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Abstract. By a result of G. W. Schwarz, a smooth version of R. S. Palais’
covering homotopy theorem holds for actions of compact Lie groups. This paper
extends the result of Schwarz to the case of proper actions of non-compact Lie
groups. An isotopy lifting theorem is obtained as a corollary.
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1. Introduction

This paper is concerned with lifting homotopies from orbit spaces of smooth (i.e.,
C∞ ) Lie group actions. If G is a compact Lie group, there exists the covering
homotopy theorem of R. S. Palais ([5]) for continuous actions. As pointed out by
Palais in [6], his result also holds for proper actions of non-compact Lie groups.
G. W. Schwarz has established a smooth analogue of Palais’ theorem for compact
Lie group actions. The purpose of this paper is to generalize Schwarz’s result for
proper actions of non-compact Lie groups.

The main result is the generalization of Schwarz’s Theorem 2.3 in [8]:

Theorem 1.1. Let G be a Lie group and let M and N be proper smooth G-
manifolds without boundary. Let f : M → N be a G-equivariant smooth map and
let F̄ : M/G× [0, 1] → N/G be a smooth map such that each F̄t = F̄ (·, t) : M/G→
N/G is normally transverse. Assume f induces F̄0 . Then there is a G-equivariant
smooth normally transverse homotopy F : M × [0, 1] → N inducing F̄ and starting
at f . Moreover, any two such liftings of F̄ differ by composition with a G-
equivariant isotopy of M starting at the identity map of M and inducing the
trivial isotopy on M/G.

While the construction of the map F is similar to that in [8], it isn’t obvious
that the construction actually works in the case of proper actions. In Sections 2.
and 3., we prove results needed for the construction. As a corollary we obtain an
isotopy lifting result, which generalizes Corollary 2.4 in [8]:
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Corollary 1.2. Let G be a Lie group and let M be a proper smooth G-manifold
without boundary. Let F̄ : M/G × [0, 1] → M/G be a smooth isotopy starting at
the identity. Then there is a G-equivariant smooth isotopy F : M × [0, 1] → M
starting at the identity and inducing F̄ .

E. Bierstone ([1]) has proved Corollary 1.2 for smooth compact Lie group actions
in the case where all the isotropy subgroups have the same dimension.

By the slice theorem, proper actions of non-compact Lie groups look locally
like actions of compact Lie groups. Thus a standard method for proving results for
proper Lie group actions is first to prove a local result by using the corresponding
result for compact Lie groups, and then to somehow conclude the global result.
This is also the idea behind many of the proofs of this paper. In particular, this is
the way to prove the smooth lifting theorem for vector fields (Theorem 5.3), which
is the main result needed for the proof of Theorem 1.1.

The author would like to thank the referee for making suggestions for
simplifying some of the proofs.

2. Proper smooth actions

Let G be a Lie group and let M be a smooth (i.e., C∞ ) manifold on which G acts.
All manifolds are assumed to have at most countably many connected components
and are allowed to have a non-empty boundary, unless otherwise stated. We say
that the action is proper, if the map G ×M → M ×M , (g, x) 7→ (gx, x), is a
proper map, i.e., if the inverse images of all compact sets are compact. Thus all
actions of compact groups are proper and the action of a discrete group is proper if
and only if it is properly discontinuous. If the action map G×M →M is smooth,
we call M a smooth G-manifold. If the action is also proper, we call M a proper
smooth G-manifold.

Let G be a Lie group and let M be a proper smooth G-manifold. We
denote the orbit space of M by M/G and let πM : M →M/G denote the natural
projection. Let x ∈ M . Then the isotropy subgroup of x is Gx = {g ∈ G | gx =
x} . Notice that Gx is compact, for every x . If H is a subgroup of G , then (H)
denotes the family of subgroups of G which are conjugate to H . As usual,

MH = {x ∈M | hx = x for every h ∈ H},

MH = {x ∈M | Gx = H} and

M(H) = {x ∈M | (Gx) = (H)}.
A map f : M → N is said to preserve the isotropy type if Gx = Gf(x) , for

every x ∈ X . An isotropy type preserving G-equivariant map is called isovariant.

Assume H is a closed subgroup of G and let N be a smooth H -manifold.
Let G×HN denote the twisted product of G with N over H . Thus G×HN is the
orbit space of the smooth H -manifold G×N on which H acts by H× (G×N) →
G×N , (h, (g, x)) 7→ (gh−1, hx). We denote the orbit of (g, x) by [g, x] . The orbit
space G×HN is a smooth G-manifold with the boundary ∂(G×HN) = G×H ∂N .
If N is a proper smooth H -manifold, then G×HN is a proper smooth G-manifold.
See Section 4 of [4], for a detailed discussion on twisted products.

Let M be a smooth manifold with a boundary ∂M and let S be a smooth
submanifold of M . We call S a nice submanifold, if ∂S = S ∩ ∂M .
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Definition 2.1. Let G be a Lie group and let M be a proper smooth G-
manifold. Let x ∈M . Assume S is a nice Gx -invariant submanifold of M , x ∈ S
and GS is open in M . If there exists a smooth G-map f : GS → G/Gx such that
f−1(eGx) = S , we call S a smooth slice (or just a slice) at x .

We call the following theorem the differentiable slice theorem:

Theorem 2.2. Let G be a Lie group and let M be a proper smooth G-manifold.
Then there exists a smooth slice at every point of M .

Proof. If x ∈ M \ ∂M , the theorem follows from Proposition 2.2.2 in [6]. If
x ∈ ∂M , the proof remains similar to that of Proposition 2.2.2 in [6].

If x ∈ M and S is a smooth slice at x , then the map G ×Gx S → GS ,
[g, y] 7→ gy , is a G-diffeomorphism. We will frequently identify the tube GS with
the twisted product G×Gx S .

Let Tx(M) denote the tangent space of M at x . Then the normal space
at x to the orbit Gx is Nx = Tx(M)/Tx(Gx). We call this representation of Gx

the slice representation at x . Two G-orbits are said to have the same normal
type if there are points in each which have the same isotropy group and whose
slice representations are isomorphic up to trivial factors. If x ∈ M \ ∂M , we
can choose the smooth slice at x to be Gx -diffeomorphic to Nx . A smooth slice
Gx -diffeomorphic to a linear Gx -space (or to an open subset of such a space) is
called linear.

Lemma 2.3. Let G be a Lie group and let M and N be proper smooth G-
manifolds. Assume f : M → N is a smooth isovariant map, x ∈ M , y = f(x)
and Sy is a smooth slice at y . Then Sx = f−1(Sy) is a smooth slice at x.

Proof. Let r : GSy → G/Gx , gs 7→ gGx . Clearly, the restrictions of r ◦ f |GSx

to each orbit in GSx are submersions. It follows (see for example Theorem 1.4.1
in [3]), that Sx = (r ◦ f |GSx)

−1(eGx) is a smooth submanifold of M such that
∂Sx = Sx ∩ ∂(GSx) = Sx ∩ ∂M . Thus Sx is a smooth slice at x .

3. Smooth structure on the orbit space

In this section we follow the terminology in [8]. We present the definitions here
for the sake of completeness.

Let G be a Lie group and let M be a proper smooth G-manifold. The orbit
space M/G is equipped with the quotient topology and differentiable structure:
Let U be an open subset of M/G . We say that the map f : U → R is smooth, if
the map π∗M(f) = f ◦ πM : π−1

M (U) → R is smooth. We denote the set of smooth
maps U → R by C∞(U). Let N be another proper smooth G-manifold. Then
we say that the map ψ : M/G → N/G is smooth, if ψ∗C∞(N/G) ⊂ C∞(M/G).
By a smooth diffeomorphism M/G→M/G we mean a smooth homeomorphism,
whose inverse map is smooth. Let I denote the unit interval [0, 1]. A smooth
isotopy F : M/G× I → M/G is a smooth map such that Ft : M/G → M/G is a
smooth diffeomorphism, for every t ∈ I .
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The subsets of M/G of given normal type form a stratification of M/G .
Unless otherwise mentioned, by strata on M/G we mean normal type strata.
The orbit space M/G has also another natural stratification. The strata of this
stratification are the images (M/G)(H) of the sets M(H) in M/G , where H is a
subgroup of G . We call these strata isotropy type strata on M/G . Each stratum
(M/G)(H) has the smooth structure of the orbit space M(H)/G .

By a smooth Σ-manifold we mean a topological sum of connected manifolds
of possibly different dimensions. By a smooth Σ-submanifold of a smooth manifold
M we mean a Σ-manifold which is a subspace of M .

The following proposition was proved for compact G in [8], Proposition 1.2.

Proposition 3.1. Let G be a Lie group and let H be a compact subgroup of
G. Let M be a proper smooth G-manifold. Then

1) The isotropy type strata {(M/G)(H)} are smooth Σ-manifolds, and the inclu-
sions (M/G)(H) →M/G are smooth.

2) The connected components of the isotropy type strata are a locally finite col-
lection of subsets of M/G.

3) Let {σα} be the set of the normal type strata of M/G. Then the connected
components of the σα are the same as the connected components of the
(M/G)(H) .

Proof. By Corollary 4.2.8 of [7], the sets M(H) and MH are smooth Σ-
submanifolds of M . (This corollary and other results in [7] to which we re-
fer in this proof are stated for manifolds without boundary, but they hold also
for manifolds with boundary.) Let N(H) denote the normalizer of H and let
Γ(H) = N(H)/H . By Theorem 4.3.10 of [7], M(H) = G/HΓ(H) × MH . Since
Γ(H) acts properly and freely on MH , it follows that (M/G)(H) = MH/Γ(H) is a
smooth Σ-manifold (see Proposition 4.2.10 in [7]). Moreover, (M/G)(H) has the
correct C∞ -structure, i.e., C∞((M/G)(H)) = π∗M(H)

(C∞(M(H))). To show that the

inclusions (M/G)(H) → M/G are smooth, it is sufficient to show that the inclu-
sions (M/G)(H) ∩ GS/G → GS/G are smooth, where S is a smooth slice at any
x ∈M . By identifying GS/G with S/Gx , this follows immediately from the case
of compact G (Proposition 1.2.1 in [8]).

The second claim follows immediately from the corresponding result for
compact G (Proposition 1.2.2 in [8]) by identifying GS/G with S/Gx . Let
ξ ∈ M/G . Let x ∈ M be such that ξ = πM(x) and let S be a smooth slice
at x . By Proposition 1.2.3 in [8], we can assume that the connected components
of the normal type strata on S/Gx are the same as those of the isotropy type
strata. Identifying GS/G with S/Gx and covering a connected component of any
(M/G)(H) by open sets of form GS/G proves the third claim.

Let ξ ∈ M/G and let Mξ denote the ring of germs of smooth functions
at ξ vanishing at ξ . Let M2

ξ denote the ideal of Mξ which is generated by
products of elements of Mξ . Then the Zariski cotangent space T∗

ξ(M/G) of M/G
at ξ is Mξ/M2

ξ . The Zariski tangent space Tξ(M/G) of M/G at ξ is defined
to be the dual space of T∗

ξ(M/G). By the differentiable slice theorem, M/G
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looks locally like an orbit space of a compact group action. Since the Zariski
tangent and cotangent spaces of orbit spaces of compact group actions are always
finite dimensional vector spaces ([8], p. 44), it follows that the same is true for
Tξ(M/G) and T∗

ξ(M/G). A smooth map ψ : M/G→ N/G induces a linear map
(dψ)ξ : Tξ(M/G) → Tψ(ξ)(N/G).

Let ξ ∈ M/G , and let σξ denote the normal type stratum of M/G con-
taining ξ . Let Nξ(M/G) denote Tξ(M/G)/Tξ(σξ). Assume ψ : M/G → N/G
is a strata preserving smooth map. Then (dψ)ξ : Tξ(M/G) → Tψ(ξ)(N/G) in-
duces a linear map (δψ)ξ : Nξ(M/G) → Nψ(ξ)(N/G). We say that ψ is normally
transverse if (δψ)ξ is an isomorphism for all ξ ∈M/G .

Let x ∈ M . Let Nx(M) denote Nx/N
Gx
x . We say that a smooth G-

map ψ : M → N is strata preserving if it preserves the normal type of orbits.
Then (dψ)x induces (δψ)x : Nx(M) → Nψ(x)(N), and we say that ψ is normally
transverse if (δψ)x is an isomorphism for all x ∈M .

Propositions 3.2, 3.4 and 3.5 were proved for compact G in [8], Proposi-
tion 2.1.

Proposition 3.2. Let M and N be proper smooth G-manifolds with ∂N =
Ø. Let f : M → N be a strata preserving G-equivariant smooth map and let
f̄ : M/G→ N/G be the map induced by f . Then f is normally transverse if and
only if f̄ is normally transverse.

Proof. Let x ∈ M and let Sy be a smooth slice at y = f(x). By Lemma
2.3, Sx = f−1(Sy) is a smooth slice at x . Since Tx(M) = Tx(Sx) ⊕ Tx(Gx) and
Ty(N) = Ty(Sy)⊕Ty(Gy), it follows that Nx(M) = Nx(Sx) and Ny(N) = Ny(Sy).
Let f | : Sx → Sy be the restriction of f . Clearly, (δf)x = (δf |)x . Thus f is
normally transverse at x if and only if f | is normally transverse at x . Similarly,
identifying GSx/G with Sx/Gx and GSy/G with Sy/Gy , we see that f̄ is normally

transverse at πM(x) if and only if f | is normally transverse at πSx(x). Since f | is
normally transverse if and only if f | is normally transverse (Proposition 2.1.3 of
[8]), the proposition follows.

Let F : M/G → N/G be a smooth map between the orbit spaces of two
proper smooth G-manifolds M and N , where ∂N = Ø, and let πN : N → N/G
be the natural projection. As usual, we denote by F ∗N the pullback of N by F .
Since N is a smooth manifold and M/G has a smooth structure as well, F ∗N has
the induced smooth structure from M/G × N . Thus f : F ∗N → R is smooth if
and only if it is a restriction of a smooth map defined on a neighbourhood of F ∗N
in M/G × N . Let P be another proper smooth G-manifold. Then we say that
f : F ∗N → P/G is smooth, if f ∗C∞(P/G) ⊂ C∞(F ∗N).

Assume G is a Lie group and K is a compact subgroup of G . Let S and
S̃ be smooth K -manifolds with ∂S = Ø, and let F : S̃/K → S/K be a smooth
normally transverse map. By Proposition 2.1.1 in [8], the pullback F ∗S of S by
F , with the smooth structure inherited from S̃/K×S , is a smooth K -Σ-manifold
and ∂(F ∗S) = (F |∂S̃)∗S . As usual, let’s identify S̃/K and S/K with (G×K S̃)/G
and (G×K S)/G , respectively, and let’s form the pullback F ∗(G×K S) of G×K S
by F . Then the following holds:
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Lemma 3.3. The canonical map θ : G ×K F ∗S → F ∗(G ×K S), [g, (ξ, x)] 7→
(ξ, [g, x]), is a G-equivariant smooth diffeomorphism.

Proof. The restriction θ| to F ∗S is clearly a smooth K -equivariant map and
θ(F ∗S) = F ∗S . Since G acts trivially on S̃/K and smoothly on G ×K S , it
also acts smoothly on F ∗(G×K S). Thus the G-map G×K F ∗S → F ∗(G×K S)
induced by θ| is smooth. But this map is precisely θ . Clearly, θ is a bijection.

It remains to show that the inverse map θ−1 is smooth. By the equivariance
of θ−1 , it is sufficient to show that the restriction θ−1|F ∗S is a restriction of some
smooth map defined on a neighbourhood of F ∗S in S̃/K × (G ×K S). Let U
be an open neighbourhood of eK in G/K , and let δ : U → G be a smooth local
cross section of the projection G → G/K . We may assume that δ(eK) = e . Let
fS : G×K S → G/K be the slice map. Then the map

δ0 : S̃/K × f−1
S (U) → S̃/K × S, (ξ, [g, x]) 7→ (ξ, δ(fS[g, x])

−1[g, x]),

is smooth as a composition of smooth maps. Since θ−1|F ∗S = δ0|F ∗S , the claim
follows.

Proposition 3.4. Let G be a Lie group and let M and N be proper smooth G-
manifolds with ∂N = Ø. Let F : M/G → N/G be a smooth normally transverse
map. Then F ∗N is a proper smooth G-Σ-manifold whose boundary is (F |∂M)∗N .

Proof. Since G acts smoothly on M/G and N , it also acts smoothly on F ∗N .
Since N is a proper G-space, also M/G×N is a proper G-space. Thus F ∗N is
a proper G-space.

To prove that F ∗N is a smooth Σ-manifold, it suffices to show that each
point (ξ, x) ∈ F ∗N has a neighbourhood which the smooth structure inherited
from M/G × N makes a smooth manifold. Thus, without loss of generality, we
may assume that M = G×K S̃ an N = G×K S , where K is a compact Lie group
and S̃ and S are smooth K -manifolds. But then the claim follows from Lemma
3.3.

By Proposition 2.1.1 in [8], ∂(F ∗S) = (F |∂S̃)∗S . Consequently,
∂(F ∗(G×K S)) = (F |G×K∂S̃

)∗(G×K S) = (F |∂(G×K S̃))
∗(G×K S).

Covering M and N by tubes shows that ∂(F ∗N) = (F |∂M)∗N .

Proposition 3.5. Let G be a Lie group and let M and N be proper smooth
G-manifolds with ∂N = Ø. Let f : M → N be a G-equivariant smooth normally
transverse map and let f̄ : M/G → N/G be the map induced by f . Then the
canonical map ϕ : M → f̄ ∗N , x 7→ (πM(x), f(x)), is a G-equivariant smooth
diffeomorphism.

Proof. Since πM and f are smooth and f is isovariant, it follows that ϕ is a
smooth bijection. Let x ∈ M and let S be a smooth slice at f(x). By Lemma
2.3, f−1(S) is a smooth slice at x . Let f | : f−1(S) → S be the restriction of f
and let F : f−1(S)/Gx → S/Gx be the map induced by f | . By Proposition 2.1.2
in [8], the map

ϕS : f−1(S) → F ∗S, s 7→ (πf−1(S)(s), f(s)),
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is a smooth Gx -diffeomorphism. The map ϕS induces a smooth G-diffeomorphism
ϕ̃S : Gf−1(S) → G ×Gx F

∗S . Let θ be the diffeomorphism of Lemma 3.3. Then
the restriction ϕ|Gf−1(S) = θ◦ ϕ̃S is a diffeomorphism onto F ∗(G×Gx S). It follows
that also ϕ is a diffeomorphism.

The following two propositions will be used in the proof of Corollary 1.2.

Proposition 3.6. Let G be a Lie group and let M and N be proper smooth
G-manifolds without boundary. Assume f : M → N is a G-equivariant smooth
normally transverse map such that the induced map f̄ : M/G→ N/G is a smooth
diffeomorphism. Then f is a G-equivariant smooth diffeomorphism.

Proof. Let ϕ : M → M/G × N , x 7→ (πM(x), f(x)). By Proposition 3.5,
ϕ maps M diffeomorphically onto f̄ ∗N . Let pr : N/G × N → N denote the
projection. Then (f̄ , idN) : M/G × N → N/G × N is a diffeomorphism and
pr ◦ (f̄ , idN) maps f̄ ∗N diffeomorphically onto N . Since f = pr ◦ (f̄ , idN) ◦ϕ , the
proposition follows.

Proposition 3.7. Let G be a Lie group and let M be a proper smooth G-
manifold without boundary. Assume F : M/G × I → M/G is a smooth isotopy
starting at the identity. Then Ft is normally transverse, for every t ∈ I .

Proof. Let ξ ∈ M/G and let x ∈ M be such that πM(x) = ξ . Let S be a
linear slice at x . We identify the open neighbourhood GS/G of ξ with S/Gx . We
may assume that Ft(S/Gx) is of form S0/Gy , where S0 is a linear slice at some
y ∈M . Since the restriction Ft| : S/Gx → Ft(S/Gx) is a smooth diffeomorphism,
it follows that Ft(S/Gx) has the same primary stratification (see [1], or p. 43 in
[8]) as S/Gx . It follows, by using Theorem 1.5 in [8], that Ft| must map the
connected components of the normal type strata of S/Gx in a one-to-one manner
onto the connected components of the normal type strata of Ft(S/Gx).

Covering M/G by sets of form S/Gx shows that Ft must permute the
connected components of the normal type strata of M/G . Since Ft is isotopic to
the identity, it follows that it must preserve the normal type strata. As a normal
type strata preserving diffeomorphism, Ft is normally transverse.

4. Equivariant vector fields

Let G be a Lie group and let M be a proper smooth G-manifold. We denote the set
of real-linear derivations of C∞(M/G) by Der(C∞(M/G)) and call the elements
of Der(C∞(M/G)) smooth vector fields on M/G , following the terminology in [8].
An element of Der(C∞(M/G)) is called strata preserving if it preserves the ideals
of C∞(M/G) vanishing on the various strata of M/G . We denote the collection
of strata preserving smooth vector fields on M/G by X∞(M/G), and we denote
the smooth vector fields on M by X∞(M).

The group G acts on C∞(M) by

G× C∞(M) → C∞(M), (g, f) 7→ gf = f ◦ g−1.
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Moreover, G acts on X∞(M) as follows: Let D ∈ X∞(M), f ∈ C∞(M), g ∈ G
and x ∈M . Then

(gD)(f)(x) = D(f ◦ g−1)(gx).

Thus D can be considered as a G-equivariant map C∞(M) → C∞(M) if and only
if it is a G-fixed point under the action on X∞(M). We denote the fixed point
set by X∞(M)G and call its elements the G-equivariant smooth vector fields on
M . If D ∈ X∞(M)G and f ∈ C∞(M) is a G-invariant map, then also the map
D(f) is G-invariant. The set of G-invariant smooth maps M → R is denoted by
C∞
G (M).

Let next G be a Lie group, H a closed subgroup of G and M a proper
smooth H -manifold. Then G×H acts on G×M by

(G×H)× (G×M) → G×M, ((g, h), (g0, x)) 7→ (gg0h
−1, hx).

Moreover, G×H acts on C∞(G×M) by

(G×H)× C∞(G×M) → C∞(G×M), ((g, h)f)(g0, x) = f(g−1g0h, h
−1x).

Let D ∈ X∞(M)H . Define

DG : C∞(G×M) → C∞(G×M), DG(f)(g0, x) = D(fg0)(x),

where fg0(x) = f(g0, x), for every x ∈ M . Then DG ∈ X∞(G ×M)G×H . Let
π : G ×M → G ×H M be the natural projection. Then DG induces the vector
field D̃ ∈ X∞(G×H M)G , where

D̃(f)[g, x] = DG(f ◦ π)(g, x),

for every f ∈ C∞(G×H M) and for every (g, x) ∈ G×M .

5. The Results

We begin this section by generalizing the lifting theorem for smooth vector fields
([8], Theorem 0.2) for proper group actions. In [8], the lifting problem was reduced
to a local problem ([8], Theorem 3.7). Therefore our generalization can be done
by using the differentiable slice theorem and G-invariant partitions of unity, just
like in the case of compact G .

Let G be a Lie group and let M be a proper smooth G-manifold. The
natural projection πM : M →M/G induces the map

(πM)∗ : X∞(M)G→Der(C∞(M/G)), D 7→DM , where DM(f)(ξ)=D(f ◦ πM)(x),
for every f ∈ C∞(M/G) and for every ξ ∈M/G , where ξ = πM(x).

Lemma 5.1. Let G be a Lie group and let M be a proper smooth G-manifold.
Then (πM)∗(X∞(M)G) ⊂ X∞(M/G).

Proof. The claim is the same as that of Corollary 1.3 in [8] for compact G .
The proof of Corollary 1.3 in [8] also works for proper actions.
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Lemma 5.2. Let G be a Lie group and let K be a compact subgroup of G. Let
M be a smooth K -manifold and N = G×KM . Then the map (πN)∗ : X∞(N)G →
Der(C∞(N/G)) has image X∞(N/G).

Proof. By Theorem 0.2 in [8], the map

(πM)∗ : X∞(M)K → Der(C∞(M/K))

has image X∞(M/K). We identify N/G with M/K and C∞
G (N) with C∞

K (M) in
the standard way. Let D ∈ X∞(M)K and let D̃ ∈ X∞(N)G be the vector field in-
duced by D . Then (πM)∗(D) = (πN)∗(D̃). Since (πM)∗ has image X∞(M/K), it
follows that X∞(N/G) ⊂ (πN)∗(X∞(N)G). Since (πN)∗(X∞(N)G) ⊂ X∞(N/G),
by Lemma 5.1, the lemma follows.

Theorem 5.3. Let G be a Lie group and let M be a proper smooth G-manifold.
Then the map (πM)∗ : X∞(M)G → Der(C∞(M/G)) has image X∞(M/G).

Proof. The manifold M has a locally finite cover by smooth tubes Xi =
G×Ki

Si , i ∈ N . By Lemma 5.2, each map

(πXi
)∗ : X∞(Xi)

G → Der(C∞(Xi/G))

has image X∞(Xi/G). By Theorem 4.2.4.(4) in [7], there exists a G-invariant
smooth partition of unity {fi : M → R}i∈N subordinate to {Xi}i∈N . (The theorem
is stated for manifolds without boundary, but it holds also for manifolds with
boundary.) For each i , let Di ∈ X∞(Xi)

G . Define fiDi ∈ X∞(M)G by

(fiDi)(h)(x) =

{
fi(x)(Dih|Xi

)(x), if x ∈ Xi

0, otherwise.

Let f̄i : M/G → R be the map induced by fi , for every i . Let D′ ∈ X∞(M/G).
Then there are Di ∈ X∞(Xi)

G which induce the restriction of D′ to Xi/G ⊂
M/G . For each i , fiDi induces f̄iD

′ . But then ΣifiDi induces Σif̄iD
′ = D′ .

Proof of Theorem 1.1. Let’s form the pullback F̄ ∗N of N by F̄ . Then (F̄ ∗N)/G =
M/G×I . The vector field (0, d

dt
) on M/G×I is strata preserving. Thus it follows

from Theorem 5.3, that there is a G-equivariant smooth vector field A on F̄ ∗N
such that π∗(A) = (0, d

dt
). Let (Gx, 0, y) ∈ F̄ ∗

0N . Since A(Gx, 0, y) points into,
the maximal integral curve δ(Gx,0,y) of A at (Gx, 0, y) is defined on [0, ε) (or
[0, 1]), for some ε > 0. If g ∈ G , then the maximal integral curve δ(Gx,0,gy) of
A at (Gx, 0, gy) is g ◦ δ(Gx,0,y) . Moreover, δ(Gx,0,y) must have the property that
δ(Gx,0,y)(t) = (Gx, t, ỹ(t)), for every t ∈ [0, ε), where F̄t(Gx) = πN(ỹ(t)). Assume
δ(Gx,0,y) is defined on [0, ε), where ε ≤ 1. Considering the integral curves of
A at points of form (Gx, ε, y) and using the uniqueness of the maximal integral
curves yields a contradiction with the maximality of δ(Gx,0,y) . Thus δ(Gx,0,y) must
be defined on [0, 1]. It follows that the integral curves at points of F̄ ∗

0 define a
G-equivariant smooth map φA : F̄ ∗

0N × I → F̄ ∗N , ((Gx, 0, y), t) 7→ δ(Gx,0,y)(t),
whose induced map is the identity map of M/G× I . By Proposition 3.5, there is
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a canonical smooth G-diffeomorphism ϕ : M → F̄ ∗
0N . Let F̄ ∗ : F̄ ∗N → N be the

projection. Then the diagram

M × I
ϕ×id→ F̄ ∗

0N × I
φA→ F̄ ∗N

F̄ ∗→ N
πM × id ↓ πF̄ ∗0N × id ↓ π ↓ ↓ πN
M/G× I

id→ M/G× I
id→ M/G× I

F̄→ N/G

commutes and F = F̄ ∗ ◦ φA ◦ (ϕ× id) is a smooth lift of F̄ . Each Ft is normally
transverse, by Proposition 3.2.

The second part of the proof is similar to that of Theorem 2.3 of [8]. The
reference to Proposition 2.1.3 in [8] should be replaced by a reference to Proposition
3.2.

Proof of Corollary 1.2. By Proposition 3.7, each F̄t is normally transverse. Thus
it follows from Theorem 1.1, that there exists a G-equivariant smooth normally
transverse homotopy F : M × I →M starting at the identity and inducing F̄ . By
Proposition 3.6, each Ft is a smooth G-diffeomorphism.
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