The Height Function on the 2-Dimensional Cohomology of a Flag Manifold

Haibao Duan and Xu-an Zhao*

Communicated by J. D. Lawson

Abstract

Let G / T be the flag manifold of a compact semisimple Lie group G modulo a maximal torus $T \subset G$. We express the height function on the 2-dimensional integral cohomology $H^{2}(G / T)$ of G / T in terms of the geometry of the root systems of the Lie groups. Subject Classifications: 53C30, 57T15, 22E60.

Key words and Phrases: Lie algebra, Weyl group, Flag manifolds, Cohomology.

1. Introduction

Let G be a compact connected semi-simple Lie group of rank n with a fixed maximal torus $T \subset G$. The homogeneous space G / T is a smooth manifold, known as the complete flag manifold of G. In general, if H is the centralizer of a one-parameter subgroup of G, the homogeneous space G / H is called a generalized flag manifold of G.

Let $H^{*}(G / T)$ be the integral cohomology of G / T. The height function $h_{G}: H^{2}(G / T) \rightarrow \mathbb{Z}$ on the 2-dimensional cohomology is defined by

$$
h_{G}(x)=\max \left\{m \mid x^{m} \neq 0\right\} .
$$

We study the following problem: Evaluate the function $h_{G}: H^{2}(G / T) \rightarrow \mathbb{Z}$ for a given G.

For the case $G=S U(n)$, the special unitary group of order n, the problem has been studied by several authors. Monk [13], Ewing and Liulevicius [9] independently described the set $h_{S U(n)}^{-1}(n-1)$. This partial result was used by Hoffman [10] in classifying endomorphisms of the ring $H^{*}(S U(n) / T)$. Broughton, Hoffman and Homer computed the function $h_{S U(n)}$ in [1], and the result was applied in [11] to characterize the action of cohomology automorphisms of $S U(n) / H$ on $H^{2}(S U(n) / H)$.

A thorough understanding of the function h_{G} may lead to a general way to study the cohomology endomorphisms of flag manifolds G / H. In this paper, we

[^0]ISSN 0949-5932 / \$2.50 © Heldermann Verlag
solve the problem for all compact semi-simple G in terms of the geometry of root system of G.

It is worth to mention that, by describing the cohomology in terms of root system invariants, S. Papadima classified the automorphisms of the algebra $H^{*}(G / T)$ in [14].

Write $L(G)$ for the Lie algebra of G and let exp : $L(G) \rightarrow G$ be the exponential map. The Cartan subalgebra of G relative to T is denoted by $L(T) \subset L(G)$. Fix a set $\Delta=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\} \subset L(T)$ of simple roots of G (cf.[12], p.47).

Consider the set $\Phi_{n}=\{K \mid K \subset\{1,2, \cdots, n\}\}$. For a $K \in \Phi_{n}$ let $H_{K} \subset G$ be the centralizer of $\exp \left(\bigcap_{i \notin K} L_{\alpha_{i}}\right) \subset G$, where $L_{\alpha_{i}} \subset L(T)$ is the hyperplane perpendicular to $\alpha_{i} \in \Delta$. If $K=\{1, \cdots, n\}$, we regard $H_{K}=T$ (the maximal torus). Define the function $f_{G}: \Phi_{n} \rightarrow \mathbb{Z}$ by setting

$$
f_{G}(K)=\frac{1}{2}\left(\operatorname{dim}_{\mathbb{R}} G-\operatorname{dim}_{\mathbb{R}} H_{K}\right), K \in \Phi_{n} .
$$

Lemma 4 in Section 3 shows that the f_{G} can be effectively calculated in concrete situations.

Let $\omega_{1}, \omega_{2}, \cdots, \omega_{n} \in H^{2}(G / T)$ be the fundamental dominant weights associated to the set Δ of simple roots (cf. Lemma 1 in Section 2 or [5], [8]). The ω_{i} form an additive basis for $H^{2}(G / T)$ (which also generate multiplicatively the rational cohomology algebra $\left.H^{*}(G / T ; \mathbb{Q})\right)$.

Let W_{G} be the Weyl group of G. The canonical action of W_{G} on G / T induces an W_{G}-action on $H^{2}(G / T)([5],[4])$. Let \mathbb{Z}^{+}be the set of non-negative integers. Our main result is

Theorem . For each $x \in H^{2}(G / T)$, there is $w \in W_{G}$ such that

$$
w(x)=\sum_{1 \leq i \leq n} \lambda_{i} \omega_{i}, \quad \lambda_{i} \in \mathbb{Z}^{+} .
$$

Further if we set $K=\left\{i \mid \lambda_{i} \neq 0,1 \leq i \leq n\right\}\left(\in \Phi_{n}\right)$, then $h_{G}(x)=f_{G}(K)$.

2. Proof of the Theorem

Equip $L(G)$ with an inner product (,) so that the adjoint representation of G acts as isometries of $L(G)$.

Let $\pi: \widetilde{G} \rightarrow G$ be the universal cover of G and $\widetilde{T} \subset \widetilde{G}$, the maximal torus of \widetilde{G} corresponding to T (i.e. $\pi(\widetilde{T})=T$). The tangent map of π at the unit $e \in \widetilde{G}$ yields isomorphisms of algebras

$$
L(T) \cong L(\widetilde{T}), L(G) \cong L(\widetilde{G})
$$

Equip $L(\widetilde{G})$ with the metric (,) so that the identifications are also isometries of Euclidean spaces.

The fundamental dominant weights $\Omega_{i} \in L(T)=L(\widetilde{T}), 1 \leq i \leq n$, of G relative to Δ (cf. [12], p.67) generate (over the integers) the weight lattice $\Gamma \subset L(T)=L(\widetilde{T})$ of G and \widetilde{G}. Since \widetilde{G} is simply connected, any $z \in \Gamma$ gives rise to a homomorphism $\widetilde{z}: \widetilde{T} \rightarrow S^{1}$ onto the cycle group, characterized uniquely by the property that its derivative $d \widetilde{z}: L(\widetilde{T})=L(T) \rightarrow \mathbb{R}$ at the group unit $e \in \widetilde{T}$ satisfies

$$
d \widetilde{z}(h)=\frac{2(z, h)}{(h, h)}, h \in L(\widetilde{T}) .
$$

The cohomology class in $H^{1}(\widetilde{T})$ determined by the \widetilde{z} is denoted by [z] (we have made use of the standard fact from homotopy theory: for any manifold (or complex) X the set of homotopy classes of maps $X \rightarrow S^{1}$ are in one-to-one correspondence with $H^{1}(X)$, the first integral cohomology of X).

Let $\beta: H^{1}(\widetilde{T}) \rightarrow H^{2}(G / T)$ be the transgression for the fibration $\widetilde{T} \subset \widetilde{G} \rightarrow$ $\widetilde{G} / \widetilde{T}=G / T$ (cf. [4], [5]). The geometric origin of the classes ω_{i} employed by the Theorem (where they were also called fundamental dominant weights) can be seen from the next result (cf. [5], p.489).

Lemma 1. With respect to the standard $W_{G}=W_{\widetilde{G}}$ action on Γ and G / T, the correspondence $\Gamma \rightarrow H^{2}(G / T), z \rightarrow \beta[z]$, is a W_{G}-isomorphism.

In particular, if we put $\beta\left[\Omega_{i}\right]=\omega_{i}$, then the ω_{i} constitute an additive basis for $H^{2}(G / T)$.
Remark 1. The classes $\omega_{i} \in H^{2}(G / T), 1 \leq i \leq n$, are of particular interests in the algebraic intersection theory on G / T. With respect to the Schubert celldecomposition of the space G / T [2], they are precisely the special Schubert classes on G / T [8].

For a $K \in \Phi_{n}$ consider the standard fibration $p_{K}: G / T \rightarrow G / H_{K}$. It was shown in [5], p. 507 that

Lemma 2. The induced map $p_{K}^{*}: H^{*}\left(G / H_{K}\right) \rightarrow H^{*}(G / T)$ is injective and satisfies

$$
p_{K}^{*}\left(H^{2}\left(G / H_{K}\right)\right)=\operatorname{span}_{\mathbb{Z}}\left\{\omega_{i} \mid i \in K\right\} .
$$

In particular, if we let $\tau_{i} \in H^{2}\left(G / H_{K}\right), i \in K$, be the classes so that

$$
p_{K}^{*}\left(\tau_{i}\right)=\omega_{i} \in H^{2}(G / T), i \in K,
$$

then the $\tau_{i}, i \in K$, form an additive basis for $H^{2}\left(G / H_{K}\right)$.
Canonically, the flag manifolds G / H_{K} admit complex structures. It is natural to ask which $\kappa \in H^{2}\left(G / H_{K}\right)$ can appear as Kaehler classes on G / H_{K}. A partial answer to this question is known. With the notation developed above, Corollary 14.7 in [5] may be rephrased as

Lemma 3. If $\kappa=\sum_{i \in K} \lambda_{i} \tau_{i}$ with $\lambda_{i}>0$ for all $i \in K$, then κ is a Kaehler class on G / H_{K}. In particular, $\kappa^{f_{G}(K)} \neq 0$.

The last clause in Lemma 3 is verified by $f_{G}(K)=\operatorname{dim}_{\mathbb{C}} G / H_{K}$.
Proof of the Theorem: We start by verifying the first assertion in the Theorem. In view of the W_{G}-isomorphism in Lemma 1, it suffices to show that
(2.1) for any $z \in \Gamma \subset L(T)$ there is a $w \in W_{G}$ such that $w(z)=\sum_{1 \leq i \leq n} \lambda_{i} \Omega_{i}$ with $\lambda_{i} \in \mathbb{Z}^{+}$.

The closure of the fundamental Weyl chamber Λ relative to the set Δ of simple roots [12], p. 49 can be described in terms of the weights Ω_{i} as

$$
\bar{\Lambda}=\left\{\sum_{1 \leq i \leq n} \lambda_{i} \Omega_{i} \mid \lambda_{i} \in \mathbb{R}^{+}\right\} .
$$

Since W_{G} acts transitively on Weyl chambers, for any $z \in L(T)$ there is a $w \in W_{G}$ such that $w(z) \in \bar{\Lambda}$. Further, if $z \in \Gamma$ we must have, in the expression $w(z)=\sum_{1 \leq i \leq n} \lambda_{i} \Omega_{i}$, that $\lambda_{i} \in \mathbb{Z}^{+}$because of the standard fact $w(\Gamma)=\Gamma$. This verifies (2.1), hence the first part of the Theorem.

For a $x \in H^{2}(G / T)$ we can now assume that $w(x)=\sum_{1 \leq i \leq n} \lambda_{i} \omega_{i}$ with $\lambda_{i} \in \mathbb{Z}^{+}$for some $w \in W_{G}$. Since the w acts as automorphism of the ring $H^{*}(G / T)$ we have
(2.2) $\quad h_{G}(x)=h_{G}(w(x))$.

Let $K=\left\{i \mid \lambda_{i} \neq 0,1 \leq i \leq n\right\}$ and consider in $H^{2}\left(G / H_{K}\right)$ the class $\kappa=\sum_{i \in K} \lambda_{i} \tau_{i}$.
Since the ring map p_{K}^{*} is injective and satisfies $p_{K}^{*}(\kappa)=w(x)$ by Lemma 2, we have
(2.3) $\quad h_{G}(w(x))=\max \left\{m \mid \kappa^{m} \neq 0\right\}=f_{G}(K)$,
where the last equality follows from Lemma 3. Combining (2.2) with (2.3) completes the proof.

3. Computations

The Theorem reduces the evaluation of h_{G} to that of f_{G}. The latter can be effectively calculated, as the following recipe shows. Denote by D_{G} the Dynkin diagram of G (whose vertices consist of a set of simple roots $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ of G [12], p 57). For a $K \in \Phi_{n}$ we have (cf. [5], 13.5-13.6)
(3.1) putting $T_{K}=\exp \left(\bigcap_{i \notin K} L_{\alpha_{i}}\right) \subset G$, then T_{K} is a torus group of dimension $|K|$ (the cardinality of K);
(3.2) letting \bar{H}_{K} be the semi-simple part of H_{K}, then H_{K} admits a factorization into semi-product of subgroups as $H_{K}=T_{K} \cdot \bar{H}_{K}$ with $T_{K} \cap \bar{H}_{K}$ finite;
(3.3) the Dynkin diagram of \bar{H}_{K} can be obtained from D_{G} by deleting all the vertices α_{i} with $i \in K$ as well as the edges incident to them.

Summarizing the function f_{G} can be computed as follows. For any connected Dynkin diagram D, define

$$
p(D)=\frac{1}{2}\left(\operatorname{dim}_{\mathbb{R}} G-\operatorname{rank} G\right)
$$

where G is a compact semisimple Lie group with $D_{G}=D$. It is then easy to compute $p(D)$ for the connected Dynkin diagrams of the usual classification:

D	$p(D)$
A_{n}	$\frac{1}{2} n(n+1)$
B_{n}, C_{n}	n^{2}
D_{n}	$n(n-1)$
E_{6}	36
E_{7}	63
E_{8}	120
F_{4}	24
G_{2}	6

Now for an arbitrary Dynkin diagram, let $p(D)$ be the sum of p applied to each connected component.

Lemma 4. $f_{G}(K)=p\left(D_{G}\right)-p\left(D_{\bar{H}_{K}}\right)$, where \bar{H}_{K} is defined in (3.2).
In short, the function f_{G} can be read directly from the Dynkin diagram of G. In what follows we present some computational examples based on Lemma 4. Let $S U(n)$ be the special unitary group of order $n, S O(n)$ the special orthogonal group of order n, and $S p(n)$ the symplectic group of order n. The five exceptional Lie groups are denoted as usual by $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.

If G is one of the above groups, we assume that a set of simple roots of G is given and ordered as the vertices of Dynkin diagram of G pictured in [12], p.58.

For a $K \in \Phi_{n}$ write $\bar{K} \in \Phi_{n}$ for the complement of K in $\{1, \cdots, n\}$. Note that any $K \in \Phi_{n}$ splits into disjoint union of some consecutive segments $K=K_{1} \sqcup \cdots \sqcup K_{m}$. For example if $K=\{2,3,5\} \in \Phi_{6}$, then
(1) $\bar{K}=\{1,4,6\}$;
(2) $K=\{2,3\} \sqcup\{5\}, m=2$.

Example 1. If $G=S U(n)$, the function $f_{G}: \Phi_{n-1} \rightarrow \mathbb{Z}$ is given by

$$
f_{G}(K)=\frac{n(n-1)}{2}-\sum_{i=1}^{m} \frac{\left(\left|\overline{K_{i}}\right|+1\right)\left|\bar{K}_{i}\right|}{2}
$$

where $\bar{K}=\bar{K}_{1} \sqcup \cdots \sqcup \bar{K}_{m}$.
Example 2. If $G=S O(2 n)$, the function $f_{G}: \Phi_{n} \rightarrow \mathbb{Z}$ is given by three cases.
i) If $n \in K$, then $f_{G}(K)=n(n-1)-\sum_{i=1}^{m} \frac{\left(\left|\bar{K}_{i}\right|+1\right)\left|\overline{K_{i}}\right|}{2}$.
ii) If $n-1 \in K$, let $\sigma:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, n\}$ be the transposition of $n-1$ and n. Then $f_{G}(K)=f_{G}(\sigma(K))$.
iii) If $n, n-1 \notin K$, then $f_{G}(K)=n(n-1)-\sum_{i=1}^{m-1} \frac{\left(\left|\bar{K}_{i}\right|+1\right)\left|\bar{K}_{i}\right|}{2}-\left|\bar{K}_{m}\right|\left(\left|\bar{K}_{m}\right|-\right.$ 1).

Example 3. If $G=S O(2 n+1)$ or $S p(n)$, the function $f_{G}: \Phi_{n} \rightarrow \mathbb{Z}$ is given by two cases.
i) If $n \in K$, then $f_{G}(K)=n^{2}-\sum_{i=1}^{m} \frac{\left(\left|\bar{K}_{i}\right|+1\right)\left|\overline{K_{i}}\right|}{2}$.
ii) If $n \notin K$, then $f_{G}(K)=n^{2}-\sum_{i=1}^{m-1} \frac{\left(\left|\bar{K}_{i}\right|+1\right)\left|\bar{K}_{i}\right|}{2}-\left|\bar{K}_{m}\right|^{2}$.

Example 4. If $G=E_{6}$ the function $f_{G}: \Phi_{6} \rightarrow \mathbb{Z}$ is given by the table below.

K	$f_{G}(K)$								
\emptyset	0	$\{24\}$	30	$\{134\}$	32	$\{346\}$	33	$\{2345\}$	34
$\{1\}$	16	$\{25\}$	29	$\{135\}$	32	$\{356\}$	32	$\{2346\}$	34
$\{2\}$	21	$\{26\}$	26	$\{136\}$	30	$\{456\}$	32	$\{2356\}$	34
$\{3\}$	25	$\{34\}$	31	$\{145\}$	33	$\{1234\}$	33	$\{2456\}$	33
$\{4\}$	29	$\{35\}$	31	$\{146\}$	33	$\{1235\}$	34	$\{3456\}$	34
$\{5\}$	25	$\{36\}$	29	$\{156\}$	30	$\{1236\}$	33	$\{12345\}$	35
$\{6\}$	16	$\{45\}$	31	$\{234\}$	32	$\{1245\}$	34	$\{12346\}$	35
$\{12\}$	26	$\{46\}$	31	$\{235\}$	32	$\{1246\}$	34	$\{12356\}$	35
$\{13\}$	26	$\{56\}$	26	$\{236\}$	32	$\{1256\}$	33	$\{12456\}$	35
$\{14\}$	31	$\{123\}$	30	$\{245\}$	32	$\{1345\}$	34	$\{13456\}$	35
$\{15\}$	29	$\{124\}$	32	$\{246\}$	32	$\{1346\}$	34	$\{23456\}$	35
$\{16\}$	24	$\{125\}$	32	$\{256\}$	30	$\{1356\}$	33	$\{123456\}$	36
$\{23\}$	29	$\{126\}$	30	$\{345\}$	33	$\{1456\}$	34		

Example 5. For the five exceptional Lie groups, the values of h_{G} on the fundamental dominant weights $\omega_{1}, \cdots, \omega_{n}$ (with $n=2,4,6,7$ and 8 respectively) are given in the table below.

G	$h_{G}\left(\omega_{1}\right)$	$h_{G}\left(\omega_{2}\right)$	$h_{G}\left(\omega_{3}\right)$	$h_{G}\left(\omega_{4}\right)$	$h_{G}\left(\omega_{5}\right)$	$h_{G}\left(\omega_{6}\right)$	$h_{G}\left(\omega_{7}\right)$	$h_{G}\left(\omega_{8}\right)$
G_{2}	5	5						
F_{4}	15	20	20	15				
E_{6}	16	21	25	29	25	16		
E_{7}	33	42	47	53	50	42	27	
E_{8}	78	92	98	106	104	97	83	57

4. Applications and extensions of the main result

Our method can be extended to compute the height function

$$
h_{(G, H)}: H^{2}(G / H) \rightarrow \mathbb{Z}, x \rightarrow \max \left\{m \mid x^{m} \neq 0\right\} .
$$

for a generalized flag manifold G / H, where H is the centralizer of a one-parameter subgroup in G.

Since H is conjugate in G to one of the subgroups $H_{K}, K \in \Phi_{n}$ [2], and since the induced ring map $p_{K}^{*}: H^{*}\left(G / H_{K}\right) \rightarrow H^{*}(G / T)$ is injective and identifies $H^{2}\left(G / H_{K}\right)$ with the submodule $\operatorname{span}_{\mathbb{Z}}\left\{\omega_{i} \mid i \in K\right\} \subset H^{2}(G / T)$ (by Lemma 2), we have

Proposition 1. The function $h_{(G, H)}: H^{2}(G / H) \rightarrow \mathbb{Z}$ can be given by restricting h_{G} to the submodule $\operatorname{span}_{\mathbb{Z}}\left\{\omega_{i} \mid i \in K\right\} \subset H^{2}(G / T)$.

The Theorem enables one to recover and extend some relevant results previously known. For $G=S U(n), S O(n)$ and $S p(n)$ one has the following classical descriptions for the cohomology of G / T from Borel [3], 1953.

$$
\begin{aligned}
& H^{*}(U(n) / T ; \mathbb{Z})=\mathbb{Z}\left[t_{1}, \cdots, t_{n}\right] /\left\langle e_{i}\left(t_{1}, \cdots, t_{n}\right), 1 \leq i \leq n\right\rangle ; \\
& H^{*}(S O(2 n+1) / T ; \mathbb{R})=\mathbb{R}\left[t_{1}, \cdots, t_{n}\right] /\left\langle e_{i}\left(t_{1}^{2}, \cdots, t_{n}^{2}\right), 1 \leq i \leq n\right\rangle \\
& H^{*}(S p(n) / T ; \mathbb{Z})=\mathbb{Z}\left[t_{1}, \cdots, t_{n}\right] /\left\langle e_{i}\left(t_{1}^{2}, \cdots, t_{n}^{2}\right), i \leq n\right\rangle ; \\
& H^{*}(S O(2 n) / T ; \mathbb{R})=\mathbb{R}\left[t_{1}, \cdots, t_{n}\right] /\left\langle t_{1} \cdots t_{n} ; e_{i}\left(t_{1}^{2}, \cdots, t_{n}^{2}\right), 1 \leq i \leq n-1\right\rangle,
\end{aligned}
$$

where $e_{r}\left(y_{1}, \cdots, y_{n}\right)$ is the r-th elementary symmetric function in y_{1}, \cdots, y_{n}, and where $t_{i} \in H^{2}(G / T)$. The transitions between the bases for $H^{2}(G / T)$ given by the t_{i} and by the ω_{i} in our theorem are seen as follows (cf. [8], Example 3)
(4.1) for $G=S U(n), \omega_{i}=t_{1}+\cdots+t_{i}, 1 \leq i \leq n-1$;
(4.2) for $G=S O(2 n+1), \omega_{i}=t_{1}+\cdots+t_{i}, 1 \leq i \leq n-1$; and

$$
\omega_{n}=\frac{1}{2}\left(t_{1}+\cdots+t_{n}\right) ;
$$

(4.3) for $G=\operatorname{Sp}(n), \omega_{i}=t_{1}+\cdots+t_{i}, 1 \leq i \leq n$;
(4.4) for $G=S O(2 n), \omega_{i}=t_{1}+\cdots+t_{i}, 1 \leq i \leq n-2$;

$$
\omega_{n-1}=\frac{1}{2}\left(t_{1}+\cdots+t_{n-1}-t_{n}\right) ; \text { and }
$$

$$
\omega_{n}=\frac{1}{2}\left(t_{1}+\cdots+t_{n-1}+t_{n}\right) .
$$

In each of the four cases we have
Lemma 5. The set $\left\{ \pm t_{1}, \cdots, \pm t_{n}\right\}$ agrees with the W_{G}-orbit through $\omega_{1}=t_{1}$. Therefore, $h_{G}\left(t_{i}\right)=\operatorname{dim}_{\mathbb{C}} G / H_{\{1\}}, 1 \leq i \leq n$ (by the Theorem).

The manifolds $G / H_{\{1\}}$ can be identified with familiar spaces by the discussion at the beginning of Section 3. Let $\mathbb{C} P^{n-1}$ be the projective space of complex
lines in $\mathbb{C}^{n} ; H(n)$ the real Grassmannian of oriented 2-planes in \mathbb{R}^{n}; and let $\mathbb{H} P^{n-1}$ be the projective space of quaternionic lines in the n-quaternionic vector space \mathbb{H}^{n}. We have

$$
G / H_{\{1\}}=\left\{\begin{array}{lll}
\mathbb{C} P^{n-1} & \text { if } & G=S U(n) ; \\
H(n) & \text { if } & G=S O(n) ; \\
E(n) & \text { if } & G=S p(n),
\end{array}\right.
$$

where $E(n)$ is the total space of complex projective bundle associated to γ_{n}, the complex reduction of the canonical quaternionic line bundle over $\mathbb{H} P^{n-1}$ (cf. [6], Section 2.5). It can be verified directly from Lemma 4 that

Lemma 6. Assume that G is one of the matrix groups $S U(n), S O(m)$ with $m \neq 4,5,6,8$, or $\operatorname{Sp}(n)$ with $n>2$. For all K we have $\operatorname{dim}_{\mathbb{C}} G / H_{\{1\}} \leq$ $\operatorname{dim}_{\mathbb{C}} G / H_{K}$, where the equality holds if and only if

1) $K=\{1\}$ if $G \neq S U(n)$;
2) $K=\{1\},\{n-1\}$ if $G=S U(n)$.

Combining Lemma 5, 6 and the Theorem we show
Proposition 2. Assume that G is one of the matrix groups $S U(n), S O(m)$ with $m \neq 4,5,8$, or $\operatorname{Sp}(n)$ with $n \neq 2$. Then
(i) $h_{S U(n)}^{-1}(n-1)=\left\{\lambda t_{i} \mid 1 \leq i \leq n, \lambda \in \mathbb{Z} \backslash\{0\}\right\}$;
(ii) $h_{S O(2 n)}^{-1}(2 n-2)=\left\{\lambda t_{i} \mid 1 \leq i \leq n, \lambda \in \mathbb{Z} \backslash\{0\}\right\}$;
(iii) $h_{S O(2 n+1)}^{-1}(2 n-1)=\left\{\lambda t_{i} \mid 1 \leq i \leq n, \lambda \in \mathbb{Z} \backslash\{0\}\right\}$;
(iv) $h_{S p(n)}^{-1}(2 n-1)=\left\{\lambda t_{i} \mid 1 \leq i \leq n, \lambda \in \mathbb{Z} \backslash\{0\}\right\}$.

Proof. In view of Lemma 5 and 6, it remains to show that, if $G=S U(n)$, $O\left(\omega_{n-1}\right)=O\left(\omega_{1}\right)$, where $O(x)$ is the W_{G}-orbit through $x \in H^{2}(G / T)$.
¿From the first relation $e_{1}\left(t_{1}, \cdots, t_{n}\right)=0$ in $H^{*}(S U(n) / T)$ we get $\omega_{n-1}=$ $-t_{n}$ from (4.1). It follows that $O\left(\omega_{n-1}\right)=O\left(\omega_{1}\right)$ by Lemma 5 .

Remark 2. Lemma 6 fails for $G=S O(4), S O(5), S O(6), S O(8)$ or $S p(2)$. For example if $G=S O(8)$, the solutions in $K \in \Phi_{4}$ to the equation $\operatorname{dim}_{\mathbb{C}} G / H_{\{1\}}=$ $\operatorname{dim}_{\mathbb{C}} G / H_{K}$ are $K=\{1\},\{3\}$ and $\{4\}$.

However, in these minor cases, one can work out the pre-image of h_{G} at its minimal non-zero values using the same method. For instance

$$
\begin{aligned}
h_{S O(8)}^{-1}(6) & =O\left(\lambda \omega_{1}\right) \cup O\left(\lambda \omega_{3}\right) \cup O\left(\lambda \omega_{4}\right) \\
& =\left\{\lambda t_{i}, \left.\frac{\lambda}{2} \sum_{i=1}^{4} \pm t_{i} \right\rvert\, 1 \leq i \leq 4, \lambda \in \mathbb{Z} \backslash\{0\}\right\} .
\end{aligned}
$$

Previously, item (i) was obtained independently by Monk [13], Ewing and Liulevicius [9]. (iii) and (iv) were shown by the authors in [7].

Acknowledgment. The authors are very grateful to their referees for many improvements over the earlier version of this paper.

References

[1] Broughton, S. A., M. Hoffman, and W. Homer, The height of two-dimensional cohomology classes of complex flag manifolds, Canad. Math. Bull. 26 (1983), 498-502.
[2] Bernstein, I. N., I. M. Gel'fand, and S. I. Gel'fand, Schubert cells and cohomology of the spaces G/P, Russian Math. Surveys 28 (1973) 1-26.
[3] Borel, A., Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts, Ann. Math. 57 (1953), 115-207.
[4] -, "Topics in the homology theory of fiber bundles," Springer-Verlag, Berlin, 1967.
[5] Borel, A., and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 1958, 458-538.
[6] Duan, H., Some enumerative formulas for flag manifolds, Communications in Algebra 29 (2001), 4395-4419.
[7] Duan, H., and X. A. Zhao, The classification of cohomology endomorphisms of certain flag manifolds, Pacific J. Math. 192 (2000), 93-102.
[8] Duan, H., X. A. Zhao, and X. Z. Zhao, The Cartan Matrix and Enumerative Calculus, Journal of Symbolic Computation 38 (2004), to appear.
[9] Ewing, J., and A. Liulevicius, Homotopy rigidity of linear actions on homogeneous spaces, J. Pure and Applied Algebra, 18 (1980), 259-267.
[10] Hoffman, M., On fixed point free maps of the complex flag manifold, Indiana Univ. Math. J. 33 (1984), 249-255.
[11] Hoffman, M., and W. Homer, W., On cohomology automorphisms of complex flag manifolds, Proc. Amer. Math. Soc. 91(1984), 643-648.
[12] Humphureys, J. E., "Introduction to Lie Algebras and Representation Theory," Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York etc., 1972.
[13] Monk, D., The geometry of flag manifolds, Proc. London Math. Soc. 9 (1959), 253-286.
[14] Papadima, S., Rigidity properties of compact Lie groups modulo maximal tori, Math. Ann. 275 (1986), 637-652.

Haibao Duan
Institute of Mathematics
Chinese Academy of Sciences
Beijing 100080
dhb@math.ac.cn

Xu-an Zhao
Department of Mathematics
Beijing Normal University
Beijing 100875
zhaoxa@bnu.edu.cn

[^0]: The first author is partially supported by Polish KBN grant No. 2 P03A 024 23. The second author is supported by Chinese Tianyuan Youth Fund 10226039

