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Realising the Toeplitz algebra of a
higher-rank graph as a Cuntz–Krieger

algebra

Yosafat E. P. Pangalela

Abstract. For a row-finite higher-rank graph Λ, we construct a higher-
rank graph TΛ such that the Toeplitz algebra of Λ is isomorphic to
the Cuntz–Krieger algebra of TΛ. We then prove that the higher-rank
graph TΛ is always aperiodic and use this fact to give another proof of
a uniqueness theorem for the Toeplitz algebras of higher-rank graphs.
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1. Introduction

Higher-rank graphs and their Cuntz–Krieger algebras were introduced by
Kumjian and Pask in [5] as a generalisation of the Cuntz–Krieger algebras
of directed graphs. Kumjian and Pask proved an analogue of the Cuntz–
Krieger uniqueness theorem for a family of aperiodic higher-rank graphs [5,
Theorem 4.6]. Aperiodicity is a generalisation of Condition (L) for directed
graphs and comes in several forms for different kinds of higher-rank graphs
(see [1, 5, 6, 10, 11, 12, 13, 14]).

The Toeplitz algebra of a directed graph is an extension of the Cuntz–
Krieger algebra in which the Cuntz–Krieger equations at vertices are re-
placed by inequalities. An analogous family of Toeplitz algebras for higher-
rank graph was introduced and studied by Raeburn and Sims [9]. They
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proved a uniqueness theorem for Toeplitz algebras [9, Theorem 8.1], gene-
ralising a previous theorem for directed graphs [3, Theorem 4.1].

For a directed graph E, the Toeplitz algebra of E is canonically isomorphic
to the Cuntz–Krieger algebra of a graph TE (see [7, Theorem 3.7] and [15,
Lemma 3.5]). Here we provide an analogous construction for a row-finite
higher-rank graph Λ. We build a higher-rank graph TΛ, and show that
the Toeplitz algebra of Λ is canonically isomorphic to the Cuntz–Krieger
algebra of TΛ (Theorem 4.1). Our proof relies on the uniqueness theorem
of [9]. However, it is interesting to observe that the higher-rank graph
TΛ is always aperiodic. Hence our isomorphism shows that the uniqueness
theorem of [9] is a consequence of the general Cuntz–Krieger uniqueness
theorem of [11] (see Remark 4.3).

2. Higher-rank graphs

Let k be a positive integer. We regard Nk as an additive semigroup
with identity 0. For m,n ∈ Nk, we write m ∨ n for their coordinate-wise
maximum.

A higher-rank graph or k-graph is a pair (Λ, d) consisting of a countable
small category Λ together with a functor d : Λ→ Nk satisfying the factori-
sation property : for every λ ∈ Λ and m,n ∈ Nk with d (λ) = m + n, there
are unique elements µ, ν ∈ Λ such that λ = µυ and d (µ) = m, d (ν) = n.
We then write λ (0,m) for µ and λ (m,m+ n) for ν. We regard elements
of Λ0 as vertices and elements of Λ as paths. For detailed explanation and
examples, see [8, Chapter 10].

For v ∈ Λ0 and E ⊆ Λ, we define vE := {λ ∈ E : r (λ) = v} and m ∈ Nk,
we write Λm := {λ ∈ Λ : d (λ) = m}.We use term edge to denote a path
e ∈ Λei where 1 ≤ i ≤ k, and write

Λ1 :=
⋃

1≤i≤k
Λei

for the set of all edges. We say that Λ is row-finite if for every v ∈ Λ0, the
set vΛei is finite for 1 ≤ i ≤ k. Finally, we say v ∈ Λ0 is a source if there
exists m ∈ Nk such that vΛm = ∅.

For a row-finite k-graph Λ, we shall construct a k-graph TΛ which is row-
finite and always has sources. Our k-graph TΛ is typically not locally convex
in the sense of [10, Definition 3.9] (see Remark 3.3), so the appropriate defi-
nition of Cuntz–Krieger Λ-family is the one in [11]. For detailed discussion
about row-finite k-graphs and their generalisations, see [16, Section 2].

From now on, we focus on a row-finite k-graph Λ. For λ, µ ∈ Λ, we say
that τ is a minimal common extension of λ and µ if

d (τ) = d (λ) ∨ d (µ) , τ (0, d (λ)) = λ and τ (0, d (µ)) = µ.
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Let MCE (λ, µ) denote the collection of all minimal common extensions of
λ and µ. Then we write

Λmin (λ, µ) :=
{(
λ′, µ′

)
∈ Λ× Λ : λλ′ = µµ′ ∈ MCE (λ, µ)

}
.

A set E ⊆ vΛ1 is exhaustive if for all λ ∈ vΛ, there exists e ∈ E such that
Λmin (λ, e) 6= ∅.

A Toeplitz–Cuntz–Krieger Λ-family is a collection {tλ : λ ∈ Λ} of partial
isometries in a C∗-algebra B satisfying:

(TCK1)
{
tv : v ∈ Λ0

}
is a collection of mutually orthogonal projections.

(TCK2) tλtµ = tλµ whenever s (λ) = r (µ).
(TCK3) t∗λtµ =

∑
(λ′,µ′)∈Λmin(λ,µ) tλ′t

∗
µ′ for all λ, µ ∈ Λ.

Remark 2.1. In [9, Lemma 9.2], Raeburn and Sims required also that
“for all m ∈ Nk\ {0}, v ∈ Λ0, and every set E ⊆ vΛm, tv ≥

∑
λ∈E tλt

∗
λ”.

However, by [11, Lemma 2.7 (iii)], this follows from (TCK1)–(TCK3), and
hence our definition is basically same as that of [9].

Meanwhile, based on [11, Proposition C.3], a Cuntz–Krieger Λ-family is
a Toeplitz–Cuntz–Krieger Λ-family {tλ : λ ∈ Λ} which satisfies

(CK)
∏
e∈E (tv − tet∗e) = 0 for all v ∈ Λ0 and exhaustive E ⊆ vΛ1.

Raeburn and Sims proved in [9, Section 4] that there is a C∗-algebra
TC∗ (Λ) generated by a universal Toeplitz–Cuntz–Krieger Λ-family

{tλ : λ ∈ Λ} .
If {Tλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger Λ-family in a C∗-algebra B, we
write φT for the homomorphism of TC∗ (Λ) into B such that φT (tλ) = Tλ
for λ ∈ Λ. The quotient of TC∗ (Λ) by the ideal generated by{∏

e∈E
(tv − tet∗e) : v ∈ Λ0, E ⊆ vΛ1 is exhaustive

}
is generated by a universal family of the Cuntz–Krieger Λ-family

{sλ : λ ∈ Λ} ,
and hence we can identify it with the C∗-algebra C∗ (Λ). For a Cuntz–
Krieger Λ-family {Sλ : λ ∈ Λ} in a C∗-algebra B, we write πS for the ho-
morphism of C∗ (Λ) into B such that πS (sλ) = Sλ for λ ∈ Λ. Furthermore,
we have sv 6= 0 for v ∈ Λ0 [11, Proposition 2.12].

As for directed graphs, we have uniqueness theorems for the Toeplitz
algebra [9, Theorem 8.1] and the Cuntz–Krieger algebra [6, Theorem 4.7].
The former does not need any hypothesis on the k-graph as stated in the
following theorem.

Theorem 2.2. Let Λ be a row-finite k-graph. Let {Tλ : λ ∈ Λ} be a Toeplitz–
Cuntz–Krieger Λ-family in a C∗-algebra B. Suppose that for every v ∈ Λ0,

(∗)
∏
e∈vΛ1

(Tv − TeT ∗e ) 6= 0
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(where this includes Tv 6= 0 if vΛ1 = ∅). Suppose that φT : TC∗ (Λ)→ B is
the homomorphism such that φT (tλ) = Tλ for λ ∈ Λ. Then

φT : TC∗ (Λ)→ B

is injective.

Remark 2.3. Every k-graph Λ gives a product system of graphs over Nk
and a Toeplitz–Cuntz–Krieger Λ-family gives a Toeplitz Λ-family of the
product system [9, Lemma 9.2]. Lemma 9.3 of [9] shows that, if the Toeplitz–
Cuntz–Krieger Λ-family satisfies (∗), then the Toeplitz Λ-family satisfies the
hypothesis of [9, Theorem 8.1].

Remark 2.4. In the actual hypothesis, we need to verify whether

∏
1≤i≤k

Tv −∑
e∈Gi

TeT
∗
e

 6= 0

for every v ∈ Λ0, 1 ≤ i ≤ k, and finite set Gi ⊆ vΛei . However, since we
only consider row-finite k-graphs, then for every v ∈ Λ0 and 1 ≤ i ≤ k, the
set vΛei is finite. Thus for a row finite k-graph, we can simplify Lemma 9.3
of [9] as Theorem 2.2.

On the other hand, Lewin and Sims in [6, Theorem 4.7] proved that the
Cuntz–Krieger uniqueness theorem only holds for k-graphs which satisfy the
following aperiodicity condition: for every pair of distinct paths λ, µ ∈ Λ
with s (λ) = s (µ), there exists η ∈ s (λ) Λ such that MCE (λη, µη) = ∅ [6,
Definition 3.1]. (For discussion about the equivalence of various aperiodicity
definitions, see [6, 12, 13, 14].) Now we state the uniqueness theorem as
follows:

Theorem 2.5 ([6, Theorem 4.7]). Suppose that Λ is an aperiodic row-finite
k-graph and {Sλ : λ ∈ Λ} is a Cuntz–Krieger Λ-family in a C∗-algebra B
such that Sv 6= 0 for v ∈ Λ0. Suppose that πS : C∗ (Λ)→ B is the homomor-
phism such that πS (sλ) = Sλ for λ ∈ Λ for λ ∈ Λ. Then πS is an injective
homomorphism.

3. The k-graph TΛ

Suppose that Λ is a row-finite k-graph. In this section, we define a k-graph
TΛ; later we show that TC∗ (Λ) ∼= C∗ (TΛ) (Theorem 4.1). Interestingly,
our k-graph TΛ is always aperiodic (Proposition 3.5).

Proposition 3.1. Let Λ = (Λ, d, r, s) be a row-finite k-graph. Then define
sets TΛ0 and TΛ as follows:

TΛ0 :=
{
α (v) : v ∈ Λ0

}
∪
{
β (v) : vΛ1 6= ∅

}
;

TΛ := {α (λ) : λ ∈ Λ} ∪
{
β (λ) : λ ∈ Λ, s (λ) Λ1 6= ∅

}
.
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Define functions r, s : TΛ\TΛ0 → TΛ0 by

r (α (λ)) = α (r (λ)), s (α (λ)) = α (s (λ)) ,

r (β (λ)) = α (r (λ)), s (β (λ)) = β (s (λ))

(r, s are the identity on TΛ0). We also define a partially defined product
(τ, ω) 7→ τω from

{(τ, ω) ∈ TΛ× TΛ : s (τ) = r (ω)}
to TΛ, where

(α (λ) , α (µ)) 7→ α (λµ)

(α (λ) , β (µ)) 7→ β (λµ)

and a function d : TΛ→ Nk where

d (α (λ)) = d (β (λ)) = d (λ) .

Then (TΛ, d) is a k-graph.

Proof. First we claim that TΛ is a countable category. Note that TΛ is
countable since Λ is countable.

Now we show that for all paths η, τ, ω in TΛ where s (η) = r (τ) and
s (τ) = r (ω), we have s (τω) = s (ω), r (τω) = r (τ), and (ητ)ω = η (τω).
If one of τ, ω is a vertex then we are done. So assume otherwise, and we
have η = α (λ), τ = α (µ), and ω is either α (ν) or β (ν) for some paths
λ, µ, ν in Λ. In both cases, we always have s (λ) = r (µ), s (µ) = r (ν), and
(λµ) ν = λ (µν). If ω = α (ν), we have

s (τω) = s (α (µ)α (ν)) = s (α (µν))

= α (s (µν)) = α (s (ν)) = s (α (ν)) = s (ω) ,

r (τω) = r (α (µ)α (ν)) = r (α (µν))

= α (r (µν)) = α (r (µ)) = r (α (µ)) = r (τ) ,

and

(ητ)ω =
(
α (λ)α (µ)

)
α (ν) = α (λµ)α (ν) = α ((λµ) ν)

= α (λ (µν)) = α (λ)α (µν) = α (λ)
(
α (µ)α (ν)

)
= η (τω) .

On the other hand, if ω = β (ν), then

s (τω) = s (α (µ)β (ν)) = s (β (µν))

= β (s (µν)) = β (s (ν)) = s (β (ν)) = s (ω) ,

r (τω) = r (α (µ)β (ν)) = r (β (µν))

= α (r (µν)) = α (r (µ)) = r (α (µ)) = r (τ) ,

and

(ητ)ω =
(
α (λ)α (µ)

)
β (ν) = α (λµ)β (ν) = β ((λµ) ν)

= β (λ (µν)) = α (λ)β (µν) = α (λ)
(
α (µ)β (ν)

)
= η (τω) .
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Thus, TΛ is a countable category, as claimed.
Now we show that d is a functor. Note that both TΛ and Nk are categories.

First take object x ∈ TΛ0, then d (x) = 0 is an object in category Nk. Next
take morphisms τ, ω ∈ TΛ with s (τ) = r (ω). Then by definition of d,

d (τω) = d (τ) + d (ω) .

Hence, d is a functor.
To show that d satisfies the factorisation property, take ω ∈ TΛ and

m,n ∈ Nk such that d (ω) = m + n. By definition, ω is either α (λ) or
β (λ) for some path λ in Λ. In both cases, there exist paths µ, ν in Λ such
that λ = µν, d (µ) = m, and d (ν) = n. Then, we have d (α (µ)) = m,
d (α (ν)) = d (β (ν)) = n, and ω is either equal to α (µ)α (ν) or α (µ)β (ν).
Therefore, the existence of factorisation is guaranteed.

Now we show that the factorisation is unique. First suppose

ω = α (µ)α (ν) = α
(
µ′
)
α
(
ν ′
)

where d (α (µ)) = d (α (µ′)) and d (α (ν)) = d (α (ν ′)). We consider paths
λ = µν and λ′ = µ′ν ′. Since α (λ) = ω = α (λ′), then λ = λ′. This implies
µ = µ′ and ν = ν ′ based on the uniquness of factorisation in Λ. Then
α (µ) = α (µ′) and α (ν) = α (ν ′). For the case ω = α (µ)β (ν), we get the
same result by using the same argument. The conclusion follows. �

Remark 3.2. For a directed graph E (that is, for k = 1), the graph TE
was constructed by Muhly and Tomforde [7, Definition 3.6] (denoted EV ),

and by Sims [15, Section 3] (denoted Ẽ). Our notation follows that of Sims
because we want to distinguish between paths in TΛ (denoted α (λ) and
β (λ)) and those in Λ (denoted λ).

Remark 3.3. Every vertex β (v) satisfies β (v)TΛ1 = ∅. Then if Λ has a
vertex v which receives edges e, f with d (e) 6= d (f), then there is no edge

g ∈ β (s (e))TΛd(f) (or g ∈ α (s (e))TΛd(f) if s (e) Λ = ∅), and hence TΛ is
not locally convex.

To give an illustration how we construct the k-graph TΛ from a k-graph
Λ, we first recall coloured graphs of [4]. By choosing k-different colours
c1, . . . , ck, we can view paths in Λei as edges of colour ci. For a k-graph
Λ, we call its corresponding coloured graph the skeleton of Λ. For further
discussion about k-graphs and their skeletons, see [4].

Example 3.4. Consider the 2-graph Λ which has skeleton

•v

e1

e2

f1

f2
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where eifj = fiej for all i, j ∈ {1, 2}, the solid edges have degree (1, 0) and
the dashed edges have degree (0, 1). Then the 2-graph TΛ has skeleton

•α (v) •β (v)

α (e1)

α (e2)

α (f1)

α (f2)

β (e2)

β (e1)

β (f2)

β (f1)

where α (ei)α (fj) = α (fi)α (ej) and α (ei)β (fj) = α (fi)β (ej) for all i, j ∈
{1, 2}, the solid edges have degree (1, 0) and the dashed edges have degree
(0, 1).

The following lemma tells about properties of the k-graph TΛ.

Proposition 3.5. Let Λ be a row-finite k-graph and TΛ be the k-graph as
in Proposition 3.1. Then,

(a) TΛ is row-finite.
(b) TΛ is aperiodic.

Proof. To show part (a), take x ∈ TΛ0. If x = β (v) for some v ∈ Λ0, then
xTΛ1 = ∅ by Remark 3.3. Suppose x = α (v) for some v ∈ Λ0. If vΛ1 = ∅,
then xTΛ1 = ∅. Otherwise, for 1 ≤ i ≤ k such that vΛei 6= ∅, we have

|xTΛei | ≤ 2 |vΛei | ,

which is finite.
For part (b), take τ, ω ∈ TΛ such that τ 6= ω and s (τ) = s (ω). We have to

show there exists η ∈ s (τ)TΛ such that MCE (τη, ωη) = ∅. If s (τ) = β (v)
for some v ∈ Λ0, then choose η = β (v) and MCE (τη, ωη) = ∅. So suppose
s (τ) = α (v) for some v ∈ Λ0. If vΛ1 = ∅, then choose η = α (v) and
MCE (τη, ωη) = ∅. Suppose vΛ1 6= ∅. Take e ∈ vΛ1. If s (e) Λ1 = ∅, then
choose η = α (e) and MCE (τη, ωη) = ∅. Otherwise, we have s (e) Λ1 6= ∅.
Then choose η = β (e) and MCE (τη, ωη) = ∅. Hence, TΛ is aperiodic. �

4. Realising TC∗ (Λ) as a Cuntz–Krieger algebra

Let Λ be a row-finite k-graph and TΛ be the k-graph as in Proposition 3.1.
In this section, we show that TC∗ (Λ) is isomorphic to C∗ (TΛ).

Theorem 4.1. Let Λ be a row-finite k-graph and TΛ be the k-graph as
in Proposition 3.1. Let {tλ : λ ∈ Λ} be the universal Toeplitz–Cuntz–Krieger
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Λ-family and {sω : ω ∈ TΛ} be the universal Cuntz–Krieger TΛ-family. For
λ ∈ Λ, let

Tλ :=

{
sα(λ) + sβ(λ) if s (λ) Λ1 6= ∅
sα(λ) if s (λ) Λ1 = ∅.

Then there is an isomorphism φT : TC∗ (Λ)→ C∗(TΛ) satisfying

φT (tλ) = Tλ

for every λ ∈ Λ.
Furthermore, sα(λ) = φT (tλ) if s (λ) Λ1 = ∅. Meanwhile, if s (λ) Λ1 6= ∅,

we have

sα(λ) = φT

tλ − tλ ∏
e∈s(λ)Λ1

(tv − tet∗e)

 ,

sβ(λ) = φT

tλ ∏
e∈s(λ)Λ1

(tv − tet∗e)

 .

Proof that {Tλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger Λ-family. To
avoid an argument by cases, for λ ∈ Λ with s (λ) Λ1 = ∅, we write

sβ(λ) := 0,

so that

Tλ = sα(λ) + sβ(λ).

First, we want to show {Tλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger Λ-family
in C∗(TΛ). For (TCK1), take v ∈ Λ0. Since

{
sα(v)

}
∪
{
sβ(v)

}
are mutually

orthogonal projections, then Tv is a projection. Meanwhile, for v, w ∈ Λ0

with v 6= w,

TvTw = sα(v)sα(w) + sα(v)sβ(w) + sβ(v)sα(w) + sβ(v)sβ(w) = 0.

Next we show (TCK2). Take µ, ν ∈ Λ where s (µ) = r (ν). Then

TµTν = sα(µ)sα(ν) + sα(µ)sβ(ν) + sβ(µ)sα(ν) + sβ(µ)sβ(ν).

If ν is a vertex, the middle terms vanish and we get

TµTν = sα(µ) + sβ(µ) = Tµ,

as required. Otherwise, the last two terms vanish and we get

TµTν = sα(µ)sα(ν) + sα(µ)sβ(ν) = sα(µν) + sβ(µν) = Tµν ,

which is (TCK2).
To show (TCK3), take λ, µ ∈ Λ. Then

(4.1) T ∗λTµ = s∗α(λ)sα(µ) + s∗α(λ)sβ(µ) + s∗β(λ)sα(µ) + s∗β(λ)sβ(µ).



THE TOEPLITZ ALGEBRA OF A HIGHER-RANK GRAPH 285

We give separate arguments for Λmin (λ, µ) = ∅ and Λmin (λ, µ) 6= ∅. For
case Λmin (λ, µ) = ∅, we have

∅ = TΛmin (α (λ) , α (µ)) = TΛmin (α (λ) , β (µ))

= TΛmin (β (λ) , α (µ)) = TΛmin (β (λ) , β (µ)) .

Hence, s∗α(λ)sα(µ) = s∗α(λ)sβ(µ) = s∗β(λ)sα(µ) = s∗β(λ)sβ(µ) = 0 and then Equa-

tion (4.1) becomes

T ∗λTµ = 0 =
∑

(λ′,µ′)∈Λmin(λ,µ)

Tλ′T
∗
µ′ .

Now suppose Λmin (λ, µ) 6= ∅. Take (a, b) ∈ Λmin (λ, µ). We consider
several cases: whether a equals s (λ) and/or b equals s (µ). First sup-
pose a = s (λ) and b = s (µ). So λ = λs (λ) = µs (µ) = µ. Because
α (λ) and β (λ) are paths with the same degree and different sources, then
TΛmin (α (λ) , β (λ)) = ∅. Thus,

s∗β(λ)sα(λ) = 0 = s∗α(λ)sβ(λ)

and Equation (4.1) becomes

T ∗λTλ = s∗α(λ)sα(λ) + s∗β(λ)sβ(λ)

= ss(α(λ)) + ss(β(λ)) = sα(s(λ)) + sβ(s(λ))

= T
s(λ)

= T
s(λ)

T ∗
s(λ)

=
∑

(λ′,µ′)∈Λmin(λ,λ)

Tλ′T
∗
µ′ (since Λmin (λ, λ) = {s (λ) , s (λ)} ).

Next suppose a = s (λ) and b 6= s (µ). Then λ = µb and

TΛmin (α (λ) , β (µ)) = ∅ = TΛmin (β (λ) , β (µ))

since s (β (µ))TΛ1 = ∅. Hence

s∗α(λ)sβ(µ) = 0 = s∗β(λ)sβ(µ)

and Equation (4.1) becomes

T ∗λTµ = s∗α(λ)sα(µ) + s∗β(λ)sα(µ).

Every (α (s (λ)) , η) ∈ TΛmin (α (λ) , α (µ)) has η = α (µ′) with

(s (λ) , µ′) ∈ Λmin (λ, µ) .
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Similarly, every (β (s (λ)) , η) ∈ TΛmin (β (λ) , α (µ)) has η = β (µ′) with
(s (λ) , µ′) ∈ Λmin (λ, µ). Thus, by using (TCK3) in C∗ (TΛ),

T ∗λTµ

= s∗α(λ)sα(µ) + s∗β(λ)sα(µ)

=
∑

(α(s(λ)),η)∈TΛmin(α(λ),α(µ))

sα(s(λ))s
∗
η +

∑
(β(s(λ)),η)∈TΛmin(β(λ),α(µ))

sβ(s(λ))s
∗
η

=
∑

(s(λ),µ′)∈Λmin(λ,µ)

sα(s(λ))s
∗
α(µ′) +

∑
(s(λ),µ′)∈Λmin(λ,µ)

sβ(s(λ))s
∗
β(µ′)

=
∑

(s(λ),µ′)∈Λmin(λ,µ)

(sα(s(λ))s
∗
α(µ′) + sβ(s(λ))s

∗
β(µ′))

=
∑

(s(λ),µ′)∈Λmin(λ,µ)

(sα(s(λ)) + sβ(s(λ)))(s
∗
α(µ′) + s∗β(µ′))

=
∑

(s(λ),µ′)∈Λmin(λ,µ)

Ts(λ)T
∗
µ′ =

∑
(λ′,µ′)∈Λmin(λ,µ)

Tλ′T
∗
µ′ .

By taking adjoints, we deduce (TCK3) when a 6= s (λ) and b = s (µ).
Now we consider the last case, which is a 6= s (λ) and b 6= s (µ). This

means we have neither λ = µb nor µ = λa. Hence,

TΛmin (α (λ) , β (µ)) = TΛmin (β (λ) , α (µ)) = TΛmin (β (λ) , β (µ)) = ∅
since s (β (λ))TΛ1 = ∅ = s (β (µ))TΛ1 = ∅. Hence,

s∗α(λ)sβ(µ) = s∗β(λ)sα(µ) = s∗β(λ)sβ(µ) = 0.

On the other hand, we have

TΛmin (α (λ) , α (µ))

=
{(
α
(
λ′
)
, α
(
µ′
))
,
(
β
(
λ′
)
, β
(
µ′
))

: (λ′, µ′) ∈ Λmin (λ, µ)
}

.

Therefore, Equation (4.1) becomes

T ∗λTµ = s∗α(λ)sα(µ) =
∑

(ω,η)∈TΛmin(α(λ),α(µ))

sωs
∗
η

=
∑

(λ′,µ′)∈Λmin(λ,µ)

(sα(λ′)s
∗
α(µ′) + sβ(λ′)s

∗
β(µ′))

=
∑

(λ′,µ′)∈Λmin(λ,µ)

(sα(λ′) + sβ(λ′))(s
∗
α(µ′) + s∗β(µ′))

=
∑

(λ′,µ′)∈Λmin(λ,µ)

Tλ′T
∗
µ′ .

So for all cases, we have

T ∗λTµ =
∑

(λ′,µ′)∈Λmin(λ,µ)

Tλ′T
∗
µ′
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and {Tλ : λ ∈ Λ} satisfies (TCK3). �

Proof that φT is injective. Now the universal property of TC∗ (Λ) gives
a homomorphism φT : TC∗ (Λ)→ C∗(TΛ) satisfying φT (tλ) = Tλ for every
λ ∈ Λ.

We show the injectivity of φT by using Theorem 2.2. Take v ∈ Λ0. We
show ∏

e∈vΛ1

(Tv − TeT ∗e ) 6= 0.

First suppose vΛ1 6= ∅. Take 1 ≤ i ≤ k such that vΛei 6= ∅. We claim∏
e∈vΛei

(Tv − TeT ∗e ) ≥ sβ(v).

Since vΛei 6= ∅, then α (v)TΛei 6= ∅ and by [11, Lemma 2.7 (iii)],

sα(v) ≥
∑

g∈α(v)TΛei

sgs
∗
g

=
∑

e∈vΛei

sα(e)s
∗
α(e) +

∑
e∈vΛei
s(e)Λ1 6=∅

sβ(e)s
∗
β(e)

=
∑

e∈vΛei
s(e)Λ1 6=∅

(
sα(e)s

∗
α(e) + sβ(e)s

∗
β(e)

)
+

∑
e∈vΛei
s(e)Λ1=∅

sα(e)s
∗
α(e)

=
∑

e∈vΛei
s(e)Λ1 6=∅

TeT
∗
e +

∑
e∈vΛei
s(e)Λ1=∅

TeT
∗
e

=
∑

e∈vΛei

TeT
∗
e .

Meanwhile, since every e ∈ vΛei has the same degree,∏
e∈vΛei

(Tv − TeT ∗e ) = Tv −
∑

e∈vΛei

TeT
∗
e

=
(
sα(v) + sβ(v)

)
−
∑

e∈vΛei

TeT
∗
e

= sβ(v) +
(
sα(v) −

∑
e∈vΛei

TeT
∗
e

)
≥ sβ(v),

as claimed. This claim implies∏
e∈vΛ1

(Tv − TeT ∗e ) ≥
∏

{i:vΛei 6=∅}

sβ(v) = sβ(v) 6= 0

since vΛ1 6= ∅, as required.
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Finally, for v ∈ Λ0 with vΛ1 = ∅, we have

Tv = sα(v) 6= 0.

Hence, by Theorem 2.2, φT is injective. �

Proof that φT is surjective. Now we show the surjectivity of φT . Since
C∗(TΛ) is generated by {sτ : τ ∈ TΛ}, then it suffices to show that for every
τ ∈ TΛ, sτ ∈ im (φT ). Recall that for every τ ∈ TΛ, sτ is either sα(λ) or
sβ(λ) for some λ ∈ Λ.

Take v ∈ Λ0. First we show sα(v) and sβ(v) (if it exists) belong to im (φT ).

If vΛ1 = ∅, then

sα(v) = Tv ∈ im (φT ) .

Next suppose vΛ1 6= ∅. First we show that sβ(v) =
∏
e∈vΛ1 (Tv − TeT ∗e ).

Note that for every f ∈ α (v)TΛ1, the projection sα(v) − sfs∗f ≤ sα(v) is
othogonal to sβ(v). This implies∏

f∈α(v)TΛ1

((sα(v) + sβ(v))− sfs∗f ) = sβ(v) +
∏

f∈α(v)TΛ1

(sα(v) − sfs∗f )

= sβ(v),

since vΛ1 is an exhaustive set. Hence,

sβ(v) =
∏

f∈α(v)TΛ1

((sα(v) + sβ(v))− sfs∗f )

=
∏
e∈vΛ1

(Tv − sα(e)s
∗
α(e))

∏
e∈vΛ1

s(e)Λ1 6=∅

(Tv − sβ(e)s
∗
β(e))

=
∏
e∈vΛ1

s(e)Λ1=∅

(Tv − sα(e)s
∗
α(e))

∏
e∈vΛ1

s(e)Λ1 6=∅

(Tv − sα(e)s
∗
α(e))(Tv − sβ(e)s

∗
β(e))

=
∏
e∈vΛ1

s(e)Λ1=∅

(Tv − sα(e)s
∗
α(e))

∏
e∈vΛ1

s(e)Λ1 6=∅

(Tv − (sα(e)s
∗
α(e) + sβ(e)s

∗
β(e)))

=
∏
e∈vΛ1

s(e)Λ1=∅

(Tv − TeT ∗e )
∏
e∈vΛ1

s(e)Λ1 6=∅

(Tv − TeT ∗e )

=
∏
e∈vΛ1

(Tv − TeT ∗e ) ,

as required, and sβ(v) belongs to im (φT ). Furthermore,

sα(v) = Tv − sβ(v) = Tv −
∏
e∈vΛ1

(Tv − TeT ∗e ) ∈ im (φT ) ,

as required.



THE TOEPLITZ ALGEBRA OF A HIGHER-RANK GRAPH 289

Now take λ ∈ Λ. We have to show sα(λ) and sβ(λ) (if it exists) belong to

im (φT ). If s (λ) Λ1 = ∅, then

sα(λ) = sα(λ)sα(s(λ)) = TλTs(λ) = Tλ ∈ im (φT ) .

Next suppose s (λ) Λ1 6= ∅. Then sβ(λ)sα(s(λ)) = 0 and sα(λ)sβ(s(λ)) = 0.
Hence,

sα(λ) = sα(λ)sα(s(λ)) =
(
sα(λ) + sβ(λ)

)
sα(s(λ))

= Tλ

Ts(λ) −
∏

e∈s(λ)Λ1

(Ts(λ) − TeT ∗e )


= Tλ − Tλ

∏
e∈s(λ)Λ1

(Ts(λ) − TeT ∗e ) ∈ im (φT )

and

sβ(λ) = sβ(λ)sβ(s(λ)) =
(
sα(λ) + sβ(λ)

)
sβ(s(λ))

= Tλ
∏

e∈s(λ)Λ1

(Ts(λ) − TeT ∗e ) ∈ im (φT ) .

Therefore, φT is surjective and an isomorphism. �

Corollary 4.2. Let Λ be a row-finite k-graph and TΛ be the k-graph as
in Proposition 3.1. Let {tλ : λ ∈ Λ} be the universal Toeplitz–Cuntz–Krieger
Λ-family and {sω : ω ∈ TΛ} be the universal Cuntz–Krieger TΛ-family. For
τ ∈ TΛ, define

Sτ :=


tλ if τ = α (λ) with s (λ) Λ1 = ∅
tλ − tλ

∏
e∈s(λ)Λ1(tv − tet∗e) if τ = α (λ) with s (λ) Λ1 6= ∅

tλ
∏
e∈s(λ)Λ1(tv − tet∗e) if τ = β (λ) with s (λ) Λ1 6= ∅.

Suppose that φT : TC∗ (Λ)→ C∗(TΛ) is the isomorphism as in Theorem 4.1
and πS : C∗ (TΛ) → TC∗ (Λ) is the homomorphism such that πS (sτ ) = Sτ
for τ ∈ TΛ. Then φ−1

T = πS.

Proof. Take λ ∈ Λ. By Theorem 4.1, we get φ−1
T

(
sα(λ)

)
= tλ if s (λ) Λ1 = ∅.

Meanwhile, if s (λ) Λ1 6= ∅, by Theorem 4.1, we have

φ−1
T

(
sα(λ)

)
= tλ − tλ

∏
e∈vΛ1

(tv − tet∗e),

φ−1
T

(
sβ(λ)

)
= tλ

∏
e∈vΛ1

(tv − tet∗e).

Hence, φ−1
T (sτ ) = Sτ for τ ∈ TΛ. This implies that {Sτ : τ ∈ TΛ} is a

Cuntz–Krieger TΛ-family, and then φ−1
T = πS . �



290 YOSAFAT E. P. PANGALELA

Remark 4.3. Proposition 3.5 says that TΛ is always aperiodic, and hence
the Cuntz–Krieger uniqueness theorem always applies to TΛ. This helps
explain why no hypothesis on Λ is required in the uniqueness theorem of
[9, Theorem 8.1]. Indeed, we could have deduced that theorem by applying
the Cuntz–Krieger uniqueness theorem to TΛ. With our current proof of
Theorem 4.1, this argument would be circular, since we used [9, Theorem
8.1] in the proof of Theorem 4.1. However, we could prove Corollary 4.2
directly by showing that {Sτ : τ ∈ TΛ} is a Cuntz–Krieger TΛ-family in
TC∗ (Λ), hence gives a homomorphism πS : C∗ (TΛ)→ TC∗ (Λ), and using
the Cuntz–Krieger uniqueness theorem to see that πS is injective. Then
we could deduce [9, Theorem 8.1] from Corollary 4.2, and this would be a
legitimate proof. We worked out the details of this approach, but it seemed
to require an extensive cases argument, and hence became substantially
more complicated.
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