SUMS OF SQUARES OF PURE QUATERNIONS

By Przemyseaw Koprowski

Instytut Matematyki, Uniwersytet Ślasski, 40-007 Katowice, Poland
[Received 22 July 1997. Read 29 November 1997. Published 30 September 1998.]

Abstract

We show that for each $k \geq 1$ there is a division quaternion algebra D of level $s(D)=2^{k}$ such that -1 is not the sum of squares of 2^{k} pure quaternions in D. This answers a question asked by D. W. Lewis (Rocky Mountain Journal of Mathematics 19 (1989), 787-92).

The problem of determining the level of quaternion algebras was discussed by D. W. Lewis in [3] and D. B. Leep in [2]. The approach used by Lewis associates with a quaternion algebra $D=\left(\frac{a, b}{F}\right)$ the quadratic form $T_{P}=\langle a, b,-a b\rangle$ over the field F. Lewis has shown that, for any positive integer $n \in \mathbb{N}$, if $\langle 1\rangle \perp n T_{P}$ is isotropic over F, then -1 is a sum of n squares of quaternions in D (see [3, lemma 4]). He commented on the converse of this implication and stated that it is true for $n=2^{k}-1, k \geq 2$, but for other values of n we do not know.

In this note we show that, in general, this converse statement is not true. We construct an explicit example of a quaternion algebra D over a formally real field K with the property that for $n=2^{k}$, the element $-1 \in D$ is a sum of n squares in D, but the quadratic form $\langle 1\rangle \perp n T_{P}$ is anisotropic over K. We also show that -1 cannot be expressed as a sum of $n-1$ squares in D.

We begin with a refinement of [3, lemma 4].

Lemma 1. Let n be any positive integer, $D=\left(\frac{a, b}{F}\right)$ and $T_{P}=\langle a, b,-a b\rangle$. Then the quadratic form $\langle 1\rangle \perp n T_{P}$ is isotropic over F if and only if -1 can be expressed as a sum of n squares of pure quaternions in D.

Proof. This is implicit in [3, lemma 4] and [2, theorem 2.2]. But for the sake of completeness we sketch a proof.

The isotropicity of $\langle 1\rangle \perp n T_{P}$ over F is equivalent to $n T_{P}$ representing -1 over F, that is, to the existence of $q_{1}, r_{1}, s_{1}, \ldots, q_{n}, r_{n}, s_{n} \in F$ such that

$$
-1=T_{P}\left(q_{1}, r_{1}, s_{1}\right)+\cdots+T_{P}\left(q_{n}, r_{n}, s_{n}\right)
$$

Since for a pure quaternion $c=q i+r j+s k$, we have $c^{2}=T_{P}(q, r, s)$, such a representation of -1 exists if and only if there are pure quaternions $a_{m}=$ $q_{m} i+r_{m} j+s_{m} k, 1 \leq m \leq n$, satisfying

$$
-1=a_{1}^{2}+\cdots+a_{n}^{2}
$$

as desired.

Lemma 1 shows that the problem stated by Lewis is equivalent to the following question:

Let -1 be a sum of n squares of quaternions in D. Is it then true that -1 is a sum of n squares of pure quaternions in D ?
This seems to be of particular interest in the case when n is the level of D, so that -1 is expressible as a sum of n but not less squares of quaternions in D. Notice that in the simplest cases, such as Hamilton quaternions or quaternion algebras over the rational function field $\mathbb{R}(X)$, the answer is affirmative.

However, it is not so in the general case. Here is our main result.
Theorem 2. For any positive integer k there exists a quaternion division algebra D such that -1 is a sum of 2^{k} squares of quaternions in D but -1 is not a sum of 2^{k} squares of pure quaternions. Moreover, $s(D)=2^{k}$.

Proof. We will use the ideas of [3, proposition 3]. Let k be a fixed positive integer and write $n:=2^{k}$. By a theorem of Prestel (see [4, theorem 2.1]), there exists a formally real field $F \subset \mathbb{R}$ such that $P(F)=n+1$, where $P(F)$ denotes the Pythagoras number of the field F (i.e. the smallest positive integer m such that any sum of squares in F is a sum of m squares). We choose and fix an element $c_{0} \in F$ of length $n+1$ (i.e. c_{0} is a sum of $n+1$ squares but is not a sum of $\leq n$ squares in F) and we consider the quaternion algebra

$$
D:=\left(\frac{-c_{0}, X}{F(X)}\right) .
$$

Observe that the quadratic form $(n+1)\langle 1\rangle \perp(n-1) T_{P}$ is isotropic over $F(X)$. For $T_{P}=\left\langle-c_{0}, X, c_{0} X\right\rangle$ and if $c_{0}=a_{1}^{2}+\cdots+a_{n+1}^{2}$, where $a_{m} \in F \backslash\{0\}, m=1, \ldots, n$, then

$$
\begin{aligned}
0 & =a_{1}^{2}+\cdots+a_{n+1}^{2}-c_{0} \\
& =\left((n+1)\langle 1\rangle \perp(n-1) T_{P}\right)\left(a_{1}, \ldots, a_{n+1}, 1,0, \ldots, 0\right) .
\end{aligned}
$$

By [2, theorem 2.2], it now follows that one can express -1 as a sum of n squares in D.

Now we check that $\langle 1\rangle \perp n T_{P}$ is anisotropic over $F(X)$. Suppose there are non-zero $x_{0}, x_{m}, y_{m}, z_{m} \in F(X), m=1, \ldots, n$ such that

$$
\begin{aligned}
0 & =\left(\langle 1\rangle \perp n T_{P}\right)\left(x_{0}, x_{1}, y_{1}, z_{1}, \ldots, x_{n}, y_{n}, z_{n}\right) \\
& =x_{0}^{2}-c_{0} \sum_{m=1}^{n} x_{m}^{2}+X \sum_{m=1}^{n} y_{m}^{2}+c_{0} X \sum_{m=1}^{n} z_{m}^{2} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
X\left(\sum_{m=1}^{n} y_{m}^{2}+c_{0} \sum_{m=1}^{n} z_{m}^{2}\right)=c_{0}\left(\sum_{m=1}^{n} x_{m}^{2}\right)-x_{0}^{2}, \tag{1}
\end{equation*}
$$

and after clearing denominators we can assume that $x_{0}, x_{m}, y_{m}, z_{m} \in F[X]$ and not all are zero polynomials. Dividing by an appropriate power $X^{2 l}$ of X we may assume
that at least one of them does not vanish at zero. Now, the left hand side vanishes at zero, so we get $c_{0}\left(\sum_{m=1}^{n} x_{m}(0)^{2}\right)-x_{0}(0)^{2}=0$. If not all of $x_{m}(0)=0(m=1, \ldots, n)$, then we have

$$
\begin{aligned}
c_{0} & =\frac{x_{0}(0)^{2}}{x_{1}(0)^{2}+\cdots+x_{n}(0)^{2}} \\
& =\left(\frac{x_{0}(0)}{x_{1}(0)^{2}+\cdots+x_{n}(0)^{2}}\right)^{2} \cdot\left(x_{1}(0)^{2}+\cdots+x_{n}(0)^{2}\right) .
\end{aligned}
$$

Thus, c_{0} is a sum of n squares in F contrary to the choice of c_{0}. Therefore, all $x_{m}(0)=0$. Hence, $x_{0}(0)=0$. Write $x_{0}=X \tilde{x}_{0}, \ldots, x_{n}=X \tilde{x}_{n}$ for some $\tilde{x}_{m} \in F[X]$. Now (1) becomes

$$
\sum_{m=1}^{n} y_{m}^{2}+c_{0} \sum_{m=1}^{n} z_{m}^{2}=X\left(c_{0}\left(\sum_{m=1}^{n} \tilde{x}_{m}^{2}\right)-\tilde{x}_{0}^{2}\right)
$$

Setting $X=0$ we get $\sum_{m=1}^{n} y_{m}(0)^{2}+c_{0} \sum_{m=1}^{n} z_{m}(0)^{2}=0$. Since F is formally real, it follows that all $y_{m}(0)=z_{m}(0)=0$, a contradiction. From Lemma 1 we conclude that -1 is not the sum of n squares of pure quaternions in D.

Now we check that D is a division algebra. If it is not, then the form $\varphi:=$ $\left\langle 1, c_{0},-X,-c_{0} X\right\rangle$ is isotropic (see, e.g. [1, theorem 2.7, p. 58]). But φ is a Pfister form, so it is isotropic if and only if its pure subform $-T_{P}$ is isotropic. Thus, T_{P} is isotropic and it follows that the form $\langle 1\rangle \perp n T_{P}$ is isotropic, a contradiction.

The last step in the proof is to show that $s(D)=2^{k}$. We have already shown that $s(D) \leq n=2^{k}$, so suppose $s(D)<n$. Then there are $x_{m}, y_{m}, z_{m}, t_{m} \in F[X]$, $m=1, \ldots, n-1$, such that

$$
\sum_{m=1}^{n-1} x_{m}^{2}-c_{0} \sum_{m=1}^{n-1} y_{m}^{2}+X \sum_{m=1}^{n-1} z_{m}^{2}+c_{0} X \sum_{m=1}^{n-1} x_{m}^{2}=-1
$$

and $\sum_{m=1}^{n-1} x_{m} y_{m}=\sum_{m=1}^{n-1} x_{m} z_{m}=\sum_{m=1}^{n-1} x_{m} t_{m}=0$. Now the argument in [3, proposition 3] applies; multiplying by $\sum_{m=1}^{n-1} y_{m}^{2}$ and putting $X=0$ we get

$$
\left(1+\sum_{m=1}^{n-1} x_{m}^{2}\right)\left(0+\sum_{m=1}^{n-1} y_{m}^{2}\right)=c_{0}\left(\sum_{m=1}^{n-1} y_{m}^{2}\right)^{2} .
$$

Thus, by a theorem of Pfister (see, e.g. [1, chapter 10, proposition 1.7]), c_{0} is a sum of n squares in F, a contradiction.

References

[1] T.Y. Lam, The algebraic theory of quadratic forms. W.A. Benjamin, Reading, MA, 1980.
[2] D.B. Leep, Levels of division algebras, Glasgow Mathematical Journal 32 (1990), 365-70.
[3] D.W. Lewis, Levels of quaternion algebras, Rocky Mountain Journal of Mathematics 19 (1989), 787-92.
[4] A. Prestel, Remarks on the Pythagoras and Hasse number of real fields, Journal für die reine und angewandte Mathematik 303/304 (1978), 284-94.

