New York Journal of Mathematics
New York J. Math. 22 (2016) 251-263.

Quotient quandles and the fundamental
Latin Alexander quandle

Sam Nelson and Sherilyn Tamagawa

ABSTRACT. Defined in Joyce, 1982, and Matveev, 1984, the fundamen-
tal quandle is a complete invariant of oriented classical knots up to
ambient homeomorphism. We consider invariants of knots defined from
quotients of the fundamental quandle. In particular, we introduce a
generalization of the Alexander quandle of a knot known as the funda-
mental Latin Alexander quandle and consider its Grébner basis-valued
invariants, which generalize the Alexander polynomial. We show via ex-
ample that the invariant is not determined by the generalized Alexander
polynomial for virtual knots.
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1. Introduction

In [7, 11] Joyce and Matveev introduced the algebraic structures known as
quandles or distributive groupoids. In particular, the fundamental quandle
of an oriented classical knot was shown to determine the knot group and the
peripheral subgroup and thus the knot complement up to homeomorphism,
yielding a complete invariant of oriented classical knots. In [7, 12] quotients
of the fundamental quandle, including the fundamental involutory quandle
and the fundamental involutory abelian quandle were studied, including
some connections to the Alexander invariant. In particular, Joyce showed
that the fundamental involutory abelian quandle of a knot is always finite
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with cardinality equal to the determinant of the knot, while Winker showed
that some knots have infinite involutory (nonabelian) quandle.

In this paper we consider some quotients of the fundamental quandles
of classical and virtual knots and describe an algorithm which can some-
times reveal when a quotient of the fundamental quandle of a knot is finite.
Showing that a given quotient is infinite is harder for general quotient quan-
dles, but is simpler for quotients of the fundamental Alexander quandle
of a knot, which has a module structure. We introduce the fundamental
Latin Alexander quandle of a knot, a generalization of the Alexander quan-
dle with coefficients in an extension ring such that the resulting quandle is
Latin. From this new structure we define Groébner basis-valued invariants
akin to those defined in [2]. We include an example which shows that the
new invariant is not determined by the generalized Alexander polynomial
for virtual knots.

The paper is organized as follows. In Section 2 we review the basics of
quandles. In Section 3 we consider some quotients of the fundamental quan-
dle. In Section 4 we define the Fundamental Latin Alexander quandle and
the Fundamental Latin Alexander Grobner (FLAG) invariants, including
computations of the FLAG; invariant for all classical knots with up to eight
crossings. We end in Section 5 with some questions for future research.

2. Quandles
We begin with a definition (see [7, 11, 5]).
Definition 1. A quandle is a set Q with an operation

P:QXQ—Q
satisfying for all z,y, z € Q:
(i) zrz==x.
(ii) The map fy : Q@ — @ defined by f,(x) = x>y is a bijection.
(iii) (zpy)>z=(x>2)>(y>2).
The inverse of f, defines another operation called the dual quandle operation
f;l(x) =z ly.

It is a straightforward exercise to show that () forms a quandle under
the dual quandle operation and that the two operations mutually right-
distribute, i.e., we have

Lo)ye (yot z)

(zoy)p e = (zp”
(zoly)pz=(zp2)p ! (y>2).
Example 1. Any Z-module A is a quandle under the operation

>y =2y —x.
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In particular, the dual quandle operation is the same as the original quandle
operation, i.e., x> 'y = z>y. Quandles with this property are called
involutory since the maps f, are involutions.

Example 2. Let G be any group. Then G is a quandle under n-fold
conjugation
n n

Y=y xy

and under the core operation

>y = y:n_ly.

The set G with these quandle structures is called Conj,(G) and Core(G)
respectively.

Example 3. Any module M over the ring A = Z[t*!] is a quandle under
the operation

zpy=te+(1-t)y

called an Alexander quandle. More generally, if A is any abelian group and
t € Aut(A) is an automorphism of abelian groups, then A is an Alexander
quandle under the operation above where 1 is the identity map.

Example 4. Let K be a link in S and N(K) a regular neighborhood of K.
Then the fundamental quandle of K is the set of homotopy classes of paths
in $3\ N(K) from a base point to N(K) such that the initial point stays
fixed at the base point while the terminal point is free to wander on N(K).
The quandle operation is then given by setting x>y to the homotopy class of
the path given by first following y, then going around a canonical meridian
on N(K) linking K once, then going backward along y, then following x as
illustrated. See [7] for more.

Example 5. The knot quandle can also be expressed combinatorially with
a presentation by generators and relations as the set of equivalence classes
of quandle words in a set of generators corresponding to arcs in a diagram of
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K under the equivalence relation generated by the quandle axioms together
with the crossing relations

For example, the figure 8 knot 4; below has the listed quandle presentation

xs3

x4
/_> . (T1,29, 23,24 | @30 T2 = 21, T2 > T3 = 24,
x1 5 2 T3> T = Tq, TaD> Ty = T1).

Say a relation in a quandle presentation is short if it has the form z;>x; =
xy for x;, xj, x), generators. Then we observe that every finitely presented
quandle ) has a presentation in which every relation is short, since we can
add new generators x; and short form relations abbreviating subwords of
the form x;>x; to x;, as needed until all relations are short. If our generators
are numbered {z1,...,x,}, then we can express a short form presentation
with a matrix whose row 4 column j entry is k if z;>x; = x, and 0 otherwise;
we will call this a presentation matriz for Q). If a presentation matrix for @)
has no zeros, then it expresses the complete operation table for ), and @ is
a finite quandle.

Example 6. The figure 8 knot in example 5 above has presentation matrix

3. Quotients of the fundamental quandle

Knot quandles are generally infinite. However, it is observed in [7] and
later in [12] that the involutory version of the fundamental quandle of a knot
is often finite, and the fundamental abelian involutory quandle of a knot is
always finite with order equal to the determinant of the knot, i.e., the abso-
lute value of the Alexander polynomial evaluated at —1. The fundamental
involutory quandle of a knot can be understood as the result of adding a
fourth axiom which says

(iv) 2oy =2ty forall o,y € Q,
or equivalently, replacing the second quandle axiom with
(it') (zpy)py=2xforall z,y € Q;
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the fundamental abelian involutory quandle is then obtained by adding an
additional axiom which says

(V) (z>y)>(zpw) = (z>2)> (y>w) for all z,y,z,w € Q.

We can verify that the fundamental involutory quandle of the figure eight
knot is finite with cardinality 5 by observing that moves of the following
types do not change the quandle presented by a presentation matrix:

(i) filling in a zero with a value obtained as a consequence of the axioms
and other relations,
(ii) filling in a zero with a number defining a new generator and adding
a row and column of zeroes corresponding to the new generator,
(iii) deleting a row and column and replacing all instances of the larger
generator with the smaller one when two generators are found to be
equal, taking care to note any new equalities of generators implied.

This gives us a procedure for filling in the complete operation table of a
finitely presented quandle: first, fill in all zeroes determined by consequences
of the axioms and keep a list of any pairs of equal generators, reducing the
presentation by eliminating redundant generators when possible. Next, if
any zeroes remain, choose one to assign to a new generator and repeat the
process. This procedure may or may not terminate — if the presented quandle
is infinite, the process can never terminate, but even if the quandle finite
then the speed of termination depends a great deal on the choice of zeroes
for replacement. On the other hand, when the process does terminate, the
result is a sequence of Tietze moves showing that the presented quandle is
finite.

Example 7. Let us use the above procedure to verify that the figure eight
knot has fundamental involutory quandle of cardinality 5. We start with
the presentation matrix from Example 5 and fill in the zeroes as determined
by the involutory quandle axioms:

O = O O
o= OO
S O = O
O O = O
Wk O =
O = N W
N Wk O
N Y

For example, quandle axiom (i) says z; > x; = x;, so the diagonal elements
are filled in with their row numbers; the involutory condition says that since
x3>x9 = 1, we have x1 > xg = (23> x2) > x3 = x3, etc. Note that we still
have some zeroes which cannot be filled in from the axioms; thus, we need
to choose a zero to assign a new generator xs — say we set x5 = x1 > x3.
Then we have presentation matrix below which completes via the involutory
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quandle axioms to the matrix on the right

135 20 1 3 5 2 4
02410 5 2 41 3
41300 —141325 2
30 2 40 35 2 41
00005 2 41 35

and the fundamental involutory quandle of 4; has 5 elements.

The involutory and abelian conditions have geometric motivations: the
involutory condition comes from considering unoriented knots, while the
abelian condition is the condition required for the set of quandle homomor-
phisms from the knot quandle to () to inherit a natural quandle structure
(see [3] for more). Nevertheless, we can consider these quotient quandles to
be simply the result of imposing algebraic conditions on the fundamental
quandle of a knot. Any such choice of conditions results in a quandle-valued
knot invariant, and for each such invariant we can ask whether the resulting
quandle is finite. In [7, 12] the generalizations of the involutory condition
to higher numbers of operations, e.g.,

(..((xpy)>py)...)py=2
were considered, with the notable result that the square knot and granny
knot have nonisomorphic 4-quandles, i.e., quotients in which we set

((zry)>y)oy) by =1,
despite having isomorphic knot groups.

We considered several examples of algebraic axioms and used our pro-
cedure outlined above, implemented in Python, to search for examples of
knots whose fundamental quandles had finite quotients when the axioms
were imposed. These included:

Anti-abelian axiom: (x>y)> (z>w) = (w>y)> (2> x).
Left distributive axiom: x> (y>z) = (x> y)> (x> 2).
Commutative operator axiom: x> (y>z) = x> (2> y).
Latin axiom: zby =2a>2 =y = 2.

both in combination with the abelian and involutory axioms and alone.
Some combinations are redundant; for instance, the abelian condition im-
plies left distributivity. Curiously, we found that many of the above condi-
tions yield the same results, with most knots of small crossing number hav-
ing either trivial one-element quotient quandles or the three-element quandle
structure Zs with z>y = 2z — y.

Example 8. Of the classical knots with seven or fewer crossings, 31,61, 74,
and 77 have anti-abelian involutory quandles with three elements

13 2
3 2 ,
2 1

1
3
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while the rest have the trivial one-element quandle.

Recall that a virtual knot is an equivalence class of oriented Gauss codes
under the equivalence relation determined by the Gauss code Reidemeister
moves. It is standard practice to draw virtual knots with extra wirtual
crossings, circled self-intersections representing nonplanarity of Gauss codes;
these virtual crossings interact with classical crossings via the detour mowve,

which says we can redraw any arc with only virtual crossings in its interior
as any other arc with only virtual crossings in its interior. Virtual knots may
be understood as equivalence classes of knots in thickened oriented surfaces
¥ x [0,1] modulo stabilization. See [8, 9] for more about virtual knots.

Definition 2. Let @ be a quandle and v : Q — @Q a bijective map. We say
that (Q,v) is a virtual quandle if v satisfies

v(z>y) =v(z)>0(y),

i.e., a virtual quandle is a quandle with a choice of automorphism. If () is
an involutory quandle, then (Q,v) is an involutory virtual quandle if (Q,v)
is a virtual quandle and v is an involution, i.e., if v(v(z)) = x for all x € Q.

Let K be a virtual knot. The fundamental involutory virtual quandle of
K is the virtual quandle with presentation consisting of one generator for
each portion of K containing only overcrossings (that is, we divide K at
classical undercrossings and at virtual crossings) with relations as pictured
together with the involutory quandle axioms.

x>y\/ v(z) v(y)
Y \ T T

Y

As with finite quandles, we can express virtual quandle structures on a
finite set X = {x1,x9,...,2,} with an n x (n 4+ 1) matrix whose leftmost
n x n block is a quandle operation matrix and whose last column expresses
the map v, i.e., the entry in row j column n + 1 is z;, where v(x;) = x.
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Example 9. The virtual knots 3.2,3.3,3.4,3.5,4.2,4.4,4.5,4.9, and 4.43
all have anti-abelian involutory virtual quandle

1 3 212
3 2 11
21 3|3

and the virtual knot 43 has the trivial involutory virtual quandle.

Example 10. However, while many knots seem to have either the triv-
ial one-element anti-abelian involutory virtual quandle or the three-element
anti-abelian involutory virtual quandle structure above, not all of them do.
For example, we found via Python computations that the anti-abelian quan-
dle of the virtual knot 37 has 27 elements and is given by the operation
matrix below:

18 19 10 14 27 25 17 23 13 3 24 26 9 4 22 21 7 1 2 20 16 15 8 11 6 12 5|21
23 24 5 18 3 21 27 14 19 17 13 16 11 8 20 12 10 4 9 15 6 22

25 22 18 12 16 10 26 21 15 6 20 4 19 17 9 5 14 3 13 11 8 2
24 27 11 19 14 20 23 13 17 18 3 21 8 5 16 15 9 10 4 6 12 26
27 23 8 17 13 16 24 3 18 19 14 20 5 11 21 6 4 9 10 12 15 25
26 25 17 6 20 4 22 16 12 15 21 9 18 19 10 8 3 13 14 5 11 7 24

4. Fundamental Latin Alexander Grobner invariants

Let K be a knot or link. The fundamental Alexander quandle FAQ(K)
is the A-module generated by generators corresponding to arcs in a diagram
of K with Alexander quandle operations at the crossings. As a A-module,
the fundamental Alexander quandle of a knot is the classical Alexander
invariant.

Let R be a polynomial ring and M an R-module with presentation matrix
P € My, n(R), ie., the rows of P correspond to generators of M and the
rows of P express relations defining M. The kth elementary ideal I of M
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is the ideal in R generated by the (n — k) (or m — k if m > n) minors of
P. Tt is a standard result (see [10] for instance) that changes to P reflecting
Tietze moves in the presentation of M do not change the elementary ideals,
and hence these ideals are invariants of M.

Example 11. Let K be a knot and P a A-module presentation matrix
of the Alexander quandle of K. The kth Alexander Polynomial of K is
any generator Ay of the smallest principal ideal of A containing the kth
elementary ideal of P. Note that Aj is defined only up to multiplication
by units in A. In particular, Ag = 1 for classical knots K, and A; is often
called the Alexander polynomial.

Recall that a quandle is Latin if in addition to the right-invertibility
required by quandle axiom (ii), we also have left-invertibility. That is, a
quandle @) is Latin if it satisfies the axiom:

(vi) For every x,y € @, there is a unique z € @ such that 2>z =y,
or equivalently:
(vi") For every x € @, the map f, : @ — Q defined by f,(y) = x>y is
bijective.
A finite quandle is Latin if and only its operation table forms a Latin square,
i.e., if every row and column is a permutation of the elements of Q.

Example 12. An Alexander quandle is Latin iff 1 — ¢ is invertible. For
instance, the Alexander quandle structure on Zs with ¢ € Aut(Zs) given by
multiplication by 2 is Latin, while the Alexander quandle structure on Z4
with ¢t € Aut(Z4) given by multiplication by 3 is not Latin:

>0 1 2 3
0j0 2 0 2
113 1 3 1
212 0 2 0
311 3 1 3

The element (1 —¢) € A is not invertible in A; its “natural” inverse is
the Laurent series 1+t 4+ t2 + .... We prefer to stick to polynomial rings,
so we define the Fundamental Latin Alexander Quandle of an oriented link
L in the following way: let A = Z[t,t"'s, s~] where the variables ¢~ and
s~! are new formal variables, not (yet) inverses for ¢ and s, and then define
the quotient ring A’ = A/(ss™! — 1,tt71 — 1,1 — t — s). Then we define
the Fundamental Latin Alexander Quandle of L, FLAQ(L), to be the A-
module generated by a set of generators corresponding to arcs in a diagram
of L with relations of the form w = tx + sy at crossings as depicted below.
Equivalently, FLAQ(L) can be regarded as the Alexander quandle of the
knot with coefficients in the extension ring A[(1 —#)71] of A = Z[t*!].

In [2], Grébner basis-valued invariants of knots and link were defined from
the Alexander biquandle by considering the pullback ideals of the elementary
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ideals to a standard (non-Laurent) polynomial ring, then taking the Grobner
basis of the resulting ideal with respect to a choice of monomial ordering.
A similar idea was used in [6] to study Grébner basis invariants of the usual
(non-Latin) Alexander module of a knot. We can apply the same idea here
to get a new Grobner basis-valued invariant which we call the Fundamental
Latin Alexander Grobner invariant, denoted FLAG(L).

Definition 3. Let L be an oriented link, A= Z[t,t71, s, 571] a four variable
polynomial ring, and P the coefficient matrix of the homogeneous system of
linear equations with variables corresponding to arcs in a diagram of L and
equations at crossings as depicted.

tr+sy=w

Then the kth FLAG ideal of L is the ideal I} in A generated by the generators
of the kth elementary ideal of P and the polynomials ss™' —1,¢~1 — 1 and
1—t—s. Given a choice of monomial ordering < of the variables s, s~%, ¢,¢7 1,
the resulting Grobner basis of I is the kth FLAG invariant of L, denoted
FLAG; (L).

The FLAG invariant contains more information than the Alexander poly-
nomial, in general; for instance, the number of elements of the FLAG basis
with respect to a choice of monomial ordering, |FLAG;(K)| is an invariant
of knots, while the classical Alexander k = 1 ideal is always principal for
classical knots. We note that setting s = 1 — ¢ and ss~' = 1 in each of the
polynomials in the FLAGT ideal yields either the Alexander polynomial or
0, since this is the ideal which is set to zero when defining the Alexander in-
variant. Since the FLAG} ideals are in general not principal, these Grébner
bases in general contain more information than the usual kth Alexander
polynomial.

Example 13. We computed the FLAGT invariants with graded reverse
lexicographical ordering with respect to the monomial ordering ¢t < s <
t=1 < 571 for all prime classical knots with up to eight crossings using
Python code available at the first author’s website www.esotericka.org.
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The results are collected in the tables below.!

K | [FLAG(K)| | FLAG(K)

3 4 {—t+1, s T—t, t7 T+t—1, s+t—1}

4, 4 {2 -3t+1, st 4+t -2, -1+t—-3, s+t—1}

51 7 {s72—s bt bt 41, st -7l -1
s —sh 1, st 2 -t -1, —s -t 241, s+t -1}

59 4 {262 -3t +2, s71—2t+1, 2471 +2t -3, s+t —1}

61 4 {t=2)2t—1), s ' +2t -3, 27 +2 -5 s+t—1}

69 7 {s72—s bttt 1, sl =57t sl — 5714 1,

s 2o 2 -1, s T 2 -2 1, st — 1)

63 7 {72 sttt —1, st — st sl — 5714 1,
sTlpt2 -2t -t 42, t7 =1, —s ' —t7 42 -2t 43, s+t —1}

71 7 {s7i4t 3t 2 -1, —s7 1 —t72 43 4 ¢,

s s gt 2t 22t 42, s s - s s,
tl—1, s+t —1}

s 4 {3t2 -5t +3, s1 —3t+2, 3t 1 +3t -5, s+t—1}

73 7 {s2—s g2ttt +1, st sl -7 st — 57 41,
sTlpot2 ¢t —2t 41, -1, —s =2t 4 22—t 42, s+t -1}

74 4 {482 =Tt +4, s —4t +3, 471 14t -7, s+t —1}

75 7 {s72—s g2t rot, sl — sl 71 571t — 571 41,
sThot 2 -2t —2t 42, ¢t~ —1, —s7! —2t71 4242 — 2t 4 3,
s+t—1}

76 7 {s72—s -t -t 43 s -5t —t71 sl —s7 141,
st b 1, s T 2 A3, st — 1)

77 7 {s72—s bttt -3 sttt sl — 57141,
sTlpt™2 =t 4 71— 1, —s7 7 42 4t 45, s+t — 1}

81 4 {312 Tt +3, s +3t—4, 37" +3t -7, s+t —1}

85 7 {—s ™3 =2t 24t 242t -1, s =t 2427 483 22 1t — 2
s2—s bt 24t 2, sl s ) sl — s 4
t7H—1, s+t—1}

83 4 {482 —9t +4, s 44t -5, 471 +4¢t -9, s+t —1}

8y 7 {s72—st—2t7t—2t 41, sl 1 —s7t ¢t st — 57141,

—s b ot 2 -3t — 243 -1, s =2 422 =3t + 2, s+t — 1}

85 7 {—s Pt 3 -2t 24267 4242t -2, sV — 72 4271 443 — 242 4+ 2t — 3,
s2—s o2 2t -1, s s =L
s —st 1, 7~ 1, s+t —1}

86 7 {s72 sttt —2t4+2 st -7l -7 st — 571 41,

s o gt 2t b4 1, s -2t 242 4t 4+ 3, s+t — 1)

87 7 {s7h4t 3 —2t72 43t 242t -3, —s 1 —t2 4207 443 — 242+ 3t — 2,
st 2 2 2, s st sl s
tTH—1, s+t—1}

8g 7 {s2—s P42t 42t -2 st st -1 sl -5l 41,
sTlpot2 4t —2t 44, t7 1t -1, —s P =271 422 — 4t 45, s+t —1}

89 7 {—s Pt 3 —2e 243t — 1242t -3, s =t 242 1413 — 202 + 3t — 4,
s2—s 24 24— 2, sl —s -l sl — s 1,
t7H—1, s+t—1}

810 7 {shat3 244t — 242t -4, —s7!—t72 427 483 — 242 4t - 3,
s2—s gt 2t 22—t 43, s s -t s s,
-1, s+t—1}

811 7 {s72—s -2t —2t 43 sl 1 —s7t 71 st — 57141,

—s b ot 2 o5t — 2t 45, t -1, s =2t 422 — 5t 44, s+t —1})

1We note that each of the [FLAG: (K)| values in the table are in the set {4, 7}. Whether
this is related to the fact that the computation was done on the Pomona College campus
is currently unknown.
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K | [FLAG(K)| | FLAG(K)

812 7 {2 s T4t T Ht—5 st T—s Tt 1 st—sT41,
st 2 -6t —t 46, t7t—1, —s ' —t ' 42— 6t+7, s+t—1}

813 7 {2 sttt 42t -3, st -7l -7 st — 571 41,
sTh42t2 -5t —2t 45 71, —s7 -2t 4242 5t +6, s+t —1}

814 7 {s72 sttt —2t 44 sl sl 71 st — 571 41,
sl 4272 6t 2t 46, t7 -1, s =207 4242 — 6L+ 5, s+t — 1}

815 7 {672 — s 43t 43t -2, st — s -7l sl — s 41,
sTU 43t 2 5t -3t +5, t7 1t —1, —s 1 =3t 432 -5t +6, s+t —1}

816 7 {sTP4t3 -3t 245t —t2 43t -5, —s 1 —t72 43t 43— 312 + 5t — 4,
s2—s gt 2 2 — 243, s s -t s — s 4,
tTH—1, s+t—1}

817 7 {—s714t73 =3t 245t — 2 43t —5, s~ —t72 43t~ 43 — 3t2 4 5t — 6,
s2—s 242t 242t -3, s —s -t sl — sl 4
t7H—1, s+t—1}

818 7 {—s 3 246t — 244t —6, s —t 244t 482 — 42 16t -7,
52—t 243t 243t -3, st —s7 -t s — s
-1, s+t—1}

819 7 {sTh4t3 =12 s P —t72 48341, s 2 sVt 2tV 2414+ 1,
s sl 7l s s 1, T 1, st — 1)

820 7 {s72— sttt st —s7 -7l 57— 571 41,
sTlpt2 ¢ 1, 7 =1, —s =t 2 —t 42, s+t —1}

821 7 {s72 st bt 42 sl g7l 71 sl — 57141

et 2 o3l 3 1, st 2 32, st 1)

The FLAG ideals are defined for virtual knots just as for classical knots
since each crossing can be considered locally. Thus, we can extend the
FLAG invariant to virtual knots in the usual way by simply ignoring virtual
crossings.

Example 14. The virtual knot below, named 4.99 in the knot atlas [1], has
trivial virtual Alexander polynomial, as does the trefoil 3;. However, the two
are distinguished by their FFLAG; invariants; this shows that the FLAGT
invariant (with the same monomial ordering as above) is not determined by
the virtual Alexander polynomial.

FLAG{(4.99) = {s7! —2,t71 — 2,25 — 1,2t — 1}

We remark that this virtual knot has classical Alexander polynomial 2t — 1,
which is not symmetric, unlike the case for all classical knots.

5. Questions

In this section we collect a few questions for future research.

What other quotients of the fundamental quandle yield interesting finite
quandles? What is the relationship between quotients of the fundamental
quandle, a variety of functorial invariant, and the homomorphism-based
invariants such as the quandle counting invariant and its enhancements?
What does the cardinality of the FLAG invariant tell us about a knot?
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