References

1 Angulo, M.E. and Mena Marugán, G.A., “Large quantum gravity effects: Cylindrical waves in four dimensions”, Int. J. Mod. Phys. D, 9, 669–686, (2000). [External LinkarXiv:gr-qc/0002056].
2 Ashtekar, A., “Large quantum gravity effects: Unforseen limitations of the classical theory”, Phys. Rev. Lett., 77, 4864–4867, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9610008].
3 Ashtekar, A., “Some surprising consequences of background independence in canonical quantum gravity”, International LQG Seminar, February 27, 2007, conference paper, (2007). Online version (accessed 22 January 2010):
External Linkhttp://relativity.phys.lsu.edu/ilqgs/ashtekar022707.pdf.
4 Ashtekar, A., Baez, J., Corichi, A. and Krasnov, K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80, 904–907, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9710007].
5 Ashtekar, A., Bičák, J. and Schmidt, B.G., “Asymptotic structure of symmetry reduced general relativity”, Phys. Rev. D, 55, 669–686, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9608042].
6 Ashtekar, A., Bičák, J. and Schmidt, B.G., “Behavior of Einstein-Rosen waves at null infinity”, Phys. Rev. D, 55, 687–694, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9608041].
7 Ashtekar, A. and Bojowald, M., “Quantum geometry and the Schwarzschild singularity”, Class. Quantum Grav., 23, 391–411, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509075].
8 Ashtekar, A. and Horowitz, G.T., “On the canonical approach to quantum gravity”, Phys. Rev. D, 26, 3342–3353, (1982). [External LinkDOI].
9 Ashtekar, A. and Husain, V., “Symmetry reduced Einstein gravity and generalized sigma and chiral models”, Int. J. Mod. Phys. D, 7, 549–566, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9712053].
10 Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”, Living Rev. Relativity, 7, lrr-2004-10, (2004). URL (accessed 22 January 2010):
http://www.livingreviews.org/lrr-2004-10.
11 Ashtekar, A. and Lewandowski, J., “Representation theory of analytic holonomy C algebras”, in Baez, J.C., ed., Knots and Quantum Gravity, Proceedings of a workshop held at UC Riverside on May 14 – 16, 1993, Oxford Lecture Series in Mathematics and its Applications,  1, pp. 21–61, (Clarendon Press; Oxford University Press, Oxford; New York, 1994). [External LinkarXiv:gr-qc/9311010].
12 Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53–R152, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0404018].
13 Ashtekar, A. and Pierri, M., “Probing quantum gravity through exactly soluble midi-superspaces. I”, J. Math. Phys., 37, 6250–6270, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9606085].
14 Ashtekar, A. and Samuel, J., “Bianchi cosmologies: The role of spatial topology”, Class. Quantum Grav., 8, 2191–2215, (1991). [External LinkDOI].
15 Ashtekar, A. and Varadarajan, M., “A striking property of the gravitational Hamiltonian”, Phys. Rev. D, 50, 4944–4956, (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9406040].
16 Banerjee, K. and Date, G., “Loop quantization of polarized Gowdy model on T3: Classical theory”, Class. Quantum Grav., 25, 105014, (2008). [External LinkDOI], [External LinkarXiv:0712.0683 [gr-qc]].
17 Banerjee, K. and Date, G., “Loop quantization of polarized Gowdy model on T3: Kinematical states and constraint operators”, Class. Quantum Grav., 25, 145004, (2008). [External LinkDOI], [External LinkarXiv:0712.0687 [gr-qc]].
18 Barbero G, J.F., Garay, I. and Villaseñor, E.J.S., “Exact quantization of Einstein-Rosen waves coupled to massless scalar matter”, Phys. Rev. Lett., 95, 051301, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506093].
19 Barbero G, J.F., Garay, I. and Villaseñor, E.J.S., “Probing quantized Einstein-Rosen waves with massless scalar matter”, Phys. Rev. D, 74, 044004, (2006). [External LinkarXiv:gr-qc/0607053].
20 Barbero G, J.F., Garay, I. and Villaseñor, E.J.S., “Quantum Einstein-Rosen waves: Coherent states and n-point functions”, Class. Quantum Grav., 25, 205013, (2008). [External LinkDOI], [External LinkarXiv:0808.2561 [gr-qc]].
21 Barbero G, J.F., Gómez Vergel, D. and Villaseñor, E.J.S., “Evolution operators for linearly polarized two-Killing cosmological models”, Phys. Rev. D, 74, 024003, (2006). [External LinkarXiv:gr-qc/0606068].
22 Barbero G, J.F., Gómez Vergel, D. and Villaseñor, E.J.S., “Hamiltonian dynamics of linearly polarized Gowdy models coupled to massless scalar fields”, Class. Quantum Grav., 24, 5945–5972, (2007). [External LinkDOI], [External LinkarXiv:0707.3333 [gr-qc]].
23 Barbero G, J.F., Gómez Vergel, D. and Villaseñor, E.J.S., “Quantum unitary evolution of linearly polarized S1 × S2 and S3 Gowdy models coupled to massless scalar fields”, Class. Quantum Grav., 25, 085002, (2008). [External LinkarXiv:0711.1790 [gr-qc]].
24 Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Microcausality and quantum cylindrical gravitational waves”, Phys. Rev. D, 67, 124006, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0304047].
25 Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Asymptotic analysis of field commutators for Einstein-Rosen gravitational waves”, J. Math. Phys., 45, 3498–3532, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0405075].
26 Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Particles and vacuum for perturbative and non-perturbative Einstein-Rosen gravity”, Phys. Rev. D, 70, 044028, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0406087].
27 Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Quantum cylindrical waves and sigma models”, Int. J. Mod. Phys. D, 13, 1119–1128, (2004). [External LinkarXiv:gr-qc/0402096].
28 Barbero G, J.F., Mena Marugán, G.A. and Villaseñor, E.J.S., “Asymptotics of regulated field commutators for Einstein-Rosen waves”, J. Math. Phys., 46, 062306, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0412028].
29 Beck, G., “Zur Theorie binärer Gravitationsfelder”, Z. Phys., 33, 713, (1925).
30 Beetle, C., “Midi-superspace quantization of non-compact toroidally symmetric gravity”, Adv. Theor. Math. Phys., 2, 471–495, (1998). [External LinkarXiv:gr-qc/9801107].
31 Bekenstein, J., “The quantum mass spectrum of the Kerr black hole”, Lett. Nuovo Cimento, 11, 467, (1974). [External LinkDOI].
32 Bengtsson, I., “A new phase for general relativity?”, Class. Quantum Grav., 7, 27–39, (1990).
33 Berezin, V.A., Boyarsky, A. and Neronov, A.Y.., “Quantum geometrodynamics for black holes and wormholes”, Phys. Rev. D, 57, 1118–1128, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9708060].
34 Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83, 458–490, (1974). [External LinkDOI].
35 Berger, B.K., “Quantum cosmology: Exact solution for the Gowdy T3 model”, Phys. Rev. D, 11, 2770–2780, (1975). [External LinkDOI].
36 Berger, B.K., “Quantum effects in the Gowdy T3 cosmology”, Ann. Phys. (N.Y.), 156, 155–193, (1984).
37 Berger, B.K., Chitre, D.M., Moncrief, V.E. and Nutku, Y., “Hamiltonian formulation of spherically symmetric gravitational fields”, Phys. Rev. D, 5, 2467–2470, (1972). [External LinkDOI].
38 Berger, B.K., Chruściel, P.T. and Moncrief, V., “On ‘Asymptotically Flat’ Space-Times with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N.Y.), 237, 322–354, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9404005].
39 Böhmer, C.G. and Vandersloot, K., “Loop quantum dynamics of the Schwarzschild interior”, Phys. Rev. D, 76, 104030, (2007). [External LinkDOI], [External LinkarXiv:0709.2129 [gr-qc]].
40 Bojowald, M., “Spherically symmetric quantum geometry: states and basic operators”, Class. Quantum Grav., 21, 3733–3753, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0407017].
41 Bojowald, M., “Nonsingular Black Holes and Degrees of Freedom in Quantum Gravity”, Phys. Rev. Lett., 95, 061301, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506128].
42 Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 11, lrr-2008-4, (2008). URL (accessed 22 January 2010):
http://www.livingreviews.org/lrr-2008-4.
43 Bojowald, M., Harada, T. and Tibrewala, R., “Lemaître-Tolman-Bondi collapse from the perspective of loop quantum gravity”, Phys. Rev. D, 78, 064057, (2008). [External LinkDOI], [External LinkarXiv:0806.2593 [gr-qc]].
44 Bojowald, M. and Kastrup, H.A., “Quantum symmetry reduction for diffeomorphism-invariant theories of connections”, Class. Quantum Grav., 17, 3009–3043, (2000). [External LinkDOI], [External LinkarXiv:hep-th/9907042].
45 Bojowald, M. and Swiderski, R., “The volume operator in spherically symmetric quantum geometry”, Class. Quantum Grav., 21, 4881–4900, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0407018].
46 Bojowald, M. and Swiderski, R., “Spherically symmetric quantum geometry: Hamiltonian constraint”, Class. Quantum Grav., 23, 2129–2154, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511108].
47 Bonacina, G., Gamba, A. and Martellini, M., “Interacting Euclidean three-dimensional quantum gravity”, Phys. Rev. D, 45, 3577–3583, (1992). [External LinkDOI], [External LinkarXiv:hep-th/9203055].
48 Borissov, R., “Weave states for plane gravitational waves”, Phys. Rev. D, 49, 923–929, (1994). [External LinkDOI].
49 Bose, S., Louko, J., Parker, L. and Peleg, Y., “Hamiltonian thermodynamics of 2D vacuum dilatonic black holes”, Phys. Rev. D, 53, 5708–5716, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9510048].
50 Braden, H.W., Whiting, B.F. and York Jr, J.W., “Density of states for the gravitational field in black hole topologies”, Phys. Rev. D, 36, 3614–3635, (1987). [External LinkDOI].
51 Brizuela, D., Mena Marugán, G.A. and Pawlowski, T., “Big Bounce and inhomogeneities”, Class. Quantum Grav., 27, 052001, (2010). [External LinkDOI], [External LinkarXiv:0902.0697 [gr-qc]].
52 Brown, J.D. and Kuchař, K.V., “Dust as a standard of space and time in canonical quantum gravity”, Phys. Rev. D, 51, 5600–5629, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9409001].
53 Callan Jr, C.G., Giddings, S.B., Harvey, J.A. and Strominger, A., “Evanescent black holes”, Phys. Rev. D, 45, R1005–R1009, (1992). [External LinkDOI], [External LinkarXiv:hep-th/9111056].
54 Campiglia, M., Gambini, R. and Pullin, J., “Loop quantization of spherically symmetric midi-superspaces”, Class. Quantum Grav., 24, 3649–3672, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703135].
55 Campiglia, M., Gambini, R. and Pullin, J., “Loop quantization of spherically symmetric midi-superspaces: The interior problem”, in Macias, A., Lämmerzahl, C. and Camacho, A., eds., Recent Developments in Gravitation and Cosmology, 3rd Mexican Meeting on Mathematical and Experimental Physics, Mexico City, Mexico, 10 – 14 September 2007, AIP Conf. Proc., 977, pp. 52–63, (American Institute of Physics, Melville, NY, 2008). [External LinkDOI], [External LinkarXiv:0712.0817 [gr-qc]].
56 Carmeli, M., Charach, C. and Feinstein, A., “Inhomogeneous mixmaster universes: Some exact solutions”, Ann. Phys. (N.Y.), 150, 392, (1983).
57 Carmeli, M., Charach, C. and Malin, S., “Survey of cosmological models with gravitational, scalar and electromagnetic waves”, Phys. Rep., 76, 79, (1981). [External LinkDOI].
58 Cavaglià, M., de Alfaro, V. and Filippov, A.T., “Hamiltonian formalism for black holes and quantization”, Int. J. Mod. Phys. D, 4, 661–672, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9411070].
59 Cavaglià, M., de Alfaro, V. and Filippov, A.T., “Quantization of the Schwarzschild black hole”, Int. J. Mod. Phys. D, 5, 227–250, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9508062].
60 Chandrasekhar, S., “Cylindrical waves in general relativity”, Proc. R. Soc. London, Ser. A, 408, 209–232, (1986). [External LinkDOI].
61 Charach, C., “Electromagnetic Gowdy universe”, Phys. Rev. D, 19, 3516–3523, (1979). [External LinkDOI].
62 Charach, C. and Malin, S., “A cosmological model with gravitational and scalar waves”, Phys. Rev. D, 19, 1058, (1979). [External LinkDOI].
63 Charach, C. and Malin, S., “Cosmological model with gravitational, electromagnetic, and scalar waves”, Phys. Rev. D, 21, 3284–3294, (1980). [External LinkDOI].
64 Chiou, D., “Phenomenological loop quantum geometry of the Schwarzschild black hole”, Phys. Rev. D, 78, 064040, (2008). [External LinkDOI], [External LinkarXiv:0807.0665 [gr-qc]].
65 Cho, D.H.J. and Varadarajan, M., “Functional evolution of quantum cylindrical waves”, Class. Quantum Grav., 23, 6115–6140, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0605065].
66 Chruściel, P.T., “On Space-Times with U(1) × U(1) Symmetric Compact Cauchy Surfaces”, Ann. Phys. (N.Y.), 202, 100–150, (1990). [External LinkDOI].
67 Clarke, C.J.S., “Spherical symmetry does not imply a direct product”, Class. Quantum Grav., 4, L37–L40, (1987).
68 Corichi, A., Cortez, J. and Mena Marugán, G.A., “Quantum Gowdy T3 model: A unitary description”, Phys. Rev. D, 73, 084020, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603006].
69 Corichi, A., Cortez, J. and Mena Marugán, G.A., “Unitary evolution in Gowdy cosmology”, Phys. Rev. D, 73, 041502, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0510109].
70 Corichi, A., Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Quantum Gowdy T3 model: A uniqueness result”, Class. Quantum Grav., 23, 6301–6320, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0607136].
71 Corichi, A., Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Quantum Gowdy T3 model: Schrödinger representation with unitary dynamics”, Phys. Rev. D, 76, 124031, (2007). [External LinkDOI], [External LinkarXiv:0710.0277 [gr-qc]].
72 Corichi, A., Cortez, J. and Quevedo, H., “On unitary time evolution in Gowdy T3 cosmologies”, Int. J. Mod. Phys. D, 11, 1451–1468, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0204053].
73 Corichi, A., Cortez, J. and Quevedo, H., “Schrödinger representation for a scalar field on curved spacetime”, Phys. Rev. D, 66, 085025, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207088].
74 Cortez, J. and Mena Marugán, G.A., “Feasibility of a unitary quantum dynamics in the Gowdy T3 cosmological model”, Phys. Rev. D, 72, 064020, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0507139].
75 Cortez, J., Mena Marugán, G.A., Serodio, R. and Velhinho, J.M., “Uniqueness of the Fock quantization of a free scalar field on S1 with time dependent mass”, Phys. Rev. D, 79, 084040, (2009). [External LinkDOI], [External LinkarXiv:0903.5508 [gr-qc]].
76 Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Uniqueness of the Fock quantization of the Gowdy T3 model”, Phys. Rev. D, 75, 084027, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0702117].
77 Cortez, J., Mena Marugán, G.A. and Velhinho, J.M., “Uniqueness of the Fock representation of the Gowdy S1 × S2 and S3 models”, Class. Quantum Grav., 25, 105005, (2008). [External LinkDOI], [External LinkarXiv:0802.3338 [gr-qc]].
78 Cruz, J., Miković, A.R. and Navarro-Salas, J., “Free field realization of cylindrically symmetric Einstein gravity”, Phys. Lett. B, 437, 273–278, (1998). [External LinkarXiv:gr-qc/9802067].
79 DeWitt, B.S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160, 1113–1148, (1967).
80 DeWitt, B.S., “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162, 1195–1239, (1967).
81 DeWitt, B.S., “Quantum theory of gravity. III. Applications of the covariant theory”, Phys. Rev., 162, 1239–1256, (1967).
82 Di Bartolo, C., Gambini, R., Porto, R. and Pullin, J., “Dirac-like approach for consistent discretizations of classical constrained theories”, J. Math. Phys., 46, 012901, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0405131].
83 Di Bartolo, C., Gambini, R. and Pullin, J., “Consistent and mimetic discretizations in general relativity”, J. Math. Phys., 46, 032501, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0404052].
84 Einstein, A. and Rosen, N., “On Gravitational Waves”, J. Franklin Inst., 223, 43–54, (1937). [External LinkDOI].
85 Engle, J., “Quantum field theory and its symmetry reduction”, Class. Quantum Grav., 23, 2861–2894, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511107].
86 Fels, M.E. and Torre, C.G., “The principle of symmetric criticality in general relativity”, Class. Quantum Grav., 19, 641–676, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0108033].
87 Fischer, A.E., “Resolving the singularities in the space of Riemannian geometries”, J. Math. Phys., 27, 718–738, (1986). [External LinkDOI].
88 Fleischhack, C., “Representations of the Weyl algebra in quantum geometry”, Commun. Math. Phys., 285, 67–140, (2009). [External LinkDOI], [External LinkarXiv:math-ph/0407006].
89 Franzen, A., Gutti, S. and Kiefer, C., “Quantum gravitational collapse in the Lemaitre–Tolman–Bondi model with a positive cosmological constant”, Class. Quantum Grav., 27, 015011, (2009). [External LinkDOI], [External LinkarXiv:0908.3570 [gr-qc]].
90 Friedman, J.L., Louko, J. and Winters-Hilt, S.N., “Reduced phase space formalism for spherically symmetric geometry with a massive dust shell”, Phys. Rev. D, 56, 7674–7691, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9706051].
91 Gambini, R., Ponce, M. and Pullin, J., “Consistent discretizations: the Gowdy spacetimes”, Phys. Rev. D, 72, 024031, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0505043].
92 Gambini, R. and Pullin, J., “Black holes in loop quantum gravity: the complete space-time”, Phys. Rev. Lett., 101, 161301, (2008). [External LinkDOI], [External LinkarXiv:0805.1187 [gr-qc]].
93 Gambini, R. and Pullin, J., “Diffeomorphism invariance in spherically symmetric loop quantum gravity”, Adv. Sci. Lett., 2, 255–260, (2009). [External LinkarXiv:0807.4748 [gr-qc]].
94 Gambini, R., Pullin, J. and Rastgoo, S., “Quantum scalar field in quantum gravity: the vacuum in the spherically symmetric case”, Class. Quantum Grav., 26, 215011, (2009). [External LinkDOI], [External LinkarXiv:0906.1774 [gr-qc]].
95 Gegenberg, J. and Kunstatter, G., “2-D midisuperspace models for quantum black holes”, in Grumiller, D., Rebhan, A. and Vassilevich, D., eds., Fundamental Interactions: A Memorial Volume for Wolfgang Kummer, pp. 231–248, (World Scientific, Singapore, 2009). [External LinkarXiv:0902.0292 [gr-qc]].
96 Geroch, R.P., “A method for generating solutions of Einstein’s equations”, J. Math. Phys., 12, 918–924, (1971). [External LinkDOI].
97 Geroch, R.P., “A method for generating new solutions of Einstein’s equation. 2”, J. Math. Phys., 13, 394–404, (1972). [External LinkDOI].
98 Giulini, D., “The superspace of geometrodynamics”, Gen. Relativ. Gravit., 41, 785–815, (2009). [External LinkDOI], [External LinkarXiv:0902.3923 [gr-qc]].
99 Gómez Vergel, D., “Schrödinger quantization of linearly polarized Gowdy S1 × S2 and S3 models coupled to massless scalar fields”, Class. Quantum Grav., 25, 175016, (2008). [External LinkDOI], [External LinkarXiv:0802.3180 [gr-qc]].
100 Gómez Vergel, D. and Villaseñor, E.J.S., “The time-dependent quantum harmonic oscillator revisited: Applications to quantum field theory”, Ann. Phys. (N.Y.), 324, 1360–1385, (2009). [External LinkDOI], [External LinkarXiv:0903.0289 [math-ph]].
101 Gotay, M.J., Nester, J.M. and Hinds, G., “Presymplectic manifolds and the Dirac–Bergmann theory of constraints”, J. Math. Phys., 19, 2388, (1978). [External LinkDOI].
102 Gowdy, R.H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826–829, (1971). [External LinkDOI].
103 Gowdy, R.H., “Vacuum Spacetimes with Two-Parameter Spacelike Isometry Groups and Compact Invariant Hypersurfaces: Topologies and Boundary Conditions”, Ann. Phys. (N.Y.), 83, 203–241, (1974). [External LinkDOI].
104 Hájíček, P., “Spherically symmetric systems of fields and black holes. II. Apparent horizon in canonical formalism”, Phys. Rev. D, 30, 1178–1184, (1984). [External LinkDOI].
105 Hájíček, P., “Spherically symmetric systems of fields and black holes. III. Positivity of energy and of a new type Euclidean action”, Phys. Rev. D, 30, 1185–1193, (1984). [External LinkDOI].
106 Hájíček, P., “Spherically symmetric systems of fields and black holes. IV. No room for black-hole evaporation in the reduced configuration space?”, Phys. Rev. D, 31, 785–795, (1985). [External LinkDOI].
107 Hájíček, P., “Spherically symmetric gravitating shell as a reparametrization invariant system”, Phys. Rev. D, 57, 936–953, (1998). [External LinkDOI].
108 Hájíček, P., “Quantum Theory of Gravitational Collapse (Lecture Notes on Quantum Conchology)”, in Giulini, D., Kiefer, C. and Lämmerzahl, C., eds., Quantum Gravity: From Theory to Experimental Search, 271th WE-Heraeus Seminar ‘Aspects of Quantum Gravity’, Bad Honnef, Germany, 24 February – 1 March 2002, Lecture Notes in Physics, 631, pp. 255–299, (Springer, Berlin; New York, 2003). [External LinkDOI], [External LinkarXiv:gr-qc/0204049].
109 Hájíček, P. and Kiefer, C., “Embedding variables in the canonical theory of gravitating shells”, Nucl. Phys. B, 603, 531–554, (2001). [External LinkDOI], [External LinkarXiv:hep-th/0007004].
110 Hájíček, P. and Kouletsis, I., “Pair of null gravitating shells: I. Space of solutions and its symmetries”, Class. Quantum Grav., 19, 2529–2549, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0112060].
111 Hájíček, P. and Kouletsis, I., “Pair of null gravitating shells: II. Canonical theory and embedding variables”, Class. Quantum Grav., 19, 2551–2566, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0112061].
112 Helfer, A.D., “The stress-energy operator”, Class. Quantum Grav., 13, L129–L134, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9602060].
113 Henneaux, M. and Teitelboim, C., Quantization of Gauge Systems, (Princeton University Press, Princeton, NJ, 1992). [External LinkGoogle Books].
114 Holst, S., “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action”, Phys. Rev. D, 53, 5966–5969, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9511026].
115 Husain, V., “Quantum effects on the singularity of the Gowdy cosmology”, Class. Quantum Grav., 4, 1587–1591, (1987). [External LinkDOI].
116 Husain, V., “The Weyl tensor and gravitational entropy”, Phys. Rev. D, 38, 3314–3317, (1988). [External LinkDOI].
117 Husain, V., “Observables for space-times with two Killing field symmetries”, Phys. Rev. D, 50, 6207–6216, (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9402019].
118 Husain, V., “Einstein’s equations and the chiral model”, Phys. Rev. D, 53, 4327–4334, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9602050].
119 Husain, V. and Pullin, J., “Quantum theory of space-times with one Killing field”, Mod. Phys. Lett. A, 5, 733, (1990). [External LinkDOI].
120 Husain, V. and Smolin, L., “Exactly solvable quantum cosmologies from two Killing field reductions of general relativity”, Nucl. Phys. B, 327, 205, (1989). [External LinkDOI].
121 Husain, V. and Terno, D.R., “Dynamics and entanglement in spherically symmetric quantum gravity”, Phys. Rev. D, 81, 044039, (2010). [External LinkDOI], [External LinkarXiv:0903.1471 [gr-qc]].
122 Husain, V. and Winkler, O., “On singularity resolution in quantum gravity”, Phys. Rev. D, 69, 084016, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0312094].
123 Husain, V. and Winkler, O., “Flat slice Hamiltonian formalism for dynamical black holes”, Phys. Rev. D, 71, 104001, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0503031].
124 Husain, V. and Winkler, O., “Quantum black holes from null expansion operators”, Class. Quantum Grav., 22, L135–L142, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0412039].
125 Husain, V. and Winkler, O., “Quantum resolution of black hole singularities”, Class. Quantum Grav., 22, L127–L133, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0410125].
126 Isenberg, J. and Nester, J., “Canonical Gravity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein,  1, pp. 23–97, (Plenum Press, New York, 1980).
127 Jacobson, T. and Smolin, L., “Covariant action for Ashtekar’s form of canonical gravity”, Class. Quantum Grav., 5, 583–594, (1988). [External LinkDOI].
128 Jantzen, R.T., “The dynamical degrees of freedom in spatially homogeneous cosmology”, Commun. Math. Phys., 64, 211–232, (1979). [External LinkDOI].
129 Kastrup, H.A., “The quantum levels of isolated spherically symmetric gravitational systems”, Phys. Lett. B, 385, 75–80, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9605038].
130 Kastrup, H.A. and Thiemann, T., “Spherically symmetric gravity as a completely integrable system”, Nucl. Phys. B, 425, 665–686, (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9401032].
131 Kennefick, D., “Einstein versus the Physical Review”, Phys. Today, 48, 43–48, (2005). [External LinkDOI].
132 Kiefer, C., Quantum Gravity, International Series of Monographs on Physics, 136, (Oxford University Press, Oxford; New York, 2007), 2nd edition. [External LinkGoogle Books].
133 Kiefer, C. and Louko, J., “Hamiltonian evolution and quantization for extremal black holes”, Ann. Phys. (Berlin), 8, 67–81, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9809005].
134 Kiefer, C., Müller-Hill, J., Singh, T.P. and Vaz, C., “Hawking radiation from the quantum Lemaître-Tolman-Bondi model”, Phys. Rev. D, 75, 124010, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703008].
135 Kiefer, C., Müller-Hill, J. and Vaz, C., “Classical and quantum LTB model for the non-marginal case”, Phys. Rev. D, 73, 044025, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0512047].
136 Korotkin, D. and Nicolai, H., “An integrable model of quantum gravity”, Phys. Lett. B, 356, 211–216, (1995). [External LinkDOI], [External LinkarXiv:hep-th/9504088].
137 Korotkin, D. and Nicolai, H., “Separation of variables and Hamiltonian formulation for the Ernst equation”, Phys. Rev. Lett., 74, 1272–1275, (1995). [External LinkDOI], [External LinkarXiv:hep-th/9412072].
138 Korotkin, D. and Nicolai, H., “Isomonodromic quantization of dimensionally reduced gravity”, Nucl. Phys. B, 475, 397–439, (1996). [External LinkDOI], [External LinkarXiv:hep-th/9605144].
139 Korotkin, D. and Samtleben, H., “Canonical quantization of cylindrical gravitational waves with two polarizations”, Phys. Rev. Lett., 80, 14–17, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9705013].
140 Kouletsis, I., Hájíček, P. and Bičák, J., “Gauge-invariant Hamiltonian dynamics of cylindrical gravitational waves”, Phys. Rev. D, 68, 104013, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0308032].
141 Kuchař, K.V., “Canonical quantization of cylindrical gravitational waves”, Phys. Rev. D, 4, 955–986, (1971). [External LinkDOI].
142 Kuchař, K.V., “Canonical Quantization of Gravity”, in Israel, W., ed., Relativity, Astrophysics and Cosmology, Proceedings of the summer school held 14 – 26 August 1972 at the Banff Centre, Banff, Alberta, Astrophysics and Space Science Library,  38, pp. 237–288, (Reidel, Dordrecht; Boston, 1973). [External LinkGoogle Books].
143 Kuchař, K.V., “Geometrodynamics of Schwarzschild black holes”, Phys. Rev. D, 50, 3961–3981, (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9403003].
144 Kuchař, K.V. and Ryan Jr, M.P., “Is minisuperspace quantization valid?: Taub in mixmaster”, Phys. Rev. D, 40, 3982–3996, (1989). [External LinkDOI].
145 Lapedes, A.S., “Applications of Arnowitt-Deser-Misner quantization of some metrics with at least two parameter isometry groups”, Phys. Rev. D, 15, 946–956, (1977). [External LinkDOI].
146 Lewandowski, J., Okołów, A., Sahlmann, H. and Thiemann, T., “Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras”, Commun. Math. Phys., 267, 703–733, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0504147].
147 Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, lrr-1998-13, (1998). URL (accessed 22 January 2010):
http://www.livingreviews.org/lrr-1998-13.
148 Louko, J. and Mäkelä, J., “Area spectrum of the Schwarzschild black hole”, Phys. Rev. D, 54, 4982–4996, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9605058].
149 Louko, J., Simon, J.Z. and Winters-Hilt, S.N., “Hamiltonian thermodynamics of a Lovelock black hole”, Phys. Rev. D, 55, 3525–3535, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9610071].
150 Louko, J. and Whiting, B.F., “Hamiltonian thermodynamics of the Schwarzschild black hole”, Phys. Rev. D, 51, 5583–5599, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9411017].
151 Louko, J., Whiting, B.F. and Friedman, J.L., “Hamiltonian spacetime dynamics with a spherical null-dust shell”, Phys. Rev. D, 57, 2279–2298, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9708012].
152 Louko, J. and Winters-Hilt, S.N., “Hamiltonian thermodynamics of the Reissner–Nordström–anti-de Sitter black hole”, Phys. Rev. D, 54, 2647–2663, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9602003].
153 Lund, F., “Hamiltonian treatment of the complete vacuum Schwarzschild geometry”, Phys. Rev. D, 8, 3247, (1973). [External LinkDOI].
154 Maison, D., “Are the stationary, axially symmetric Einstein equations completely integrable?”, Phys. Rev. Lett., 41, 521, (1978). [External LinkDOI].
155 Mäkelä, J. and Repo, P., “A quantum mechanical model of the Reissner-Nordström black hole”, Phys. Rev. D, 57, 4899–4916, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9708029].
156 Manojlović, N. and Mena Marugán, G.A., “Asymptotic behaviour of cylindrical waves interacting with spinning strings”, Class. Quantum Grav., 18, 2065–2086, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0011080].
157 Martín-Benito, M., Garay, L.J. and Mena Marugán, G.A., “Hybrid quantum Gowdy cosmology: Combining loop and Fock quantizations”, Phys. Rev. D, 78, 083516, (2008). [External LinkDOI], [External LinkarXiv:0804.1098 [gr-qc]].
158 McGuigan, M., “The Gowdy cosmology and two-dimensional gravity”, Phys. Rev. D, 43, 1199–1211, (1991). [External LinkDOI].
159 Mena Marugán, G.A., “Canonical quantization of the Gowdy model”, Phys. Rev. D, 56, 908–919, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9704041].
160 Mena Marugán, G.A., “Gauge fixing and the Hamiltonian for cylindrical spacetimes”, Phys. Rev. D, 63, 024005, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0011068].
161 Mena Marugán, G.A. and Montejo, M., “Quantization of pure gravitational plane waves”, Phys. Rev. D, 58, 104017, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9806105].
162 Mena Marugán, G.A. and Montejo, M., “Plane waves in quantum gravity: Breakdown of the classical spacetime”, Phys. Rev. D, 61, 084019, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9906101].
163 Misner, C.W., “Feynman Quantization of General Relativity”, Rev. Mod. Phys., 29, 497–509, (1957). [External LinkDOI].
164 Misner, C.W., “Minisuperspace”, in Klauder, J.R., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 441–473, (W.H. Freeman, San Francisco, 1972).
165 Misner, C.W., “A minisuperspace example: The Gowdy T3 cosmology”, Phys. Rev. D, 8, 3271–3285, (1973). [External LinkDOI].
166 Mitter, P.K. and Viallet, C.M., “On the bundle of connections and the gauge orbit manifold in Yang-Mills theory”, Commun. Math. Phys., 79, 457–472, (1981). [External LinkDOI].
167 Modesto, L., “Disappearance of black hole singularity in quantum gravity”, Phys. Rev. D, 70, 124009, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0407097].
168 Modesto, L., “The Kantowski-Sachs space-time in loop quantum gravity”, Int. J. Theor. Phys., 45, 2235–2246, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0411032].
169 Modesto, L., “Loop quantum black hole”, Class. Quantum Grav., 23, 5587–5601, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509078].
170 Modesto, L., “Loop quantum gravity and black hole singularity”, XVII SIGRAV Conference, Torino, September 4 – 7, 2006, conference paper, (2007). [External LinkarXiv:hep-th/0701239].
171 Modesto, L., “Black hole interior from loop quantum gravity”, Adv. High Energy Phys., 2008, 459290, (2008). [External LinkDOI], [External LinkarXiv:gr-qc/0611043].
172 Modesto, L., “Gravitational collapse in loop quantum gravity”, Int. J. Theor. Phys., 47, 357–373, (2008). [External LinkDOI], [External LinkarXiv:gr-qc/0610074].
173 Modesto, L., “Space-time structure of loop quantum black hole”, arXiv e-print, (2008). [External LinkarXiv:0811.2196 [gr-qc]].
174 Modesto, L. and Prémont-Schwarz, I., “Self-dual black holes in loop quantum gravity: Theory and phenomenology”, Phys. Rev. D, 80, 064041, (2009). [External LinkDOI], [External LinkarXiv:0905.3170 [hep-th]].
175 Moncrief, V., “Reduction of Einstein’s equations for vacuum space-times with spacelike U(1) isometry groups”, Ann. Phys. (N.Y.), 167, 118–142, (1986). [External LinkDOI].
176 Mostert, P.S., “On a compact Lie group acting on a manifold”, Ann. Math., 65, 447–455, (1957).
177 Mostert, P.S., “On a compact Lie group acting on a manifold (Errata)”, Ann. Math., 66, 589, (1957).
178 Mukhanov, V.F., “Are black holes quantized?”, J. Exp. Theor. Phys. Lett., 44, 63–66, (1986).
179 Neville, D.E., “Energy and directional signatures for plane quantized gravity waves”, Phys. Rev. D, 57, 986–1008, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9704005].
180 Neville, D.E., “Volume operator for singly polarized gravity waves with planar or cylindrical symmetry”, Phys. Rev. D, 73, 124005, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511006].
181 Neville, D.E., “Volume operator for spin networks with planar or cylindrical symmetry”, Phys. Rev. D, 73, 124004, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511005].
182 Nicolai, H., Korotkin, D. and Samtleben, H., “Integrable classical and quantum gravity”, Lectures given at NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, Cargèse, France, 22 July – 3 August 1996, conference paper, (1996). [External LinkarXiv:hep-th/9612065].
183 Niedermaier, M., “Renormalization and asymptotic safety in truncated quantum Einstein gravity”, J. High Energy Phys.(12), 066, (2002). [External LinkDOI], [External LinkarXiv:hep-th/0207143].
184 Niedermaier, M. and Reuter, M., “The Asymptotic Safety Scenario in Quantum Gravity”, Living Rev. Relativity, 9, lrr-2006-5, (2006). URL (accessed 22 January 2010):
http://www.livingreviews.org/lrr-2006-5.
185 Osborn, H., “Renormalisation and composite operators in non-linear σ models”, Nucl. Phys. B, 294, 595–620, (1987). [External LinkDOI].
186 Palais, R.S., “The principle of symmetric criticality”, Commun. Math. Phys., 69, 13–30, (1979). [External LinkDOI].
187 Peltola, A. and Kunstatter, G., “Complete single-horizon quantum corrected black hole spacetime”, Phys. Rev. D, 79, 061501(R), (2008). [External LinkDOI], [External LinkarXiv:0811.3240 [gr-qc]].
188 Peltola, A. and Kunstatter, G., “Effective polymer dynamics of D-dimensional black hole interiors”, Phys. Rev. D, 80, 044031, (2009). [External LinkDOI], [External LinkarXiv:0902.1746 [gr-qc]].
189 Pierri, M., “Probing quantum general relativity through exactly soluble midi-superspaces. II: Polarized Gowdy models”, Int. J. Mod. Phys. D, 11, 135, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0101013].
190 Regge, T. and Teitelboim, C., “Role of surface integrals in the Hamiltonian formulation of general relativity”, Ann. Phys. (N.Y.), 88, 286–318, (1974). [External LinkDOI].
191 Romano, J.D., “Spherically Symmetric Scalar Field Collapse: An Example of the Spacetime Problem of Time”, arXiv e-print, (1995). [External LinkarXiv:gr-qc/9501015].
192 Romano, J.D. and Torre, C.G., “Internal time formalism for spacetimes with two Killing vectors”, Phys. Rev. D, 53, 5634–5650, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9509055].
193 Ryan Jr, M.P. and Shepley, L.C., Homogeneous Relativistic Cosmologies, Princeton Series in Physics, (Princeton University Press, Princeton, NJ, 1975).
194 Samuel, J., “A Lagrangian basis for Ashtekar’s formulation of canonical gravity”, Pramana, 28, L429–L432, (1987). [External LinkDOI].
195 Schmidt, B.G., “Vacuum spacetimes with toroidal null infinities”, Class. Quantum Grav., 13, 2811–2816, (1996). [External LinkDOI].
196 Shale, D., “Linear symmetries of free boson fields”, Trans. Amer. Math. Soc., 103, 149–169, (1962).
197 Siegl, R., “Some underlying manifolds of the Schwarzschild solution”, Class. Quantum Grav., 9, 239–240, (1992). [External LinkDOI].
198 Singer, I.M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys., 60, 7–12, (1978). [External LinkDOI].
199 Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C. and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003), 2nd edition. [External LinkGoogle Books].
200 Szenthe, J., “On the global geometry of spherically symmetric space-times”, Math. Proc. Camb. Phil. Soc., 137, 741–754, (2004). [External LinkDOI].
201 Thiemann, T. and Kastrup, H.A., “Canonical quantization of spherically symmetric gravity in Ashtekar’s self-dual representation”, Nucl. Phys. B, 399, 211–258, (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9310012].
202 Torre, C.G., “A complete set of observables for cylindrically symmetric gravitational fields”, Class. Quantum Grav., 8, 1895–1912, (1991). [External LinkDOI].
203 Torre, C.G., “Midisuperspace models of canonical quantum gravity”, Int. J. Theor. Phys., 38, 1081–1102, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9806122].
204 Torre, C.G., “Quantum dynamics of the polarized Gowdy T3 model”, Phys. Rev. D, 66, 084017, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0206083].
205 Torre, C.G., “Observables for the polarized Gowdy model”, Class. Quantum Grav., 23, 1543–1556, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0508008].
206 Torre, C.G., “Schrödinger representation for the polarized Gowdy model”, Class. Quantum Grav., 24, 1–13, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0607084].
207 Torre, C.G., “Symmetry Reduction of Quasi-Free States”, J. Math. Phys., 50, 062303, (2009). [External LinkDOI], [External LinkarXiv:0901.4293].
208 Torre, C.G. and Varadarajan, M., “Quantum fields at any time”, Phys. Rev. D, 58, 064007, (1998). [External LinkDOI], [External LinkarXiv:hep-th/9707221].
209 Torre, C.G. and Varadarajan, M., “Functional evolution of free quantum fields”, Class. Quantum Grav., 16, 2651–2668, (1999). [External LinkDOI], [External LinkarXiv:hep-th/9811222].
210 Unruh, W.G., “Notes on black-hole evaporation”, Phys. Rev. D, 14, 870–892, (1976). [External LinkDOI].
211 Varadarajan, M., “Classical and quantum geometrodynamics of 2-D vacuum dilatonic black holes”, Phys. Rev. D, 52, 7080–7088, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9508039].
212 Varadarajan, M., “Gauge fixing of one Killing field reductions of canonical gravity: The case of asymptotically flat induced two-geometry”, Phys. Rev. D, 52, 2020–2029, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9503006].
213 Varadarajan, M., “On the metric operator for quantum cylindrical waves”, Class. Quantum Grav., 17, 189–199, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9910043].
214 Varadarajan, M., “Kruskal coordinates as canonical variables for Schwarzschild black holes”, Phys. Rev. D, 63, 084007, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0011071].
215 Vaz, C., “Canonical quantization, conformal fields and the statistical entropy of the Schwarzschild black hole”, Phys. Rev. D, 61, 064017, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9903051].
216 Vaz, C., “Signatures of an emergent gravity from black hole entropy”, Gen. Relativ. Gravit., 41, 2307–2311, (2009). [External LinkDOI], [External LinkarXiv:0905.3053 [gr-qc]].
217 Vaz, C., Kiefer, C., Singh, T.P. and Witten, L., “Quantum general relativity and Hawking radiation”, Phys. Rev. D, 67, 024014, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0208083].
218 Vaz, C. and Wijewardhana, L.C.R., “Spectrum and entropy of AdS black holes”, Phys. Rev. D, 79, 084014, (2009). [External LinkDOI], [External LinkarXiv:0902.1192 [gr-qc]].
219 Vaz, C. and Witten, L., “Mass quantization of the Schwarzschild black hole”, Phys. Rev. D, 60, 024009, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9811062].
220 Vaz, C. and Witten, L., “Quantum black holes from quantum collapse”, Phys. Rev. D, 64, 084005, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0104017].
221 Vaz, C. and Witten, L., “Quantum states and the statistical entropy of the charged black hole”, Phys. Rev. D, 63, 024008, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0006039].
222 Vaz, C., Witten, L. and Singh, T.P., “Toward a midisuperspace quantization of Lemaître-Tolman-Bondi collapse models”, Phys. Rev. D, 63, 104020, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0012053].
223 Vaz, C., Witten, L. and Singh, T.P., “Toward a quantization of null dust collapse”, Phys. Rev. D, 65, 104016, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0112024].
224 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [External LinkGoogle Books].
225 Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, 1994). [External LinkGoogle Books].
226 Woodhouse, N.M.J., Geometric Quantization, Oxford Mathematical Monographs, (Clarendon Press; Oxford University Press, Oxford; New York, 1992), 2nd edition. [External LinkGoogle Books].
227 York Jr, J.W., “Black hole thermodynamics and the Euclidean Einstein action”, Phys. Rev. D, 33, 2092–2099, (1986). [External LinkDOI].