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Abstract

We prove Whitney regularity results for the solutions of the coboundary equation
over dynamically defined Cantor sets satisfying a natural geometric regularity condi-
tion, in particular hyperbolic basic sets in dimension two. To do this we prove an
analogue of Journé’s well-known result in the context of Cantor sets satisfying geomet-
ric regularity conditions.

1 Introduction

This paper is concerned with the regularity of the solution φ to the coboundary equation

(φ ◦ T − φ)(x) = g(x), x ∈ Λ (1.1)

where M is a manifold, Λ ⊂ M is a closed set, T : Λ → Λ is a hyperbolic transformation
that is the restriction of a smooth map, and g : M → R is smooth. We are especially
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interested in the situation when Λ might have no interior. Whenever Λ is not open,
smoothness is meant in the sense of Whitney.

Results in this direction were first obtained by Livšic, for real valued cocycles over
Anosov mappings. He showed [6] that if the cocycle g is C1, then the trivialization φ
(assumed apriori only measurable) is C1 too. For some linear actions on a torus he
also showed [7] that if the cocycle is C∞, respectively Cω, then so is the solution; this
was obtained by studying the decay of the Fourier coefficients.

The C∞ (smooth) case was investigated by de la Llave, Marco and Moriyón [10].
One of the technical results they proved was that if a function is smooth along two
transverse foliations which are absolutely continuous and whose Jacobians have some
regularity properties, then it is smooth globally. This was proved using properties of
elliptic operators. Relying on Taylor expansions, careful error estimates and Morrey-
Campanato theory, Journé ([4]; see Theorem 1.1 below) proved a similar result without
requiring the absolutely continuity of the foliations. Another approach is presented in
Hurder and Katok [3], based on an unpublished idea of C. Toll. Here the decay of
the Fourier coefficients is used to characterize smoothness. Using the approach in [3],
de la Llave proved analogous results in the analytic case [9]. More references are given
in [12].

Journé’s key result is the following:

Theorem 1.1 [Journé [4]] Let Fs and Fu be two continuous transverse foliations with
uniformly smooth leaves of some manifold. If f is uniformly smooth along the leaves
of Fs and Fu then f is smooth.

Various modifications have been proven since. We mention in particular work of
de la Llave [8, Theorem 5.7], where Whitney regularity was proved, and Vano [19,
Lemma 3.2.6]. Our main result is in some sense a technical improvement over de la
Llave’s Theorem 5.7: it applies to sets that are less regular (as opposed to de la Llave’s
condition (iv)), and that could have measure zero. We state our result in terms of
laminations whose leaves satisfy a certain geometric regularity, but we have in mind
applications to a class of hyperbolic basic sets.

Recall that if Λ ⊂ M is an invariant hyperbolic set for a C1 map T , then through
each point x ∈ Λ there exists a local stable manifold W s

ε (x) and a local unstable
manifold W u

ε (x). We call a hyperbolic invariant set basic if it is locally maximal, that
is, Λ = ∩∞

n=−∞T n(V ) for an open set V . A hyperbolic set Λ is basic if and only if
it has local product structure: if x, y ∈ Λ are close enough, then the unique point
z = W s

ε (x) ∩ W u
ε (y) belongs to Λ [5, Section 18.4].

Let n ≥ 1, α ∈ (0, 1). For an open set U ⊂ R
d, Cn,α(U) consists of functions

that are differentiable of order n, have all derivatives bounded, and the n-th partial
derivatives are α-Hölder (see [18, Chapter VI]).

Definition 1.2 A Cn,α-lamination of a set Λ ⊂ M is a disjoint collection of Cn,α

submanifolds of a given same dimension, which vary continuously in the Cn,α-topology,
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and whose union contains the set Λ.

Remark 1.3 Examples of Cn,α-laminations are the stable and unstable foliations of
a hyperbolic set for a Cn+1 diffeomorphism.

We describe here the notion of geometric regularity that we are using.

Definition 1.4 Fix constants 0 < γ < 1 and ν > 0.

(a) A set A contained in a C1-curve Γ is (γ, ν)-homogeneous if for each x ∈ A, there
is a sequence of points xk ∈ A converging to x such that distΓ(x, x1) ≥ ν, and

distΓ(x, xk+1)

distΓ(x, xk)
≥ γ for k ≥ 1 (1.2)

(here distΓ denotes the distance induced on the curve Γ).

(b) A set Λ ⊂ R
2 is (γ, ν)-homogeneous with respect to two transverse C1-laminations

W s and W u if for each p ∈ Λ, the sets W s(p) ∩ Λ and W u(p) ∩ Λ are (γ, ν)-
homogeneous in the corresponding leaves.

Our main result is an extension of Journé’s Theorem 1.1.

Theorem 1.5 Let Λ ⊂ R
2 be a closed set, and W s, W u two transverse uniformly

Cn,α-laminations of Λ.
Suppose that φ : Λ → R is uniformly Whitney-Cn,α when restricted to W s

ε (x) and
W u

ε (x) for each x ∈ Λ. If

• Λ is (γ, ν)-homogeneous with respect to W s and W u for some γ, ν > 0,

and

• Λ has a local product structure: for x, y ∈ Λ close enough, the (unique) point in
the intersection W s

ε (x) ∩ W u
ε (y) belongs to Λ,

then φ is Whitney-Cn,α on Λ.
The term “uniformly” above means that the given property holds with uniform con-

stants over the whole set Λ.

Remark 1.6 Examples of (γ, ν)-homogeneous sets include hyperbolic basic sets in
dimension two (see Proposition 2.2), Anosov systems, and the direct product of one
dimensional uniformly homogeneous sets in higher dimensions (see Section 5).

The paper is organized as follows. In Section 2 we describe two-dimensional exam-
ples to which our results apply. In Section 3 we describe applications of Theorem 1.5
to cohomological equations over dynamical systems. The proof of Theorem 1.5 is given
in Section 4.
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Figure 1: Construction of a Cantor set

2 Geometrically regular hyperbolic sets

We describe a class of dynamically defined two-dimensional Cantor sets to which The-
orem 1.5 pertains. First we describe the notion of ‘thickness’ of Cantor sets. This was
introduced by Newhouse [11]. A Cantor set K in R is formed by starting with a closed
interval and successively removing open intervals of decreasing length. Suppose each
open interval On that is removed from a closed interval In leaves behind two closed
intervals Ln and Rn (see Figure 1). Let

τn =
min {|Ln|, |Rn|}

|On|

and

σn =
|On|

max {|Ln|, |Rn|}

The quantity
τ(K) = inf

n
τn

is called the thickness of the Cantor set K. K is called a thick Cantor set if τ(K) > 0.
We define

σ(K) = inf
n

σn

and define a distortion-free thick Cantor set to be a thick Cantor set K with σ(K) > 0.
We say a two dimensional set Λ ⊂ R

2 with a lamination is a distortion-free thick
Cantor set if for each p ∈ Λ, W s(p)∩Λ and W u(p)∩Λ are distortion-free thick Cantor
sets with uniform σ, τ . For more information on thick Cantor sets see [15, Chapter 4,
Section 2] and [2].

Lemma 2.1 If Λ is a distortion-free thick Cantor set then Λ is (γ, ν)-homogeneous.

Proof: Assume x ∈ Λ. To simplify notation, we parametrize W s
ε (x) by arc-length,

coordinatize so that x = 0 and assume from now on that points in Λ∩W s
ε (x) are in R.

We show that there is a sequence of numbers xk 6= 0, xk ∈ Λ converging monotonically
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to zero and satisfying equation (4.1) for some γ. Furthermore γ may be taken as
uniform over x ∈ Λ.

First note that for all n:

(a) στ max{|Ln|, |Rn|} ≤ τ |On| ≤ min{|Ln|, |Rn|}

(b) στ
1+σ+στ |In| ≤ min{|Ln|, |Rn|}

Suppose x ∈ In, choose x1 to be the endpoint of In furthest from x. Without loss
of generality suppose that x ∈ Ln ∩ In (exactly the same argument holds if x ∈ Rn).
Choose x2 to be the endpoint of Ln furthest from x. Then |x2| ≥

1
2 |Ln| ≥

1
2

στ
1+σ+στ |x1|

as |x1| ≤ |In|. Taking γ = στ
2(1+σ+στ) we have |x2| ≥ γ|x1|. Repeat this procedure,

taking Ln to be In and noting that x2 is the endpoint of Ln furthest from x. The
argument for the unstable foliation is the same.

Proposition 2.2 Two-dimensional hyperbolic basic sets are (γ, ν)-homogeneous.

Proof: This follows from [15, Chapter 4, Section 1] and Lemma 2.1. Note that both
local stable and local unstable manifolds are dynamically defined Cantor sets for an
expanding map (an expanding map in backwards time for stable manifolds). By the
uniform bounded distortion estimates on such maps [15, Chapter 4, Section 1] σn, τn

are uniformly bounded away from zero.

3 Livšic regularity results

The regularity results for the Livsic equation (1.1) state that under certain conditions
a measurable solution is actually Hölder, or that a continuous solution is actually
(Whitney) smooth.

Suppose that Λ is a hyperbolic basic set and µ is an ergodic Gibbs measure corre-
sponding to a Hölder continuous potential.

We first show that if we have a measurable coboundary φ for a Hölder real-valued
cocycle g then φ has a Hölder version, that is, there exists a Hölder φ′ such that φ′ = φ,
µ a.e. This result is not new and the main idea is due to Livsic [7] (for related results
see [1, 13, 14, 16, 17]). We sketch its proof only for completeness.

Proposition 3.1 Let Λ ⊂ U ⊂ M be a hyperbolic set for the C1 embedding T :
U → M . Suppose that Λ is equipped with an ergodic Gibbs measure µ. Assume that
g : U → R is η-Hölder, η > 0, and there is a µ-measurable function φ : Λ → R such
that

(φ ◦ T − φ)(x) = g(x), x ∈ Λ. (3.1)

Then there exists an η-Hölder function φ′ : Λ → R such that φ′ = φ µ a.e.
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Proof: For x ∈ Λ define gN (x) := g(TN−1x) + · · · g(Tx) + g(x). If y ∈ W s
ε (x) then

|gN (x)−gN (y)| ≤
∑N−1

i=0 |g(T ix)−g(T iy)| ≤ C1(
∑N−1

i=0 ληi)d(x, y)η for some 0 < λ < 1.
Thus for all N ≥ 0 and y ∈ W s

ε (x)

|φ(x) − φ(y)| ≤ C2d(x, y)η + |φ(TNx) − φ(TNy)|

By Lusin’s theorem there exists a set Λ′ ⊂ Λ such that µ(Λ′) > 1
2 and φ restricted to

Λ′ is uniformly continuous. Since T is ergodic with respect to µ, for µ a.e. x ∈ Λ,

lim
N→∞

1

N
#{i | 0 ≤ i ≤ N − 1, T i(x) ∈ Λ′} = µ(Λ′) >

1

2
(3.2)

The ergodic Gibbs measure µ is a product measure, that is, for µ a.e. x ∈ Λ,
on a neighborhood of x, the measure µ is equivalent to µs

x × µu
x, where µs

x and µu
x

are the conditional measures of µ along the stable W s
ε (x) and unstable W u

ε (x) leaves
respectively. Since µ is locally a product measure, µ a.e. x ∈ Λ has the property that for
µs

x a.e. y ∈ W s
ε (x) equation (3.2) holds. Hence for µ a.e. x ∈ Λ, for µs

x a.e. y ∈ W s
ε (x)

we may choose a subsequence Ni so that |φ(TNix)− φ(TNiy)| → 0. Thus µ a.e. x ∈ Λ
has the property that for µs

x a.e. y ∈ W s
ε (x), |φ(x) − φ(y)| ≤ C2d(x, y)η . Similar

considerations show that µ a.e. x ∈ Λ has the property that for µu
x a.e. y ∈ W u

ε (x),
|φ(x) − φ(y)| ≤ C3d(x, y)η . The local product structure for µ implies that φ has an
η-Hölder version (see [5, Proposition 19.1.1]).

Next, we show that the regularity can be improved from C0 to Cn,α for hyperbolic
basic sets in dimension two:

Theorem 3.2 Let M be a two-dimensional manifold, and Λ ⊂ U ⊂ M a hyperbolic
basic set for the Cn,α embedding T : U → M . Assume that for g ∈ Cn,α(U), there is a
continuous function φ : Λ → R such that

(φ ◦ T − φ)(x) = g(x), x ∈ Λ. (3.3)

Then φ is Cn,α in the Whitney sense, that is, it admits a Cn,α extension to a
neighborhood of Λ.

The proof of this theorem follows the “classic” approach [7, 10, 4]: first show that φ
is regular along the stable and unstable foliations, and then prove that such a function
is regular globally. The first step is straightforward, and presented in Lemma 3.3. The
second part, in view of Proposition 2.2, is Theorem 1.5.

Lemma 3.3 Let M be a manifold, and Λ ⊂ U ⊂ M a hyperbolic basic set for the Cn,α

embedding T : U → M . Assume that for g ∈ Cn,α(U), there is a continuous function
φ : Λ → R such that

(φ ◦ T − φ)(x) = g(x), x ∈ Λ. (3.4)

Then there is a “natural” extension of φ to W s
ε (Λ)∪W u

ε (Λ) which is Cn,α on each
local stable and unstable leaf, and varies continuously (in the Cn,α-topology) with the
leaf.
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Proof: We extend φ through the cohomology equation (3.4). Using the notation
F |ba = F (b) − F (a), we obtain

φ(y) − φ(x) = −
N∑

n=0

g ◦ T n|yx + φ ◦ TN+1|yx

Therefore, define

φ̃s(y) := φ(x) −
∞∑

n=0

g ◦ T n|yx, y ∈ W s
ε (x),

φ̃u(z) := φ(x) +
∞∑

n=1

g ◦ T−n|zx, z ∈ W u
ε (x),

The series converge uniformly in Cn,α(W s
ε (x)), respectively Cn,α(W u

ε (x)). Therefore,
φ̃s and φ̃u are in Cn,α, and vary continuously with the leaf.

Assume x, y ∈ Λ and t ∈ W s
ε (x) ∩ W u

ε (y). By the local product structure, t ∈ Λ.
Therefore, by (3.4) and the continuity of φ,

φ̃s(t) = φ(x) −
∞∑

n=0

[φ ◦ T − φ] ◦ T n|tx = φ(x) −
[
−φ|tx + lim

n→∞
φ ◦ T n|tx

]
= φ(t).

Similarly, using T−1 instead of T , we obtain that φ̃u(t) = φ(t). Thus, the two extensions
coincide over W s

ε (Λ) ∩ W u
ε (Λ).

As an immediate corollary of Proposition 3.1 and Theorem 3.2,

Corollary 3.4 Let M be a two-dimensional manifold, and Λ ⊂ U ⊂ M a hyperbolic
basic set for the Cn,α embedding T : U → M . Assume that for g ∈ Cn,α(U), there is a
measurable function φ : Λ → R such that

(φ ◦ T − φ)(x) = g(x), x ∈ Λ. (3.5)

Then φ is Cn,α in the Whitney sense, that is, it admits a Cn,α extension to a
neighborhood of Λ.

4 Journé revisited

We prove Theorem 1.5 in this section. The proof follows the method of Journé [4],
with a few adjustments.

Journé [4] constructed approximating polynomials Q̃(q; p) indexed by p ∈ U (U an
open set) which satisfied |Q̃(q; p)− φ(q)| ≤ C|p− q|n+α for all q ∈ U and then invoked
a theorem of Campanato to show that φ extends to a Cn+α function.
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Our proof similarly uses approximating polynomials but we will use [18, §VI.2.3,
Theorem 4] which gives sufficient conditions under which a function extends in the
Whitney sense from a closed set.

Given our homogeneity assumption, we can select on each leaf a grid whose spacing
is close to being a geometric progression (that is, points are at distances approxima-
tively {ωk} from the origin). The local product structure yields a two-dimensional
grid, on which we interpolate the function φ by a sequence of polynomials. We prove
that the lower-order coefficients of these polynomials converge, thus yielding a local
approximation Q(q; p) to φ(q) (indexed by each point p of the set Λ). These approxi-
mating polynomials ‘correspond’ to the Taylor polynomials of φ. We then show that
these local approximations satisfy the hypothesis of the Whitney Extension Theorem
stated in [18, §VI.2.3, Theorem 4]. The homogeneity plays an important role here as
well.

Notation 4.1 Unless stated otherwise, all constants are uniform on Λ. In particular,
we will use the letter C for various constants of this type, even if their values are
different. For simplicity of exposition we will refer to W s

ε (x) as local stable manifolds
and to W u

ε (x) as local unstable manifolds.
Given nearby points x, y ∈ Λ, we denote [x, y] := W s

ε (x) ∩ W u
ε (y).

(a) Regular grid from homogeneity

We show that the homogeneity assumption provides a quite regular “grid”.

Lemma 4.2 Suppose {rk} is a sequence of numbers converging to zero such that

|rk+1|

|rk|
≥ γ for k ≥ 1 (4.1)

for some γ > 0. Let ω ∈ (0, γ) and define k0 := [logω(|r1|)]. Define R = {|rk|}. Then
the intersection R∩ [ωk+1, ωk] is nonempty for each k ≥ k0.

In particular, there is a decreasing subsequence in R, which we denote also by |rk|,
such that |rk| ∈ [ω2k+1, ω2k] for 2k ≥ k0.

Proof: Notice first that we may assume that the sequence |rk| is strictly decreasing.
Indeed, if |r`+1| ≥ |r`|, then property (4.1) is preserved after dropping the term |r`+1|
from the sequence and relabeling the remaining terms.

Let ω ∈ (0, γ) and k0 be as defined in the lemma. Then |r1| ∈ R∩ [ωk0+1, ωk0 ]. We
will prove the statement of the lemma by induction starting with k = k0. Assume, by
contradiction, that R∩ [ωk+1, ωk] 6= ∅ but R∩ [ωk+2, ωk+1] = ∅. Then there is an ` such

that |r`| ∈ [ωk+1, ωk] and |r`+1| < ωk+2, hence
|r`+1|
|r`|

< ω < γ which contradicts (4.1).
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(b) Approximation by polynomials

The goal of this subsection is the following local approximation result:

Theorem 4.3 Under the assumptions of Theorem 1.5, there are constants ε′, C ′ > 0
and for each p ∈ Λ a polynomial Q( · ; p) of degree n, such that

|φ(q) − Q(q; p)| ≤ C ′|q − p|n+α for q ∈ Λ, |q − p| < ε′. (4.2)

Most arguments are adapted from [4].
Let p ∈ Λ. Since the consideration is local we make a Cn,α change of variables so

that the local stable and unstable manifolds passing through p become the coordinate
axes through the origin. The theorem is a consequence of the following Lemma, which
we prove later.

Lemma 4.4 Given κ > 0 large enough and the cone K = {(u, v) ∈ R
2 : |v| ≤ κ|u|},

there is a polynomial Q = QK of degree n and constants C1 = C1(κ), ε1 = ε1(κ) > 0
such that

|φ(z) − Q(z)| ≤ C1|z|
n+α for z ∈ Λ ∩ K ∩ Bε1

,

where Br denotes the ball of radius r centered at the origin.
The constants C1 and ε1 are uniform with respect to p ∈ Λ.

Assuming the above Lemma, we prove next Theorem 4.3.

Proof of Theorem 4.3
Using Lemma 4.4, we can also construct a polynomial Q′ approximating φ on the

cone K
′

= {(u, v) ∈ R
2 : |u| ≤ κ|v|} centered on the unstable manifold. By choosing κ

large enough, we can achieve that V = Λ ∩ K ∩K
′

∩ Bε1
is not Zariski closed (indeed,

the homogeneity assumption implies that the origin is an accumulation point of both
Λ ∩ W s

ε (0, 0) and Λ ∩ W u
ε (0, 0), and the product structure gives a two-dimensional

“grid” in V ).
This implies that the n-th degree polynomials Q and Q′ have to coincide, because

they have a contact of order higher than n on V .
This establishes that at the point p, in the coordinates used to linearize its stable

and unstable manifolds, Q is a local approximation of φ of order n + α.
When we return to the original coordinates, then the polynomial Q becomes a Cn,α-

function Q, but the local approximation property still holds. We denote by Q( · ; p)
the n-th order Taylor polynomial of Q at p. To check condition (4.2), notice that
R(q) := Q(q) − Q(q; p) satisfies

|R(q)| =

∣∣∣∣
1

(n − 1)!

∫ 1

0
(1 − t)n−1 dn

dtn
[R(p + t(q − p))] dt

∣∣∣∣ ≤ C

∥∥∥∥
dn

dtn
Q

∥∥∥∥
α

|q − p|n+α

(here we used that DnR(r) = DnQ(r) − DnQ(p), because Q( · , p) is a polynomial of
degree n).
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Note that the relevant constants of Lemma 4.4, ε1 and C1, are uniform in p ∈ Λ,
hence so will the constants ε′ and C ′ of Theorem 4.3.

The remainder of the section is devoted to the proof of Lemma 4.4. This proof is
divided into a few subsections. By our reduction so far, p is the origin in R

2 and the
coordinate axes are leaves of the two laminations.

Interpolating polynomials

We will use the following interpolation result of Journé, with corresponding constants
from Lemma 1 of Journé denoted by the subscript J .

Lemma 4.5 (Journé [4], Lemma 1) Fix n ≥ 1. For each B ≥ 1, there are ε =
εJ(B) > 0 and C = CJ(B) > 0 with the following property: if the collections of points
{zk,` : 0 ≤ k ≤ n, 0 ≤ ` ≤ n} ⊂ R

2, {xk : 0 ≤ k ≤ n} ⊂ R, {y` : 0 ≤ ` ≤ n} ⊂ R

satisfy

R/η < B

and |zk,` − (xk, y`)| ≤ εη

where R = sup
k,`

|zk,`|, η = inf
(k,`)6=(k′,`′)

|zk,` − zk′,`′ |,

then for any values {bk,` : 0 ≤ k ≤ n, 0 ≤ ` ≤ n} ⊂ R, there exists a unique polynomial

p(x, y) =
∑

0≤p,q≤n

cpqx
pyq

such that p(zk,`) = bk,`. Moreover,
∑

p,q

|cpq|R
p+q ≤ C sup

k,`
|bk,`|. (4.3)

Since φ(·, 0) and φ(0, ·) are Cn,α (and therefore Lemma 4.4 holds for them by
approximating with the Taylor polynomial), we can replace φ(x, y) by φ(x, y)−φ(x, 0)−
φ(0, y) + φ(0, 0). Thus, we may assume that φ vanishes along the axes.

We begin by selecting a convenient grid on each axis. Along the x-axis (which
we assume to be the stable direction) we take a sequence of points (r′k, 0) ∈ Λ, k ≥ 0,
converging to (0, 0) and satisfying the homogeneity condition (4.1). We take a sequence
(0, s′k) ∈ Λ along the unstable direction (which we assume to be the y-axis) satisfying
bounds similar to (4.1).

By Lemma 4.2, passing to a subsequence, we may assume that the two sequences
are similarly spaced: |r′k|, |s

′
k| ∈ [ω2k+1, ω2k] for k ≥ k0, where ω and k0 are determined

using Lemma 4.2 for the two sequences involved. Moreover, by our (γ, ν)-homogeneity
assumption, we can arrange that ω = γ/2, and |r′1|, |s

′
1| are of order ε1, uniformly with

respect to p ∈ Λ, where ε1 > 0 will be determined later.
Since we must control φ on the whole set Λ, we explain next how to include arbitrary

points of Λ ∩ K ∩ Bε1
in this grid.
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Notation 4.6 Assume given sequences (r′k, 0), (0, s
′
k) ∈ Λ as above, and let w ∈ Λ ∩

K ∩ Bε1
. Consider the points (xw, 0) = [p,w] ∈ Λ, (0, yw) = [w, p] ∈ Λ.

We construct a new sequence of points (rk, 0) ∈ W s
ε (p)∩Λ that includes (xw, 0) and

still has a regular spacing. We proceed as follows: if |r′m+2| < |r′m+1| < |xw| ≤ |r′m| <
|r′m−1|, then we drop r′m+1 and r′m, and define rm+1 = xw, rk = r′k for k ≥ m + 2 and
rk = r′k−1 for k ≤ m. Thus, the x-coordinates of the new sequence in W s

ε (p) ∩ Λ are
· · · , rm+3 = r′m+3, rm+2 = r′m+2, rm+1 = xw, rm = r′m−1, rm−1 = r′m−2, · · · .

We proceed similarly with the points (0, s′`) ∈ W u
ε (p) ∩ Λ to incorporate (0, yw).

For k, ` large enough, use the local product structure to define zk,` :=
[(0, s`), (rk, 0)] = W u

ε ((rk, 0)) ∩ W s
ε ((0, s`)) ∈ Λ.

The continuity in C1 of the stable and unstable leaves implies that

|[(x, 0), (0, y)] − (x, y)| = o(|(x, y)|).

Introduce the “rectangular” grid Sk,` = {(0, 0)} ∪ {(rk′ , 0) : k ≤ k′ < k + n} ∪
{(0, s`′) : ` ≤ `′ < ` + n} ∪ {(zk,`) : k ≤ k′ ≤ k + n, ` ≤ `′ ≤ ` + n}.

For each k and `, denote ηk,` := inf{|z − z′| : z, z′ ∈ Sk,`, z 6= z′}, Rk,` := sup{|z| :
z ∈ Sk,`}, and Tk := max{|rk|, |sk|}.

Then there are constants C0, k1, independent of z, such that for k, ` ≥ k1 :

•
Rk,`

ηk,`
< C0 as long as |k − `| ≤ 1.

• |zk,` − (rk, s`)| ≤
εJ(C0)

C0
|(rk, s`)| for |k − `| ≤ n.

• 1
C0

ω2k ≤ Tk ≤ C0ω
2k.

where εJ(C0) is the corresponding constant from Lemma 4.5.

Remark 4.7 The points z to which Lemma 4.4 applies are those corresponding to
rk, s` with k, ` ≥ k1, hence ε1 = O(ωk1). During the proof we might have to decrease ε1,
which means that k1 will increase accordingly. Note however that the three properties
listed above remain valid after such a change.

In light of Lemma 4.5 we conclude that for k ≥ k1 there exists a unique polynomial

P (x, y) =
∑

0≤p,q≤n

cpqx
pyq

which interpolates φ on each grid S of form Sk,k i.e.

P (z) = φ(z)

for z ∈ S.
Furthermore ∑

p,q

|cpq|R
p+q
S ≤ C sup{|φ(z)| : z ∈ S} (4.4)

where C = CJ(C0) is given by Lemma 4.5, the supremum is taken over the grid used
for the interpolating polynomial, and RS is Rk,k.

A similar statement is valid for S = Sk,k+1.
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Consecutive interpolations

Take k ≥ k1 and let P and P ′, denote respectively the polynomials of degree n in x
and y which interpolate φ on Sk,k, respectively Sk,k+1. We denote their coefficients by
cpq, respectively c

′

pq. Recall that Tk := max{|rk|, |sk|}. The results of this section and
the next will show that

|c′pq − cpq| ≤ O(T n+α−p−q
k ).

By (4.3) applied for P − P ′, it is enough to obtain an upper bound for |P ′ − P | on
Sk,k+1. To obtain the above estimate it would suffice to prove that if (x, y) ∈ Sk,k+1

then
|P ′(x, y) − P (x, y)| = O(T n+α

k ).

Instead, we prove in this subsection relation (4.10), which implies the intermediate
result (see relation (4.11) below)

∑

p,q

|c
′

p,q − cp,q|T
p+q
k ≤ C(T n+α

k + δ
∑

p+q>n

|cp,q|T
p+q
k +

∑

p+q≤n

|cp,q|T
n+α
k ).

First note that P,P ′ agree on Sk,k+1 except on the n points zk′,k+n, k ≤ k′ < k +n.
But on these points, by construction, P ′(zk′,k+n) = φ(zk′,k+n). So in fact we need only
estimate |φ(zk′,k+n) − P (zk′,k+n)| for k ≤ k′ ≤ k + n.

For k′ as above, parametrize W u
ε (rk′ , 0) by the y coordinate. We denote a point on

W u
ε (rk′ , 0) by zk′(y) = (xk′(y), y).
Consider the interval Ik := [−C2Tk, C2Tk], where the constant C2, independent of

k, is chosen so that the region of the unstable leaf parametrized by Ik contains all the
points in (W u

ε (rk′ , 0) ∩ Sk,k) ∩ K for all k ≥ k1 and k ≤ k′ < k + n.
By the hypothesis, there is a uniformly-Cn,α extension of φ to the local unstable

leaves of Λ. We refer to this extension whenever we evaluate φ outside the set Λ. We
will show that |φ(zk′(y)) − P (zk′(y))| = O(T n+α

k ) for k ≤ k′ ≤ k + n and y ∈ Ik.
Fix k′ between k and k+n. To simplify the notation, denote by a tilde the functions

evaluated on W u
ε (zk′) via its parametrization y 7→ zk′(y). That is, f̃(y) = f(zk′(y)). If

not explicitly stated, these functions have domain Ik.
We collect the necessary estimates in the following lemma:

Lemma 4.8 There is a C > 0 such that if k ≥ k1, k ≤ k′ ≤ k + n, and
y ∈ [−C2Tk, C2Tk], then:

(i)

|(φ̃ − P̃ )(y)| ≤ CT n+α
k ‖

dn

dyn
(φ̃ − P̃ )‖α. (4.5)

(ii) If p, q ≤ n and p + q > n then

‖
dn

dyn
xp

k′(y)yq‖α ≤ CT p+q−n−α
k ‖xk′‖Cn,α(Ik)

12



(iii) If p + q ≤ n then

‖
dn

dyn
xp

k′(y)yq‖α ≤ C

(iv) Therefore

‖
dn

dyn
P̃‖α ≤ C‖xk′‖Cn,α(Ik)

∑

p+q>n

|cp,q|T
p+q−n−α
k + C

∑

p+q≤n

|cp,q| (4.6)

Proof: To prove (i), note that φ−P is a Cn,α function along W u
ε (rk′ , 0) and has (n+1)

zeroes in the image of the interval Ik. Thus each derivative (φ̃ − P̃ )(j), j = 0, . . . , n,
has at least one zero, denoted by tj, in this interval. Hence,

|
dn

dyn
(φ̃ − P̃ )(t)| = |

dn

dyn
(φ̃ − P̃ )(t) −

dn

dyn
(φ̃ − P̃ )(tn)| ≤ ‖

dn

dyn
(φ̃ − P̃ )‖α(C2Tk)

α

and similarly

|
dj

dyj
(φ̃ − P̃ )(t)| = |

∫ t

tj

dj+1

dyj+1
(φ̃ − P̃ )(u)du| ≤ ‖

dj+1

dyj+1
(φ̃ − P̃ )‖C0(Ik)C2Tk.

These imply (4.5).

For (ii), notice that dn

dyn xp
k′(y)yq is the sum of terms of the form Dxp′

k′yq′ , where D

is a product of differentiated xk′-terms (if any), and p′ + q′ ≥ p + q − n. The Hölder
norm of such a term can be bound by

‖Dxp′

k′y
q′‖α ≤ ‖D‖α‖x

p′

k′‖C0‖yq′‖C0

+ ‖D‖C0‖xp′

k′‖α‖y
q′‖C0 + ‖D‖C0‖xp′

k′‖C0‖yq′‖α.
(4.7)

We will not write explicitly the uniform bound over the set Λ of the Cn,α-norm of xk′

(this is determined by the uniform lamination W u).1 Note that |xk′(0)| ≤ Tk, hence
‖xk′‖C0(Ik) ≤ CTk (because its derivative is bounded). Also, ‖f‖α ≤ C‖f ′‖C0(Ik)T

1−α
k

for a differentiable function f : Ik → R. Thus (trivially for p′ = 0, q′ = 0, or D a
constant):

‖xp′

k′‖α ≤ C‖x′
k′‖C0(Ik)T

p′−α
k ‖xp′

k′‖C0 ≤ CT p′

k

‖yq′‖α ≤ CT q′−α
k ‖yq′‖C0 ≤ CT q′

k

‖D‖α ≤ C‖
dn

dyn
xk′‖α + C‖xk′‖Cn(Ik)T

1−α
k

These estimates prove that the first term in the right-hand side of (4.7) is bounded
by CT p+q−n−α

k ‖xk′‖Cn,α(Ik), as desired. If D is not a constant then ‖D‖C0 ≤

1Here the uniform smoothness of the leaves is used.
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C‖xk′‖Cn(Ik), and we obtain the desired bound for the other two terms in the right-
hand side of (4.7). If D is a constant, then we must have had q = n, q′ = 0, p = p′,
hence the Hölder norm in the third term of (4.7) is zero, and the second term satisfies
the desired bound (in this case the first term vanished as well).

The relation (iii) is proven similarly.
Relation (iv) is an immediate consequence of the estimates (ii) and (iii).

Next, we bound the ‖xk′‖Cn,α(Ik) term by choosing ε1 > 0 sufficiently small. Since
the local (un)stable manifolds are continuous in the Cn,α topology and the leaf through
the origin coincides with the vertical axis, given δ > 0, we may choose ε1 > 0 sufficiently
small so that

‖xk′‖Cn,α(Ik) < δ (4.8)

whenever |rk′ | < ε1 and y ∈ Ik.
2

Given our choice of the sequence of points rk and s`, we may increase k1 so that (4.8)
holds for all k ≥ k1 (recall that rk1

is at distance approximately ω2k1 from the origin).
Since, by hypothesis, φ ∈ Cn,α(W u

ε (rk′ , 0)) uniformly3, we have

‖
dn

dyn
φ̃(y)‖α ≤ C. (4.9)

From (4.5), (4.9), (4.6) we obtain that

|(φ − P )(zk′(y))| ≤ CT n+α
k + Cδ

∑

p+q>n

|cp,q|T
p+q
k + C

∑

p+q≤n

|cp,q|T
n+α
k (4.10)

for y ∈ Ik.
By evaluating the above relation at zk′,k+n (recall that P ′(zk′,k+n) = φ(zk′,k+n)),

and using (4.3) for P − P ′ on Sk,k+1, we obtain that

∑

p,q

|c
′

p,q − cp,q|T
p+q
k ≤ C(T n+α

k + δ
∑

p+q>n

|cp,q|T
p+q
k +

∑

p+q≤n

|cp,q|T
n+α
k ). (4.11)

Convergence of interpolating polynomials

We let P2k denote the interpolation polynomial corresponding to the grid Sk,k, and
P2k+1 denote the interpolation polynomial corresponding to the grid Sk,k+1. Equa-
tion (4.11) relates the coefficients of P2k+1 to P2k and the same line of reasoning
relates the coefficients of P2k+2 to P2k+1 except that we use the smoothness of φ along
the other lamination. Recall (see the properties of the grid listed on page 11) that
Tk = max{rk, sk} is comparable to ω2k. We will be sloppy with notation and let Tj/2

denote T[j/2].
Denote by cm

pq the coefficient of xpyq in Pm.

2Here the transverse Cn,α-continuity of the lamination is used.
3This is where the uniform smoothness of the restrictions of φ to the leaves is used.
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We will show that, by reducing ε1, there are K,m0 large enough, such that

|cm
pq| ≤ K

m−1∑

j=m0

(Tj/2)
n+α−p−q for m ≥ m0 (4.12)

and
|cm+1

pq − cm
pq| ≤ KT n+α−p−q

m/2 for m ≥ m0. (4.13)

We proceed by induction. We first determine when (4.12) for m implies (4.12) for
m+1. We claim that this implication (which is a consequence of equation (4.14) below)
holds for all K ≥ K∗, m0 ≥ m∗

0, δ ≤ δ∗, where the ∗-ed values depend only on the
constant C that appears in equation (4.11). We saw that δ can be made as small as
desired by reducing ε1. Next, we pick m0 ≥ max{m∗

0, k1} (recall that k1 depends on
ε1). Finally, we can further increase K in order to satisfy (4.12) for m = m0 + 1, the
initial step of the induction.

We now justify our claim. From equation (4.11) and the bound
K

∑m−1
j=m0

(Tj/2)
n+α−p−q for |cm

pq| given by the induction assumption, relation (4.12)
will hold for m + 1 provided

C


T n+α

m/2 + Kδ
∑

p+q>n

m−1∑

j=m0

(Tj/2)
n+α−p−qT p+q

m/2

+K
∑

p+q≤n

m−1∑

j=m0

(Tj/2)
n+α−p−qT n+α

m/2


 ≤ KT n+α

m/2 . (4.14)

Note that, by (4.11), (4.14) implies (4.13) as well.
The first term in (4.14) is less than (1/3)KT n+α

m/2
if K is chosen large enough.

Consider the second term divided by the right-hand side, KT n+α
m/2 :

CKδ

(KT n+α
m/2 )

∑

p+q>n

m−1∑

j=m0

(Tj/2)
n+α−p−qT p+q

m/2

= Cδ
∑

p+q>n

m−1∑

j=m0

(
Tm/2

Tj/2

)p+q−n−α

≤ Cδ
∑

p+q>n

m−m0∑

u=0

(ωu)p+q−n−α

By taking δ > 0 small enough, we can make this quantity less then 1/3
(note that the last sum converges) and therefore bound the second term by
(1/3)KT n+α

m/2 . The third term can also be bounded by a geometric series whose sum
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is CKT n+α
m/2

∑
p+q≤n T n+α−p−q

m0/2 , therefore, taking m0 sufficiently large, we may ensure

that this term is less than (1/3)KT n+α
m/2 as well.

This proves our claim about the values of K,m0 and δ for which equation (4.14)
holds, and therefore completes the proof of relations (4.12) and (4.13).

End of proof of Lemma 4.4

By now the constants K, m0, are determined, and uniform on Λ. Reduce once more
ε1 so that k1 ≥ m0 (recall that ε1 = O(ωk1)).

We describe the coefficients `pq of the polynomial Q of degree n mentioned in
Lemma 4.4. Recall that Pm(x, y) =

∑
p,q cm

pqx
pyq. If p + q > n then we set `pq = 0

whereas if p + q ≤ n then we define

`pq = lim
m→∞

cm
pq.

The limit exists by (4.13).
We claim that, for any C(1) > 0, there is C(2) > 0, such that for all m ≥ m0,

|Q − Pm| ≤ C(2)T n+α
m/2 (4.15)

provided |x|, |y| ≤ C(1)Tm/2.

By (4.12), if p+ q > n then |cm
pqT

p+q
m/2 | = O(T n+α

m/2 ). If p+ q ≤ n, by (4.13) we obtain
that

|cm
p,q − cm+k

p,q | ≤ K

m+k−1∑

j=m

T n+α−p−q
j/2

and hence letting k → ∞

|(cm
p,q − `p,q)T

p+q
m/2 | ≤ KT n+α

m/2

∞∑

j=0

(
T(m+j)/2/Tm/2

)n+α−p−q

≤ CKT n+α
m/2

∞∑

j=0

(ωj)n+α−p−q

which is O(T n+α
m/2 ). These estimates imply the validity of equation (4.15).

In addition to the bound obtained above for |cm
pqT

p+q
m/2 |, p + q > n, from (4.12) one

also obtains upper bounds for |cm
pq|, p + q ≤ n. Note that all these hold uniformly on

Λ for m ≥ m0. Using these, relation (4.10) implies that

|(φ − Pm)(zk′(y))| ≤ C(3)T n+α
m/2 (4.16)

if m ≥ m0, m/2 ≤ k′ ≤ m/2 + n and y ∈ Im = [−C2Tm/2, C2Tm/2].
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By the triangle inequality, (4.15) and (4.16) imply |(Q − φ)(zk′(y))| ≤ C(4)T n+α
m/2 if

|y| ≤ C2Tm/2. Thus, we obtain that

|Q(w) − φ(w)| ≤ C1|w|n+α for w ∈ K ∩ (∪k≥m0
W u

ε (rk, 0)) .

In order to finish the proof, notice that by the relabeling introduced in Notation 4.6,
we can include any point w ∈ K∩Λ∩Bε1

in the above union. For w,w′ ∈ K∩Λ∩Bε1
,

we obtain two pairs of sequences {rk, sk}k≥m0
on the stable, respectively unstable,

manifold of the origin. But these sequences differ only at finitely many positions.
Therefore, the limit polynomial Q does not depend on the point w.

(c) Whitney regularity

We prove here the following:

Theorem 4.9 The conclusion of Theorem 4.3 and our homogeneity assumptions on
the set Λ imply that φ is Cn,α(Λ) in the Whitney sense.

We will show that functions φ(`), derived from the approximating polynomials
Q(q; p) defined on the closed set Λ satisfy conditions (16) and (17) of [18, §VI.2.3]
and hence by [18, §VI.2.3, Theorem 4] φ admits a Whitney extension to R

2.
According to [18, §VI.2.3, Theorem 4], the conclusion of Theorem 4.9 follows from

Lemma 4.10 below. We begin by introducing more notation, relying on the polynomials
Q(q; p) constructed in Theorem 4.3.

Define φ(`) : Λ → R by

Q(q; p) =
∑

|`|≤n

φ(`)(p)
(q − p)`

`!
,

where ` = (`1, `2, . . . , `d) is a multi-index, `! = `1! . . . `d!, |`| = `1 + · · · + `d and
x` = x`1

1 . . . x`d

d for x = (x1, . . . , xd). Here d = 2. Note that φ0 = φ.
For a multi-index j with |j| ≤ n, define the polynomials

Qj(q, p) :=
∑

|`+j|≤n

φ(`+j)(p)
(q − p)`

`!
.

Note that Q0(q; p) = Q(q; p). Let Rj(q; p) = φ(j)(q) − Qj(q; p) for |j| ≤ n.

Lemma 4.10 Under the assumptions of Theorem 4.9,

|Rj(q; p)| ≤ C|q − p|n+α−|j| for p, q ∈ Λ, |q − p| ≤ ε′/2

for all multi-indexes |j| ≤ n.
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Proof: Note that the case |j| = 0 is exactly the conclusion of Theorem 4.3.
By [18, Lemma VI.2.3.1], if a, b ∈ Λ, then

Q(x; b) − Q(x; a) =
∑

|j|≤n

Rj(b; a)
(x − b)j

j!
.

For x ∈ Λ then Q(x; b) − Q(x; a) = [φ(x) − R0(x; b)] − [φ(x) − R0(x; a)] = R0(x; a) −
R0(x; b), and we obtain

∑

0<|j|≤n

Rj(b; a)
(x − b)j

j!
= Fa,b(x), (4.17)

where Fa,b : Λ → R, Fa,b(x) := R0(x; a)−R0(x; b)−R0(b; a). That is, the values Rj(b; a)
are the coefficients of a polynomial of degree n interpolating the function Fa,b : Λ → R.

Such a polynomial is uniquely determined if relation (4.17) holds at (n+1)2 points
x ∈ Λ spaced as in Lemma 4.5 of Journé, and relation (4.3) of that lemma gives the
desired upper bound. We describe next the details.

Fix a, b ∈ Λ. By our assumptions on Λ, there are points xi ∈ W s
ε (a) ∩ Λ, yi ∈

W u
ε (a) ∩ Λ, 0 ≤ i ≤ n, such that

|a − b|/C ≤ min
i6=j

|xi − xj| |a − b|/C ≤ min
i6=j

|yi − yj|

max |xi − a| ≤ |a − b|/2 max |yi − a| ≤ |a − b|/2.

Consider the grid (centered at b) determined by zi,j = W u
ε (xi) ∩ W s

ε (yj) ∈ Λ. Then
max{|a−zi,j|, |b−zi,j |} ≤ C|a−b|, and there is a uniform (with respect to |a−b|) bound
on the “R/η” of Journé (because both R and η are of order |a− b|). By Theorem 4.3,
the former property also implies that |Fa,b(zi,j)| ≤ C|b − a|n+α. Lemma 4.5 can be
applied to this interpolating grid. Inequality (4.3) becomes

∑

0<|j|≤n

|Rj(b; a)||a − b||j| ≤ C|a − b|n+α,

which gives the desired conclusion.

5 Sets in higher dimensions

Most of our discussion has concerned dimension two, where the homogeneity condition
is automatically satisfied for hyperbolic basic sets. It is possible to give geometric
conditions on sets in dimensions d ≥ 3 for the analog of our results to hold: for example
a set in R

d which is the direct product of d one-dimensional (γ, ν) homogeneous sets.
Unfortunately we do not know if these are natural conditions for hyperbolic basic

sets in higher dimensions or for hyperbolic sets arising out of, for instance, transverse
homoclinic intersections in R

d.
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