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Abstract

We show that for each k ≥ 1 there is a division quaternion algebra D of level
s(D) = 2k such that −1 is not the sum of squares of 2k pure quaternions in D. This
answers a question asked by D. W. Lewis (Rocky Mountain Journal of Mathematics
19 (1989), 787–92).

The problem of determining the level of quaternion algebras was discussed by
D. W. Lewis in [3] and D. B. Leep in [2]. The approach used by Lewis associates

with a quaternion algebra D =
(
a,b
F

)
the quadratic form TP = 〈a, b,−ab〉 over the

field F . Lewis has shown that, for any positive integer n ∈ N, if 〈1〉 ⊥ nTP is
isotropic over F , then −1 is a sum of n squares of quaternions in D (see [3, lemma
4]). He commented on the converse of this implication and stated that it is true for
n = 2k − 1, k ≥ 2, but for other values of n we do not know.

In this note we show that, in general, this converse statement is not true. We
construct an explicit example of a quaternion algebra D over a formally real field
K with the property that for n = 2k , the element −1 ∈ D is a sum of n squares in
D, but the quadratic form 〈1〉 ⊥ nTP is anisotropic over K . We also show that −1
cannot be expressed as a sum of n− 1 squares in D.

We begin with a refinement of [3, lemma 4].

Lemma 1. Let n be any positive integer, D =
(
a,b
F

)
and TP = 〈a, b,−ab〉. Then the

quadratic form 〈1〉 ⊥ nTP is isotropic over F if and only if −1 can be expressed as a
sum of n squares of pure quaternions in D.

Proof. This is implicit in [3, lemma 4] and [2, theorem 2.2]. But for the sake of
completeness we sketch a proof.

The isotropicity of 〈1〉 ⊥ nTP over F is equivalent to nTP representing −1 over
F , that is, to the existence of q1, r1, s1, . . . , qn, rn, sn ∈ F such that

−1 = TP (q1, r1, s1) + · · ·+ TP (qn, rn, sn).

Since for a pure quaternion c = qi + rj + sk, we have c2 = TP (q, r, s), such
a representation of −1 exists if and only if there are pure quaternions am =
qmi+ rmj + smk, 1 ≤ m ≤ n, satisfying

−1 = a2
1 + · · ·+ a2

n,

as desired.
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Lemma 1 shows that the problem stated by Lewis is equivalent to the following
question:

Let −1 be a sum of n squares of quaternions in D. Is it then true that −1 is a sum of
n squares of pure quaternions in D?

This seems to be of particular interest in the case when n is the level of D, so that
−1 is expressible as a sum of n but not less squares of quaternions in D. Notice that
in the simplest cases, such as Hamilton quaternions or quaternion algebras over the
rational function field R(X), the answer is affirmative.

However, it is not so in the general case. Here is our main result.

Theorem 2. For any positive integer k there exists a quaternion division algebra D

such that −1 is a sum of 2k squares of quaternions in D but −1 is not a sum of 2k

squares of pure quaternions. Moreover, s(D) = 2k .

Proof. We will use the ideas of [3, proposition 3]. Let k be a fixed positive integer
and write n := 2k . By a theorem of Prestel (see [4, theorem 2.1]), there exists
a formally real field F ⊂ R such that P (F) = n + 1, where P (F) denotes the
Pythagoras number of the field F (i.e. the smallest positive integer m such that any
sum of squares in F is a sum of m squares). We choose and fix an element c0 ∈ F
of length n+ 1 (i.e. c0 is a sum of n+ 1 squares but is not a sum of ≤ n squares in
F) and we consider the quaternion algebra

D :=

(−c0, X

F(X)

)
.

Observe that the quadratic form (n+ 1)〈1〉 ⊥ (n− 1)TP is isotropic over F(X). For
TP = 〈−c0, X, c0X〉 and if c0 = a2

1 + · · ·+ a2
n+1, where am ∈ F \ {0}, m = 1, . . . , n, then

0 = a2
1 + · · ·+ a2

n+1 − c0

=
(

(n+ 1)〈1〉 ⊥ (n− 1)TP

)
(a1, . . . , an+1, 1, 0, . . . , 0).

By [2, theorem 2.2], it now follows that one can express −1 as a sum of n squares
in D.

Now we check that 〈1〉 ⊥ nTP is anisotropic over F(X). Suppose there are
non-zero x0, xm, ym, zm ∈ F(X), m = 1, . . . , n such that

0 = (〈1〉 ⊥ nTP )(x0, x1, y1, z1, . . . , xn, yn, zn)

= x2
0 − c0

n∑
m=1

x2
m +X

n∑
m=1

y2
m + c0X

n∑
m=1

z2
m.

Hence,

X

(
n∑

m=1

y2
m + c0

n∑
m=1

z2
m

)
= c0

(
n∑

m=1

x2
m

)
− x2

0, (1)

and after clearing denominators we can assume that x0, xm, ym, zm ∈ F[X] and not all
are zero polynomials. Dividing by an appropriate power X2l of X we may assume
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that at least one of them does not vanish at zero. Now, the left hand side vanishes
at zero, so we get c0(

∑n
m=1 xm(0)2)−x0(0)2 = 0. If not all of xm(0) = 0 (m = 1, . . . , n),

then we have

c0 =
x0(0)2

x1(0)2 + · · ·+ xn(0)2

=

(
x0(0)

x1(0)2 + · · ·+ xn(0)2

)2

· (x1(0)2 + · · ·+ xn(0)2
)
.

Thus, c0 is a sum of n squares in F contrary to the choice of c0. Therefore, all
xm(0) = 0. Hence, x0(0) = 0. Write x0 = Xx̃0, . . . , xn = Xx̃n for some x̃m ∈ F[X].
Now (1) becomes

n∑
m=1

y2
m + c0

n∑
m=1

z2
m = X

(
c0

(
n∑

m=1

x̃2
m

)
− x̃2

0

)
.

Setting X = 0 we get
∑n

m=1 ym(0)2 + c0

∑n
m=1 zm(0)2 = 0. Since F is formally real,

it follows that all ym(0) = zm(0) = 0, a contradiction. From Lemma 1 we conclude
that −1 is not the sum of n squares of pure quaternions in D.

Now we check that D is a division algebra. If it is not, then the form ϕ :=
〈1, c0,−X,−c0X〉 is isotropic (see, e.g. [1, theorem 2.7, p. 58]). But ϕ is a Pfister
form, so it is isotropic if and only if its pure subform −TP is isotropic. Thus, TP is
isotropic and it follows that the form 〈1〉 ⊥ nTP is isotropic, a contradiction.

The last step in the proof is to show that s(D) = 2k . We have already shown
that s(D) ≤ n = 2k , so suppose s(D) < n. Then there are xm, ym, zm, tm ∈ F[X],
m = 1, . . . , n− 1, such that

n−1∑
m=1

x2
m − c0

n−1∑
m=1

y2
m +X

n−1∑
m=1

z2
m + c0X

n−1∑
m=1

x2
m = −1

and
∑n−1

m=1 xmym =
∑n−1

m=1 xmzm =
∑n−1

m=1 xmtm = 0. Now the argument in [3, proposi-

tion 3] applies; multiplying by
∑n−1

m=1 y
2
m and putting X = 0 we get(

1 +

n−1∑
m=1

x2
m

)(
0 +

n−1∑
m=1

y2
m

)
= c0

(
n−1∑
m=1

y2
m

)2

.

Thus, by a theorem of Pfister (see, e.g. [1, chapter 10, proposition 1.7]), c0 is a sum
of n squares in F , a contradiction.
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