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Abstract. Let G/T be the flag manifold of a compact semisimple Lie group
G modulo a maximal torus T ⊂ G . We express the height function on the
2-dimensional integral cohomology H2(G/T ) of G/T in terms of the geometry
of the root systems of the Lie groups.
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1. Introduction

Let G be a compact connected semi-simple Lie group of rank n with a
fixed maximal torus T ⊂ G . The homogeneous space G/T is a smooth manifold,
known as the complete flag manifold of G . In general, if H is the centralizer of a
one-parameter subgroup of G , the homogeneous space G/H is called a generalized
flag manifold of G .

Let H∗(G/T ) be the integral cohomology of G/T . The height function
hG : H2(G/T ) → Z on the 2-dimensional cohomology is defined by

hG(x) = max{m | xm 6= 0} .

We study the following problem: Evaluate the function hG : H2(G/T ) → Z for a
given G .

For the case G = SU(n), the special unitary group of order n , the prob-
lem has been studied by several authors. Monk [13], Ewing and Liulevicius [9]
independently described the set h−1

SU(n)(n − 1). This partial result was used by

Hoffman [10] in classifying endomorphisms of the ring H∗(SU(n)/T ). Broughton,
Hoffman and Homer computed the function hSU(n) in [1], and the result was ap-
plied in [11] to characterize the action of cohomology automorphisms of SU(n)/H
on H2(SU(n)/H).

A thorough understanding of the function hG may lead to a general way to
study the cohomology endomorphisms of flag manifolds G/H . In this paper, we
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solve the problem for all compact semi-simple G in terms of the geometry of root
system of G .

It is worth to mention that, by describing the cohomology in terms of
root system invariants, S. Papadima classified the automorphisms of the algebra
H∗(G/T ) in [14].

Write L(G) for the Lie algebra of G and let exp : L(G) → G be the
exponential map. The Cartan subalgebra of G relative to T is denoted by
L(T ) ⊂ L(G). Fix a set ∆ = {α1, α2, · · · , αn} ⊂ L(T ) of simple roots of G
(cf.[12], p.47).

Consider the set Φn = {K|K ⊂ {1, 2, · · · , n}} . For a K ∈ Φn let HK ⊂ G
be the centralizer of exp(

⋂
i/∈K

Lαi
) ⊂ G , where Lαi

⊂ L(T ) is the hyperplane

perpendicular to αi ∈ ∆ . If K = {1, · · · , n} , we regard HK = T (the maximal
torus). Define the function fG : Φn → Z by setting

fG(K) = 1
2
(dimR G− dimR HK) , K ∈ Φn .

Lemma 4 in Section 3 shows that the fG can be effectively calculated in concrete
situations.

Let ω1, ω2, · · · , ωn ∈ H2(G/T ) be the fundamental dominant weights asso-
ciated to the set ∆ of simple roots (cf. Lemma 1 in Section 2 or [5], [8]). The
ωi form an additive basis for H2(G/T ) (which also generate multiplicatively the
rational cohomology algebra H∗(G/T ; Q)).

Let WG be the Weyl group of G . The canonical action of WG on G/T
induces an WG -action on H2(G/T ) ([5],[4]). Let Z+ be the set of non-negative
integers. Our main result is

Theorem . For each x ∈ H2(G/T ) , there is w ∈ WG such that

w(x) =
∑

1≤i≤n

λiωi , λi ∈ Z+ .

Further if we set K = {i|λi 6= 0, 1 ≤ i ≤ n}(∈ Φn ), then hG(x) = fG(K) .

2. Proof of the Theorem

Equip L(G) with an inner product (, ) so that the adjoint representation
of G acts as isometries of L(G).

Let π : G̃ → G be the universal cover of G and T̃ ⊂ G̃ , the maximal torus
of G̃ corresponding to T (i.e. π(T̃ ) = T ). The tangent map of π at the unit

e ∈ G̃ yields isomorphisms of algebras

L(T ) ∼= L(T̃ ), L(G) ∼= L(G̃).

Equip L(G̃) with the metric (, ) so that the identifications are also isometries of
Euclidean spaces.

The fundamental dominant weights Ωi ∈ L(T ) = L(T̃ ), 1 ≤ i ≤ n , of
G relative to ∆ (cf. [12], p.67) generate (over the integers) the weight lattice

Γ ⊂ L(T ) = L(T̃ ) of G and G̃ . Since G̃ is simply connected, any z ∈ Γ gives rise

to a homomorphism z̃ : T̃ → S1 onto the cycle group, characterized uniquely by
the property that its derivative dz̃ : L(T̃ ) = L(T ) → R at the group unit e ∈ T̃
satisfies
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dz̃(h) = 2(z,h)
(h,h)

, h ∈ L(T̃ ).

The cohomology class in H1(T̃ ) determined by the z̃ is denoted by [z] (we
have made use of the standard fact from homotopy theory: for any manifold
(or complex) X the set of homotopy classes of maps X → S1 are in one-to-one
correspondence with H1(X), the first integral cohomology of X ).

Let β : H1(T̃ ) → H2(G/T ) be the transgression for the fibration T̃ ⊂ G̃ →
G̃/T̃ = G/T (cf. [4], [5]). The geometric origin of the classes ωi employed by the
Theorem (where they were also called fundamental dominant weights) can be seen
from the next result (cf. [5], p.489).

Lemma 1. With respect to the standard WG = WG̃ action on Γ and G/T ,
the correspondence Γ → H2(G/T ) , z → β[z] , is a WG -isomorphism.

In particular, if we put β[Ωi] = ωi , then the ωi constitute an additive basis
for H2(G/T ) .

Remark 1. The classes ωi ∈ H2(G/T ), 1 ≤ i ≤ n , are of particular interests
in the algebraic intersection theory on G/T . With respect to the Schubert cell-
decomposition of the space G/T [2], they are precisely the special Schubert classes
on G/T [8].

For a K ∈ Φn consider the standard fibration pK : G/T → G/HK . It was
shown in [5], p.507 that

Lemma 2. The induced map p∗K : H∗(G/HK) → H∗(G/T ) is injective and
satisfies

p∗K(H2(G/HK)) = spanZ{ωi | i ∈ K} .

In particular, if we let τi ∈ H2(G/HK) , i ∈ K , be the classes so that

p∗K(τi) = ωi ∈ H2(G/T ) , i ∈ K ,

then the τi , i ∈ K , form an additive basis for H2(G/HK) .

Canonically, the flag manifolds G/HK admit complex structures. It is
natural to ask which κ ∈ H2(G/HK) can appear as Kaehler classes on G/HK .
A partial answer to this question is known. With the notation developed above,
Corollary 14.7 in [5] may be rephrased as

Lemma 3. If κ =
∑
i∈K

λiτi with λi > 0 for all i ∈ K , then κ is a Kaehler class

on G/HK . In particular, κfG(K) 6= 0.

The last clause in Lemma 3 is verified by fG(K) = dimC G/HK .

Proof of the Theorem: We start by verifying the first assertion in the Theorem.
In view of the WG -isomorphism in Lemma 1, it suffices to show that

(2.1) for any z ∈ Γ ⊂ L(T ) there is a w ∈ WG such that w(z) =
∑

1≤i≤n

λiΩi

with λi ∈ Z+ .

The closure of the fundamental Weyl chamber Λ relative to the set ∆ of
simple roots [12], p.49 can be described in terms of the weights Ωi as

Λ = {
∑

1≤i≤n

λiΩi | λi ∈ R+} .
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Since WG acts transitively on Weyl chambers, for any z ∈ L(T ) there is a
w ∈ WG such that w(z) ∈ Λ. Further, if z ∈ Γ we must have, in the expression
w(z) =

∑
1≤i≤n

λiΩi , that λi ∈ Z+ because of the standard fact w(Γ) = Γ. This

verifies (2.1), hence the first part of the Theorem.

For a x ∈ H2(G/T ) we can now assume that w(x) =
∑

1≤i≤n

λiωi with

λi ∈ Z+ for some w ∈ WG . Since the w acts as automorphism of the ring
H∗(G/T ) we have

(2.2) hG(x) = hG(w(x)).

Let K = {i|λi 6= 0, 1 ≤ i ≤ n} and consider in H2(G/HK) the class κ =
∑
i∈K

λiτi .

Since the ring map p∗K is injective and satisfies p∗K(κ) = w(x) by Lemma 2, we
have

(2.3) hG(w(x)) = max{m | κm 6= 0} = fG(K),

where the last equality follows from Lemma 3. Combining (2.2) with (2.3) com-
pletes the proof.

3. Computations

The Theorem reduces the evaluation of hG to that of fG . The latter can
be effectively calculated, as the following recipe shows. Denote by DG the Dynkin
diagram of G (whose vertices consist of a set of simple roots α1, α2, · · · , αn of G
[12], p 57). For a K ∈ Φn we have (cf. [5], 13.5-13.6)

(3.1) putting TK = exp(
⋂

i/∈K

Lαi
) ⊂ G , then TK is a torus group of dimension

|K| (the cardinality of K );

(3.2) letting HK be the semi-simple part of HK , then HK admits a factor-
ization into semi-product of subgroups as HK = TK ·HK with TK ∩HK finite;

(3.3) the Dynkin diagram of HK can be obtained from DG by deleting all
the vertices αi with i ∈ K as well as the edges incident to them.

Summarizing the function fG can be computed as follows. For any con-
nected Dynkin diagram D , define

p(D) =
1

2
(dimR G− rankG),

where G is a compact semisimple Lie group with DG = D . It is then easy to
compute p(D) for the connected Dynkin diagrams of the usual classification:

D p(D)
An

1
2
n(n + 1)

Bn, Cn n2

Dn n(n− 1)
E6 36
E7 63
E8 120
F4 24
G2 6

Now for an arbitrary Dynkin diagram, let p(D) be the sum of p applied to each
connected component.
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Lemma 4. fG(K) = p(DG)− p(DH̄K
), where H̄K is defined in (3.2).

In short, the function fG can be read directly from the Dynkin diagram of
G . In what follows we present some computational examples based on Lemma 4.
Let SU(n) be the special unitary group of order n , SO(n) the special orthogonal
group of order n , and Sp(n) the symplectic group of order n . The five exceptional
Lie groups are denoted as usual by G2, F4, E6, E7, E8 .

If G is one of the above groups, we assume that a set of simple roots of G
is given and ordered as the vertices of Dynkin diagram of G pictured in [12], p.58.

For a K ∈ Φn write K ∈ Φn for the complement of K in {1, · · · , n} .
Note that any K ∈ Φn splits into disjoint union of some consecutive segments
K = K1 t · · · tKm . For example if K = {2, 3, 5} ∈ Φ6 , then

(1) K = {1, 4, 6} ;

(2) K = {2, 3} t {5} , m = 2.

Example 1. If G = SU(n), the function fG : Φn−1 → Z is given by

fG(K) = n(n−1)
2

−
m∑

i=1

(|Ki|+1)|Ki|
2

,

where K = K1 t · · · tKm .

Example 2. If G = SO(2n), the function fG : Φn → Z is given by three cases.

i) If n ∈ K , then fG(K) = n(n− 1)−
m∑

i=1

(|Ki|+1)|Ki|
2

.

ii) If n− 1 ∈ K , let σ : {1, 2, · · · , n} → {1, 2, · · · , n} be the transposition
of n− 1 and n . Then fG(K) = fG(σ(K)).

iii) If n, n−1 6∈ K , then fG(K) = n(n−1)−
m−1∑
i=1

(|Ki|+1)|Ki|
2

−|Km|(|Km|−

1).

Example 3. If G = SO(2n + 1) or Sp(n), the function fG : Φn → Z is given
by two cases.

i) If n ∈ K , then fG(K) = n2 −
m∑

i=1

(|Ki|+1)|Ki|
2

.

ii) If n 6∈ K , then fG(K) = n2 −
m−1∑
i=1

(|Ki|+1)|Ki|
2

− |Km|2 .

Example 4. If G = E6 the function fG : Φ6 → Z is given by the table below.
K fG(K) K fG(K) K fG(K) K fG(K) K fG(K)
Ø 0 {24} 30 {134} 32 {346} 33 {2345} 34
{1} 16 {25} 29 {135} 32 {356} 32 {2346} 34
{2} 21 {26} 26 {136} 30 {456} 32 {2356} 34
{3} 25 {34} 31 {145} 33 {1234} 33 {2456} 33
{4} 29 {35} 31 {146} 33 {1235} 34 {3456} 34
{5} 25 {36} 29 {156} 30 {1236} 33 {12345} 35
{6} 16 {45} 31 {234} 32 {1245} 34 {12346} 35
{12} 26 {46} 31 {235} 32 {1246} 34 {12356} 35
{13} 26 {56} 26 {236} 32 {1256} 33 {12456} 35
{14} 31 {123} 30 {245} 32 {1345} 34 {13456} 35
{15} 29 {124} 32 {246} 32 {1346} 34 {23456} 35
{16} 24 {125} 32 {256} 30 {1356} 33 {123456} 36
{23} 29 {126} 30 {345} 33 {1456} 34
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Example 5. For the five exceptional Lie groups, the values of hG on the
fundamental dominant weights ω1, · · · , ωn (with n = 2, 4, 6, 7 and 8 respectively)
are given in the table below.

G hG(ω1) hG(ω2) hG(ω3) hG(ω4) hG(ω5) hG(ω6) hG(ω7) hG(ω8)
G2 5 5
F4 15 20 20 15
E6 16 21 25 29 25 16
E7 33 42 47 53 50 42 27
E8 78 92 98 106 104 97 83 57

4. Applications and extensions of the main result

Our method can be extended to compute the height function

h(G,H) : H2(G/H) → Z , x → max{m | xm 6= 0} .

for a generalized flag manifold G/H , where H is the centralizer of a one-parameter
subgroup in G .

Since H is conjugate in G to one of the subgroups HK , K ∈ Φn [2], and
since the induced ring map p∗K : H∗(G/HK) → H∗(G/T ) is injective and identifies
H2(G/HK) with the submodule spanZ{ωi | i ∈ K} ⊂ H2(G/T ) (by Lemma 2),
we have

Proposition 1. The function h(G,H) : H2(G/H) → Z can be given by restrict-
ing hG to the submodule spanZ{ωi | i ∈ K} ⊂ H2(G/T ).

The Theorem enables one to recover and extend some relevant results
previously known. For G = SU(n), SO(n) and Sp(n) one has the following
classical descriptions for the cohomology of G/T from Borel [3], 1953.

H∗(U(n)/T ; Z) = Z[t1, · · · , tn]/ 〈ei(t1, · · · , tn), 1 ≤ i ≤ n〉 ;
H∗(SO(2n + 1)/T ; R) = R[t1, · · · , tn]/ 〈ei(t

2
1, · · · , t2n), 1 ≤ i ≤ n〉 ;

H∗(Sp(n)/T ; Z) = Z[t1, · · · , tn]/ 〈ei(t
2
1, · · · , t2n), i ≤ n〉 ;

H∗(SO(2n)/T ; R) = R[t1, · · · , tn]/ 〈t1 · · · tn; ei(t
2
1, · · · , t2n), 1 ≤ i ≤ n− 1〉 ,

where er(y1, · · · , yn) is the r -th elementary symmetric function in y1, · · · , yn , and
where ti ∈ H2(G/T ). The transitions between the bases for H2(G/T ) given by
the ti and by the ωi in our theorem are seen as follows (cf. [8], Example 3)

(4.1) for G = SU(n), ωi = t1 + · · ·+ ti , 1 ≤ i ≤ n− 1;

(4.2) for G = SO(2n + 1), ωi = t1 + · · ·+ ti , 1 ≤ i ≤ n− 1; and

ωn = 1
2
(t1 + · · ·+ tn);

(4.3) for G = Sp(n), ωi = t1 + · · ·+ ti , 1 ≤ i ≤ n ;

(4.4) for G = SO(2n), ωi = t1 + · · ·+ ti , 1 ≤ i ≤ n− 2;

ωn−1 = 1
2
(t1 + · · ·+ tn−1 − tn); and

ωn = 1
2
(t1 + · · ·+ tn−1 + tn ).

In each of the four cases we have

Lemma 5. The set {±t1, · · · ,±tn} agrees with the WG -orbit through ω1 = t1 .
Therefore, hG(ti) = dimC G/H{1} , 1 ≤ i ≤ n (by the Theorem).

The manifolds G/H{1} can be identified with familiar spaces by the discus-
sion at the beginning of Section 3. Let CP n−1 be the projective space of complex
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lines in Cn ; H(n) the real Grassmannian of oriented 2-planes in Rn ; and let
HP n−1 be the projective space of quaternionic lines in the n-quaternionic vector
space Hn . We have

G/H{1} =


CP n−1 if G = SU(n);
H(n) if G = SO(n);
E(n) if G = Sp(n),

where E(n) is the total space of complex projective bundle associated to γn , the
complex reduction of the canonical quaternionic line bundle over HP n−1 (cf. [6],
Section 2.5). It can be verified directly from Lemma 4 that

Lemma 6. Assume that G is one of the matrix groups SU(n), SO(m) with
m 6= 4, 5, 6, 8, or Sp(n) with n > 2 . For all K we have dimC G/H{1} ≤
dimC G/HK , where the equality holds if and only if

1) K = {1} if G 6= SU(n) ;

2) K = {1}, {n− 1} if G = SU(n) .

Combining Lemma 5, 6 and the Theorem we show

Proposition 2. Assume that G is one of the matrix groups SU(n), SO(m)
with m 6= 4, 5, 8, or Sp(n) with n 6= 2 . Then

(i) h−1
SU(n)(n− 1) = {λti | 1 ≤ i ≤ n, λ ∈ Z \ {0}};

(ii) h−1
SO(2n)(2n− 2) = {λti | 1 ≤ i ≤ n, λ ∈ Z \ {0}};

(iii) h−1
SO(2n+1)(2n− 1) = {λti | 1 ≤ i ≤ n, λ ∈ Z \ {0}};

(iv) h−1
Sp(n)(2n− 1) = {λti | 1 ≤ i ≤ n, λ ∈ Z \ {0}}.

Proof. In view of Lemma 5 and 6, it remains to show that, if G = SU(n),
O(ωn−1) = O(ω1), where O(x) is the WG -orbit through x ∈ H2(G/T ).

¿From the first relation e1(t1, · · · , tn) = 0 in H∗(SU(n)/T ) we get ωn−1 =
−tn from (4.1). It follows that O(ωn−1) = O(ω1) by Lemma 5.

Remark 2. Lemma 6 fails for G = SO(4), SO(5), SO(6), SO(8) or Sp(2). For
example if G = SO(8), the solutions in K ∈ Φ4 to the equation dimC G/H{1} =
dimC G/HK are K = {1}, {3} and {4} .

However, in these minor cases, one can work out the pre-image of hG at its
minimal non-zero values using the same method. For instance

h−1
SO(8)(6) = O(λω1) ∪O(λω3) ∪O(λω4)

= {λti,
λ
2

4∑
i=1

±ti | 1 ≤ i ≤ 4, λ ∈ Z \ {0}} .

Previously, item (i) was obtained independently by Monk [13], Ewing and
Liulevicius [9]. (iii) and (iv) were shown by the authors in [7].

Acknowledgment. The authors are very grateful to their referees for many
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