cohomology endomorphisms of flag manifolds G/H. In this paper, we
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solve the problem for all compact semi-simple G in terms of the geometry of root
system of G.

It is worth to mention that, by describing the cohomology in terms of
root system invariants, S. Papadima classified the automorphisms of the algebra
H*(G/T) in [14].

Write L(G) for the Lie algebra of G and let exp : L(G) — G be the
exponential map. The Cartan subalgebra of G relative to T is denoted by
L(T) C L(G). Fix a set A = {ay, a9, -, 0.} C L(T) of simple roots of G
(cf.[12], p.47).

Consider the set ¢, = {K|K C {1,2,--- ,n}}. Fora K € &, let Hx C G
be the centralizer of exp(() Ls,) C G, where L,, C L(T) is the hyperplane

perpendicular to a; € A .Z%II“(K ={1,---,n}, we regard Hx =T (the maximal
torus). Define the function fg : ®, — Z by setting

fg(K) = %(dlmRG - dlmR HK) s K e (I)n-
Lemma 4 in Section 3 shows that the fs can be effectively calculated in concrete
situations.

Let wy,wq, -+ ,w, € H*(G/T) be the fundamental dominant weights asso-
ciated to the set A of simple roots (cf. Lemma 1 in Section 2 or [5], [8]). The
w; form an additive basis for H*(G/T) (which also generate multiplicatively the
rational cohomology algebra H*(G/T;Q)).

Let W be the Weyl group of G. The canonical action of Wg on G/T
induces an Wg-action on H*(G/T) ([5],[4]). Let Z" be the set of non-negative
integers. Our main result is

Theorem .  For each x € H*(G/T), there is w € Wg such that
’LU(Q?) = Z )\iwi, >\z € AR

1<i<n

Further if we set K = {i|\; # 0,1 <i < n}(€ ®,), then hg(x) = fo(K).

2. Proof of the Theorem

Equip L(G) with an inner product (,) so that the adjoint representation
of G acts as isometries of L(G).

Let 7: G — G be the universal cover of G and T C é, the maximal torus
of G corresponding to T (i.e. w(T) = T). The tangent map of 7 at the unit
eeG yields isomorphisms of algebras

L(T) = L(T), L(G) = L(G).
Equip L(é) with the metric (,) so that the identifications are also isometries of
FEuclidean spaces.

The fundamental dominant weights €; € L(T) = L(T), 1 < i < n, of
G relative to A (cf. [12], p.67) generate (over the integers) the weight lattice
c L(T) = L(T) of G and G. Since G is simply connected, any z € I' gives rise
to a homomorphism z : T — S* onto the cycle group, characterized uniquely by
the property that its derivative dz : L(T) = L(T) — R at the group unit e € T
satisfies
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dz(h) =228 he L(T).
The cohomology class in H'(T) determined by the Z is denoted by [z] (we
have made use of the standard fact from homotopy theory: for any manifold
(or complex) X the set of homotopy classes of maps X — S! are in one-to-one

correspondence with H'(X), the first integral cohomology of X).

Let #: HY(T) — H2(G/T) be the transgression for the fibration T ¢ G —
G/T = G/T (cf. [4], [5]). The geometric origin of the classes w; employed by the
Theorem (where they were also called fundamental dominant weights) can be seen
from the next result (cf. [5], p.489).

Lemma 1. With respect to the standard Wg = Wg action on T' and G/T,
the correspondence I' — H?*(G/T), z — f3[z], is a Wg-isomorphism.

In particular, if we put [([€);] = w;, then the w; constitute an additive basis
for H*(G/T).
Remark 1. The classes w; € H*(G/T), 1 < i < n, are of particular interests
in the algebraic intersection theory on G/T. With respect to the Schubert cell-

decomposition of the space G/T' [2], they are precisely the special Schubert classes
on G/T [8].

For a K € ®,, consider the standard fibration px : G/T — G/Hg . It was
shown in [5], p.507 that

Lemma 2.  The induced map p} : H*(G/Hk) — H*(G/T) is injective and
satisfies
P (HY(G/Hy)) = spanduw; | i € K},
In particular, if we let 7; € H*(G/H), i € K, be the classes so that
p%(ﬂ) =w; € H2(G/T), 1€ K,
then the 7;, i € K, form an additive basis for H*(G/Hf).

Canonically, the flag manifolds G/Hg admit complex structures. It is
natural to ask which k € H*(G/Hg) can appear as Kaehler classes on G/H .
A partial answer to this question is known. With the notation developed above,
Corollary 14.7 in [5] may be rephrased as

Lemma 3. Ifx= ) N7 with \; >0 for all i € K, then k is a Kaehler class
i€eK
on G/Hy . In particular, k/¢5) #£ 0.
The last clause in Lemma 3 is verified by fo(K) = dime G/H .

Proof of the Theorem: We start by verifying the first assertion in the Theorem.
In view of the Wg-isomorphism in Lemma 1, it suffices to show that
(2.1) for any z € I' C L(T') there is a w € W¢ such that w(z) = Y. A\

1<i<n
with \; € Z7".
The closure of the fundamental Weyl chamber A relative to the set A of
simple roots [12], p.49 can be described in terms of the weights Q; as

1<i<n
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Since Wg acts transitively on Weyl chambers, for any z € L(T) there is a
w € Wg such that w(z) € A. Further, if z € ' we must have, in the expression
w(z) = > ANy, that \; € ZT because of the standard fact w(I') = I'. This

1<i<n
verifies (2.1), hence the first part of the Theorem.
For a + € H*(G/T) we can now assume that w(z) = Y, A\w; with

1<i<n
\i € Z* for some w € Wg. Since the w acts as automorphism of the ring
H*(G/T) we have

(2.2) ha(z) = ha(w(x)).
Let K = {i|\; #0,1 < i < n} and consider in H*(G/Hf) the class k = > \7;.

i€eK

Since the ring map pj; is injective and satisfies pi (k) = w(x) by Lemma 2, we
have

(2.3)  he(w(z)) =max{m | ™ # 0} = fa(K),
where the last equality follows from Lemma 3. Combining (2.2) with (2.3) com-
pletes the proof.

3. Computations

The Theorem reduces the evaluation of hg to that of fi. The latter can
be effectively calculated, as the following recipe shows. Denote by Dg the Dynkin
diagram of G (whose vertices consist of a set of simple roots ay,aq, -+, a, of G
[12], p 57). For a K € ®,, we have (cf. [5], 13.5-13.6)

(3.1) putting Tk = exp( (] La,;) C G, then Tk is a torus group of dimension
i¢K

|K| (the cardinality of K); ’

(3.2) letting Hx be the semi-simple part of Hg , then Hy admits a factor-
ization into semi-product of subgroups as Hx = Tk - Hyx with Tx N H finite;

(3.3) the Dynkin diagram of Hx can be obtained from D¢ by deleting all
the vertices «; with ¢ € K as well as the edges incident to them.

Summarizing the function fg can be computed as follows. For any con-
nected Dynkin diagram D, define

1
p(D) = §(dimR G — rankQG),
where G is a compact semisimple Lie group with Dg = D. It is then easy to
compute p(D) for the connected Dynkin diagrams of the usual classification:

D p(D)
A, sn(n+1)
B,,C, n?
D, n(n —1)
Eg 36
Er 63
Ex 120
£ 24
G 6

Now for an arbitrary Dynkin diagram, let p(D) be the sum of p applied to each
connected component.
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Lemma 4.  fg(K) =p(D¢) — p(Dg, ), where Hy is defined in (5.2).

In short, the function fs can be read directly from the Dynkin diagram of
G. In what follows we present some computational examples based on Lemma 4.
Let SU(n) be the special unitary group of order n, SO(n) the special orthogonal
group of order n, and Sp(n) the symplectic group of order n. The five exceptional
Lie groups are denoted as usual by Gs, Fy, Eg, Fr7, Ey.

If G is one of the above groups, we assume that a set of simple roots of G
is given and ordered as the vertices of Dynkin diagram of G pictured in [12], p.58.

For a K € ®, write K € ®, for the complement of K in {1,--- ,n}.
Note that any K € &, splits into disjoint union of some consecutive segments
K=K U---UK,,. For example if K = {2,3,5} € &g, then

(1) K = {1,4,6};

(2) K ={2,3} U{5}, m=2.

Example 1. If G = SU(n), the function fg: ®,,_1 — Z is given by
_ nn=1) _ ¥~ (Kil+D[K]
fG(K) - - Z 2 )

2 .
i=1

where K = K, U---UK,,.

Example 2. If G = SO(2n), the function fg : ®, — Z is given by three cases.

i=1
i) Ifn—1e K,let 0:{1,2,---,n} — {1,2,--- ,n} be the transposition
of n—1 and n. Then fo(K) = fo(o(K)).

m—1 — _ _
i) If n,n—1 ¢ K, then fo(K)=n(n—1)— Y WHURI 15 (K, |-
=1
1).

Example 3. If G=S50(2n+ 1) or Sp(n), the function fg: ®, — Z is given

by two cases.
i) If n € K, then fg(K) = n2 — (I?iIJrQI)IK-I_

s

=1

-1 o -
i) If n ¢ K, then fo(K)=n?— Y UKL 57 12
1

3

<.
Il

Example 4. If G = Eg the function fg : ¢ — Z is given by the table below.
K | feE)| K |feK)| K |feK)| K | fo(K) K fe(K)
0 0 | {24y | 30 | {134} | 32 | {346} | 33 | {2345} | 34
(ay | 16 | {25} | 20 | {135} | 32 | {356} | 32 {2346} 34
v | 21 | {26} | 26 | {136} | 30 | {456} | 32 {23561 34
(Y | 25 | {34} | 31 | {145} | 33 | {1234} | 33 {24561 33
{4y | 20 | {35} | 31 |{146} | 33 | {1235} | 34 {3456} 34
(5} | 25 | {36} | 20 |{156}| 30 | {1236} | 33 | {12345} | 35
{6} | 16 | {45} | 31 |{234}| 32 | {1245} | 34 | {12346} | 35

(120 | 26 | {46} | 31 | {235} | 32 | {1246} | 34 | {12356} | 35

a3y | 26 | {56} | 26 | {236} | 32 | {1256} | 33 | {12456} | 35

{14} | 31 | {123} | 30 | {245} | 32 | {1345} | 34 | {13456} | 35

{15} | 29 | {124} | 32 | {246} | 32 | {1346} | 34 | {23456} | 35

(16} | 24 | {125} | 32 |[{256} | 30 | {1356} | 33 | {123456} | 36

(23| 20 | {126} | 30 | {345} | 33 | {1456} | 34
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Example 5. For the five exceptional Lie groups, the values of hg on the
fundamental dominant weights wy, -+ ,w, (with n =2,4,6,7 and 8 respectively)
are given in the table below.

G hG (wl) hG (u)g) hG (u)g) hG (w4) hG (w5) hG (CUG) hG (w7) hG (u)g>
Go 5 5

Fy 15 20 20 15

Eg 16 21 25 29 25 16

by 33 42 47 93 50 42 27

Eg 78 92 98 106 104 97 83 27

4. Applications and extensions of the main result

Our method can be extended to compute the height function
hm : H*(G/H) — Z, x — max{m | 2™ # 0}.
for a generalized flag manifold G/H , where H is the centralizer of a one-parameter
subgroup in G.

Since H is conjugate in G to one of the subgroups Hy, K € ®,, [2], and
since the induced ring map pj : H*(G/Hk) — H*(G/T) is injective and identifies
H?*(G/Hy) with the submodule spanz{w; | i € K} € H*(G/T) (by Lemma 2),
we have

Proposition 1. The function higmy: H*(G/H) — Z can be given by restrict-
ing hg to the submodule spanz{w; |i € K} C H*(G/T).

The Theorem enables one to recover and extend some relevant results
previously known. For G = SU(n), SO(n) and Sp(n) one has the following
classical descriptions for the cohomology of G/T" from Borel [3], 1953.

H*(U(n)/T;Z) = Zlt1,- -+ ,ta)/ (ei(tr, -+ 1), 1 <i < n);

H*(SO(2n + 1)/T;R) = Rty, -+ ,t,)/ {e;(t3, -+ [ #2),1 < i < n);

H*(Sp(n)/T; Z) = Z[tlu T >tn]/ <€i(t%? T ’ti)’i < n>;

H*(SO(2n)/T;R) = R[ty, - ,ta]/ {t1- tose(t3, - 12),1 <i<n—1),
where e,(y1, -+ ,y,) is the r-th elementary symmetric function in ,- - ,y,, and
where t; € H*(G/T). The transitions between the bases for H*(G/T) given by
the t; and by the w; in our theorem are seen as follows (cf. [8], Example 3)

(4.1) for G=5U(Mn), wi=t;1 +---+1t;, 1 <i<n—1;

(4.2) for G=9502n+1), wi=t1+---+t;, 1 <i<n-—1;and

wp = 3(t1+ -+ t);
(4.3) for G=Sp(n), wy=t1+---+1t;, 1 <i<mn;
(4.4) for G=502n), wi=t1+---+t;, 1 <i<n-—2;
Wp1 = %(tl +--+t, 1 —t,); and
wp =3t 4 F 1+ 1)
In each of the four cases we have

Lemma 5. The set {£ty,--- ,£t,} agrees with the W -orbit through wy =t .
Therefore, hg(t;) = dime G/Hgy, 1 <i <n (by the Theorem).

The manifolds G'/Hy can be identified with familiar spaces by the discus-
sion at the beginning of Section 3. Let CP™~! be the projective space of complex
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lines in C™; H(n) the real Grassmannian of oriented 2-planes in R"; and let
HP"™ ! be the projective space of quaternionic lines in the n-quaternionic vector
space H". We have

cprt if G=S8U(n);

G/H{l} = H(n) if G= SO(n),

E(n) if G=Spn),
where E(n) is the total space of complex projective bundle associated to =, the
complex reduction of the canonical quaternionic line bundle over HP™ ! (cf. [6],
Section 2.5). It can be verified directly from Lemma 4 that

Lemma 6.  Assume that G is one of the matrix groups SU(n), SO(m) with
m # 4,5,6,8, or Sp(n) with n > 2. For all K we have dim¢ G/Hpy <
dimc G/H , where the equality holds if and only if

1) K={1} if G # SU(n);

2) K={1},{n—1} if G=SU(n).

Combining Lemma 5, 6 and the Theorem we show

Proposition 2.  Assume that G is one of the matrix groups SU(n),SO(m)
with m # 4,5,8, or Sp(n) with n # 2. Then

(i) hgpm(n—1) = {Mt; [ 1<i<n, Ae Z\{0}};

(1) hgpam(2n —2) = {\; [ 1 <i<n, A€ Z\{0}};

(1) Pgioniny(2n—1) = {At; [1<i <n, A€ Z\{0}};

(1) hgpm(2n—1) = {X; |1 <i<n, A€ Z\{0}}.

Proof. In view of Lemma 5 and 6, it remains to show that, if G = SU(n),
O(wn—1) = O(wy), where O(z) is the Wg-orbit through x € H*(G/T).

JFrom the first relation e;(t1,--- ,t,) =0 in H*(SU(n)/T) we get w,_1 =
—t,, from (4.1). It follows that O(w,—1) = O(w;) by Lemma 5. ]

Remark 2. Lemma 6 fails for G = SO(4), SO(5), SO(6), SO(8) or Sp(2). For
example if G = SO(8), the solutions in K € ®, to the equation dimec G/Hpy =
dim¢ G/Hk are K = {1},{3} and {4}.
However, in these minor cases, one can work out the pre-image of hg at its
minimal non-zero values using the same method. For instance
h;é(g)(G) = O(Aw1) U O(Aws3) U O(Awy)
4
={A\;, 3+t | 1<i<4, AeZ\{0}}.
i=1
Previously, item (i) was obtained independently by Monk [13], Ewing and
Liulevicius [9]. (iii) and (iv) were shown by the authors in [7].
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