
New York Journal of Mathematics
New York J. Math. 22 (2016) 363–378.

Some nontrivial examples of the
Baldwin–Ozsváth–Szabó twisted spectral
sequence and Heegaard–Floer homology

of branched double covers

Elden Elmanto and Igor Kriz

Abstract. We present some nontrivial calculations of Baldwin–Ozs-
váth–Szabó cohomology of links, and applications to Heegaard–Floer
homology of branched double covers.
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1. Introduction

The main point of the present project was to compute some nontrivial
examples of Baldwin–Ozsváth–Szabó (BOS) cohomology of links [2, 3], and,
to apply this to Heegaard–Floer homology of branched double covers via
the Baldwin–Ozsváth–Szabó twisted spectral sequence [2]. The examples
we consider here are of a different type then what the main focus of recent
interest has been, for reasons we shall explain.

Much recent interest has focused on so called L-spaces, which are compact
oriented 3-manifolds satisfying

(1) rank(ĤF (Y )) = |H1(Y,Z)|.
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For example, Lisca and Stipsicz [4, 5] characterized L-spaces which are
Seifert-fibered over S2. For a branched double cover Σ(L) of a link L,
condition (1) is equivalent to

(2) rank(ĤF (Σ(L)) = det(L) 6= 0.

Baldwin, Ozsváth and Szabó [2] constructed a twisted variant of their spec-

tral sequence [7] convergent to ĤF (Σ(L)), which we will describe below. The
point is that the (combinatorially defined) E3-term of the twisted spectral
sequence, which we call Baldwin–Ozsváth–Szabó (briefly BOS) cohomol-
ogy, is extremely sparse (to the point that one may conjecture it collapses,
although that is not known at present). In [3], it was proved that BOS coho-
mology is an invariant of oriented links, and it was observed that this gives
an good method for detecting links which satisfy (2). The reason is that
while BOS cohomology is defined as the cohomology of a cochain complex
defined over a field of rational functions over F2 in a number of variables
which increases with the number of crossings of L (described below), from
an algebraic point of view, (2) is “generic behavior” on such complexes.
Roughly, “generic behavior” menas that anything that can cancel cancels.
For example in a 2-stage complex (given by a single linear map), generic
behavior means that the rank of the linear map is maximal allowed by the
dimension. As explained in [3] (and also used in this note), there is a mehod
for detecting generic behavior in BOS cohomology. Namely, it is possible to
set all the variables in the fraction field equal to integral powers of a single
variable. If one gets lucky and the E3-term has rank equal to det(L), it

is also true in BOS cohomology, and in ĤF . While calculations in fields
of rational functions in many variables are computationally extremely in-
efficient, calculations in one variable are no problem. Because of this, (2)
can be detected by BOS cohomology, and this was used in [3] to find a new
weaker condition on links whose branched double covers are L-spaces.

To complement this, in the present project, we wanted to do computations
where BOS cohomology behaves nongenerically, with some applications to
Heegaard–Floer homology. Since there is an algorithm [6] for calculating
Heegaard–Floer homology of Seifert-fibered spaces, examples of hyperbolic
knots are of most interest. We found that despite the combinatorial defini-
tion, it is extraordinarily difficult to compute directly nongenerically behaved
examples of BOS cohomology. This note serves, perhaps, as a case study
of the difficulty of such computations. In the end, combining heuristics
with computer-assisted methods, we succeeded in computing one example
(perhaps one of the smallest ones) in Proposition 3.1 below. The exam-
ple happens to be a link with 0 determinant, and infinitely many examples
of exact computation of BOS cohomology can be deduced using the skein
behavior of BOS cohomology (Proposition 4.1 and Corollary 4.2). Since
all these examples are links of determinant 0, we do not get an immedi-

ate application to ĤF . However, using the Ozsváth–Szabó computation of
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ĤF of T (7, 3) ([8]) as input, we were able to calculate BOS-cohomology

and ĤF for infinitely many new examples (Theorem 4.3, Theorem 4.5), all
but finitely many of which are hyperbolic (Proposition 4.6). The reader
should keep in mind that although we have no example of noncollapse of the
twisted BOS spectral sequence, BOS cohomology carries more information

than ĤF , since nontrivial ranks appear in different degrees; because of this,
the BOS calculations are also of independent interest. We consider our ex-
amples as a “proof of concept”, showing how this method works; it is very
likely that many other examples can be calculated in a similar way. At the
same time, it is also clear that such examples do not come cheap.

The present paper is organized as follows. In Section 2 we review the
preliminaries, i.e., the definition of BOS cohomology, the link invariance

of [3] and the BOS spectral sequence to ĤF . In Section 3, we treat the
one example of nontrivial BOS cohomology which we were able to compute
directly. In Section 4, we treat all the examples derived from this and from
what was known about T (7, 3) in [8].

Acknowledgements. We are very indebted to P. Ozsváth for comments.

2. Preliminaries

Let us first describe BOS cohomology. Let D = D(L) be a nondegenerate
projection of a link L, i.e., an embedding of a link in R3 such that the
projection on the xy plane is an immersion with at most finitely many
double crossings. Then the faces of the projection can be colored black and
white so that no two faces of the same color border the same arc of the
projection. Form a planar graph (with possible multiple edges and loops)
whose vertices are the faces colored black, and edges are crossings which
border two faces colored black. This is called the black graph B(D). An
edge has height 0 if the edge of the black graph, the lower arc of the crossing
and the upper arc of the crossing occur in this order clockwise, and height
1 otherwise.

The BOS cochain complex C0(D) is then formed as follows: Pick one
vertex of the black graph as a base point. Let F be a field of rational
functions over F2 on variables corresponding to all vertices of the black
graph other than the base point and all bounded faces of the black graph.
C0(D)k is the free F -module on all spaning trees T of B(D) whose total
height is 2k; here the total height is defined to be the number of edges of
height 1 included in T plus the number of edges of height 0 not included in
T . The number k can be a half-integer, but all the possible values of k differ
by an integer.

The differential Ψ of C0 increases total degree by 1. A nontrivial coefficient
occurs between a spanning tree T and a spanning tree T ′ obtained from T
by removing one edge e of height 0 and adding one edge f of height 1. The
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coefficient is of the form
1

1 + α
+

1

1 + β
,

where α is the product of all the variables corresponding to faces enclosed
inside the cycle c in T ∪ {f} provided that e, f and the base point occur
counter-clockwise on that cycle, and the product of the inverses of all the
variables corresponding to faces enclosed inside of c otherwise; the element β
is the product of all the variables corresponding to vertices in the component
of T r {e} not containing the base point.

It was proved directly in [3] that Ψ is a differential, i.e., that Ψ ◦Ψ = 0.
A key result of [2] is the following:

2.1. Theorem. Let L be a link with nonzero determinant. Then there exists
a single-graded spectral sequence

E3 = H∗(C0(D(L)))⇒ ĤF (Σ(L))⊗F2 F.

Moreover, the grading is by total height (i.e., twice the degree), and the spec-
tral sequence is sparse in the sense that the only possible nonzero differentials
are of the form d4k+2, k ∈ Z.

To make BOS cohomology a knot invariant, one must correct by half the
number of negative crossings, to take care of Reidemeister 1 moves. For an
oriented link, a postive crossing is one where the upper arc of the crossing
goes from lower left to upper right and the lower arc goes from lower right
to upper left. The other kind of crossing is called a negative crossing. Let

C(D)k = C0(D)k+n−/2

where n− is the number of negative crossings in D. The differential in C is
defined to be the same as in C0. In [3], the following was proved:

2.2. Theorem. The numbers

rankH i(C(D))

are invariants of oriented links and unoriented knots.

We therefore put
H i
BOS(L) = H i(C(D(L)).

In this paper, we will work with the unshifted BOS cohomology, i.e., the
cohomology of the complex C0(D) of a projection D where generating trees
are graded by 1/2 times the total height. This is only a link invariant up
to shift, but if Di are the i-resolutions of D along a single edge, i = 0, 1, we
have a long exact sequence
(3)

· · · → H i−1(C0(D0))→ H i−1/2(C0(D1))→ H i(C0(D))→ H i(C0(D0))→ · · ·
Denote by Bn1,...,nk

= B(D(n1,...,nk)) the black graph in Figure 1.
Denote the corresponding link by L(n1,...,nk).



SOME HF AND BOS HOMOLOGIES OF BRANCHED DOUBLE COVERS 367

akmk−1

e0

a11

akmk

e1

a12

a1m1

ak1

a21

ek−1

ak−1mk−1

Figure 1

3. The link L(3,3,0)

Our first result is the following:

3.1. Proposition. We have

rankH i(C0(D(3,3,0)) =

{
1 if i = 1, 2

0 otherwise.

The proof will occupy the remainder of this section. First note thatB(3,3,0)

has 18 spanning trees in heights 2 and 4 (and none others). The differential
is, then, an 18× 18 matrix N over a field of rational functions over F2 with
≥ 6 variables (it can be reduced from 9 to 6 by the Fundamental lemma of
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[3]). It follows then that

rankH i(C0(D(3,3,0))) =

{
r if i = 1, 2

0 otherwise

for some number r = 0, 1, 2, . . . , and our statement is equivalent to saying
that r = 1, i.e., that N has rank 17. This could, in principle, be checked
by computer, but it exceeds the computing power of implementations of
computer algebra softwares we could find.

Because of this, we simplified the problem as follows. Consider, instead,
D(3,3) (a projection of the knot 819 in Rolfsen’s table), and label its vertices
and faces as in Figure 2.

Put

F0 = F2(x, y1, y2, z1, z2, v),

F = F0(T ),

K = F (Q).
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(The notation means adjoining algebraically independent variables, i.e., fields
of rational functions.) The variables of F0 are simply the vertex variables
which occur in the definition of BOS cohomology; the variables T,Q are
related to the face variables by

f1f2 = T, f1 = Q.

It will also be convenient for our purposes to put

A =
1

1 + f1
=

1

1 +Q
, B =

1

1 + f2
=

Q

Q+ T
.

Denote by Tε,i,j , ε ∈ {0, 1}, i ∈ {1, 2}, j ∈ {1, 2, 3} the spanning tree of B(3,3)

obtained by omitting the edge eε and aij . Denote by T ′i,j , i, j ∈ {1, 2, 3} the
spannig tree obtained by omitting the edges a1i and a2j .

It will also be convenient to have matrix rows and columns indexed by
simple numbers, so put

u0 = T0,2,3, u1 = T0,2,2, u2 = T0,2,1,

u3 = T0,1,1, u4 = T0,1,2, u5 = T0,1,3,

u6 = T1,2,3, u7 = T1,2,2, u8 = T1,2,1,

u9 = T1,1,1, u10 = T1,1,2, u11 = T1,1,3

(these will correspond to columns) and

v1 = T ′1,1, v2 = T ′2,1, v3 = T ′3,1,

v4 = T ′1,2, v5 = T ′2,2, v6 = T ′3.2,

v7 = T ′1,3, v8 = T ′2,3, v9 = T ′3,3

(these will correspond to rows) of the {1, . . . , 9} × {0, . . . , 11} matrix M
of the differential Ψ of C0(D(3,3)). The entries of the matrix M are given
explicitly by

M1,0 = A+
1

1 + x
, M2,0 = A+

1

1 + xy1
,

M3,0 = A+
1

1 + xy1y2
,

M4,1 = A+
1

1 + xz1
, M5,1 = A+

1

1 + xy1z1
,

M6,1 = A+
1

1 + xy1y2z1
,

M7,2 = A+
1

1 + xz1z2
, M8,2 = A+

1

1 + xy1z1z2
,
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M9,2 = A+
1

1 + xy1p2z1z2
,

M1,3 = B + 1 +
1

1 + x
, M4,3 = B + 1 +

1

1 + xz1
,

M7,3 = B + 1 +
1

1 + xz1z2
,

M2,4 = B + 1 +
1

1 + xy1
, M5,4 = B + 1 +

1

1 + xy1z1
,

M8,4 = B + 1 +
1

1 + xy1z1z2
,

M3,5 = B + 1 +
1

1 + xy1y2
, M6,5 = B + 1 +

1

1 + xy1y2z1
,

M9,5 = B + 1 +
1

1 + xy1y2z1z2
.

Additionally, the entry Mi,6+j is obtained from the entry Mi,j , i = 0, . . . , 5
by replacing A by A+1, B+1 by B (to account for a change of orientation)
and the summand

1

1 + ζ

where ζ is any polynomial in x, y1, y2, z1, z2 by

1

1 + a/ζ

where

a = xy1y2z1z2v.

Unlisted entries Mi,j are defined to be 0.

3.2. Lemma. Consider the field F (Q,Q′) where Q,Q′ are algebraically in-
dependent over F . Let φ : F (Q) → F (Q,Q′) be identity on F , and let
φ(Q) = Q′. Let V be the intersection of the row space of M with 〈U6, . . . ,11 〉
where Ui denotes the row vector with 1 in the column corresponding to ui,
and 0’s in the other columns. Then dimF (Q)(V ) = 3. Additionally, let
w1, w2, w3 be a basis of V consisting of vectors for which there exist dif-
ferent i1, i2, i3 ∈ {6, . . . , 11} such that wj has ik’th coordinate equal to δkj ,

j, k ∈ {1, 2, 3}. Then

(4) r = 3− rankF (Q,Q′)

 w1 − φ(w1)
w2 − φ(w2)
w3 − φ(w3)

 .
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Proof. M is a submatrix of the matrix of differentials of C0(D(3,3,0)). Ex-
plicitly, we index things so that M is the {1, . . . , 9}× {0, . . . , 11} submatrix
of the {1, . . . 18} × {0, . . . , 17} matrix N . Again, we will denote the rows
of N by vi and columns by uj . Explicitly, in B(3,3,0), there are additional
spanning trees T2,i,j which are obtained by replacing e0 by e2 in T0,i,j . These
correspond to additional columns

u12 = T2,2,3, u13 = T2,2,2, u14 = T2,2,1,

u15 = T2,1,1, u16 = T2,1,2, u17 = T2,1,3.

There are also 9 additional spanning trees T ′′i,j obtained by replacing in T ′i,j
the edge e0 by e2. Let the row v9+i, i = 1, . . . , 9, be obtained from the row vi
by replacing T ′ with T ′′, thus obtaining 9 additional rows. The additional
nonzero entries of N are described as follows: The (i + 9, j + 12)-entry
(i = 1, . . . , 9, j = 0, . . . , 11) is obtained from the (i, j)-entry by replacing A,
B with A′, B′ where, in the field

K ′ = F (Q′),

A′ =
1

1 +Q′
, B′ =

Q′

Q′ + T
.

(One has Q′ = f1g, T/Q′ = f2/g where g is the face between e0 and e2.)
Now let N1 be the {1, . . . 9} × {0, . . . , 17} submatrix and let N2 be the

{10, . . . , 18}×{0, . . . , 17} submatrix. First note that the rank of each of the
matrices N1 and N2 is 9 by the calculation of the BOS cohomology of 819
in [3] (it is also verified by the computer-assisted calculation which we will
describe below). This implies that the space V defined in the statement has

dimF (Q)(V ) = 3.

Now let w1, w2, w3 be a basis as in the statement. By equality of row and
column rank, r is the rank of the F (Q,Q′)-space of 6-tuples (α1, . . . , α6) ∈
F (Q,Q′)6 such that

α1w1 + α2w2 + α3w3 = α4φ(w1) + α5φ(w2) + α6φ(w3).

Obviously, however, by the assumptions about wi, we must have

αi = α3+i, i = 1, 2, 3,

and the statement follows. �

Now to use this lemma, we first construct explicitly a nonzero element
w ∈ V which is of the form

w =
11∑
i=6

αiui, αi ∈ F0.
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This will show r ≥ 1. To construct w, let

X = V1 + V2 + V4 + V5,
Y = V1 + V2 + V7 + V8,
Z = V1 + V3 + V4 + V6,
T = V1 + V3 + V7 + V9

where we denote by Vi the i’th row vector of M . One sees immediately from
the definition of the row vectors Vi that X,Y, Z, T are linear combinations
of the vectors Uj , j = 0, . . . , 11 with coefficients in F0.

Now putting

p1 = M4,1 +M5,1 q1 = M2,4 +M5,4

p2 = M7,2 +M8,2 q2 = M2,4 +M8,4

p3 = M4,1 +M6,1 q3 = M3,5 +M6,5

p4 = M7,2 +M9,2 q4 = M3,5 +M9,5

(p1 and p3 are the u1-coordinates of X,Z respectively, p3 and p4 are the
u2-coordinates of Y, T respectively, q1 and q2 are the u4-coordinates of X,Y
respectively, and q3 and q4 are the u5-coordinates of Z, T respectively; those
are all the nonzero u1, u2, u4, u5 coordinates of X,Y, Z, T ).

Then one verifies by hand that
p1p4
p2p3

=
q1q4
q2q3

.

This means that in the vector

w = X +
q2
q1
Y +

p3
p1
Z +

p4
p2

q2
q1
T,

the u1, u2, u4, u5 coordinates vanish. One then checks, by hand again, that
the u0 and u3 coordinates vanish as well, thus proving the desired statement
about w.

Proving that r ≤ 1 is done by using Lemma 3.2. We did this as follows:
Since we are hoping to detect the absence of a relation at a generic point, it is
possible to work at a special point (since a relation absent at a special point
cannot occur at the generic point, using the argument made in detail at the
end of [3]). Thus, we re-wrote the matrix M over the ring R = F0[A,B]
where F0 = F2(t), setting

x = t, y1 = t2, y2 = T, z1 = t4,

z2 = t, v = t6, a = t15.

(The choices of the exponents are arbitrary, with the understanding that
too special choices could create unwanted special relations; a field of ra-
tional functions in a single variable was chosen because computer algebra
systems seem to work much more efficiently in that setting.) We then used
Sage to execute manually the Buchberger algorithm for finding a Gröbner
basis of 〈V1, . . . , V9〉 ver the ring R, with lexicographic ordering u0 > u1 >
· · · > u11 > A,B and degree-lex A > B order in A,B (the latter of which
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was chosen because Sage naturally uses that ordering when working with
F0[A,B]). The main reason we worked manually is to be able to use heuris-
tics (such as identifying the vector w above) for speeding up the algorithm.
In 70 easy steps, the Gröbner basis elements we found had leading terms

u0, u1, u2, u5, AB2u6, A2u6,

u7, Au8, B2u8, A2B2u9.

Note that for our purposes, having a Gröbner basis is actually irrelevant;
again, it is merely a tool for performing Gauss elimination over the fraction
field of R which, when done by brute force, would exceed the computational
power of our current implementation of Sage. We may then get w1, w2, w3 by
taking w and our Gröbner basis vectors with leading terms Au8 and A2B2u9
and bringing them to reduced row echelon form, using the substitution

A =
1

1 +Q
, B =

Q

Q+ T
, T = t10.

Again, the choice of T was arbitrary, hoping to avoid a special relation. As it
turns out, when construction the reduced row echelon form, we can actually
ignore w, since we already know it results in a zero row.

We used Sage to find by direct computation that w2−φ(w2), w3−φ(w3)
are linearly independent (this took several minutes), thus concluding that
r = 1. This concludes the proof of Proposition 3.1.

4. Other links with nontrivial BOS cohomologies and

branched double covers with interesting ĤF -homologies

4.1. Proposition. We have

rank(H i(C0(D(3,3,k)))) =

{
1 for i = 1, 2

0 else.

Proof. We proceed by induction on k. For k = 0, this is the statement
of Proposition 3.1. Suppose the statement is true for a given k. Consider
the long exact sequence for the cohomology of C0(D(3,3,k+1)) obtained by
resolving the edge a3,k+1. Then the 1-resolution is actually an unlink with
2 components, and hence has 0 BOS cohomology. On the other hand, the
0-resolution is D(3,3,k). Thus, from (3) we obtain

H i(C0(D(3,3,k+1))) ∼= H i(C0(D(3,3,k))),

and the induction step is complete. �

4.2. Corollary. We have

rank(H i(C0(D(3,6)))) =

{
1 for i = 1, 2

0 else.
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Proof. Consider the long exact sequence (3) form D(3,3,3) resolving the edge
e0. The 0-resolution is D(3,6), the 1-resolution is an unlink with 2 compo-
nents, hence has trivial BOS cohomology. We conclude that

H i(C0(D(3,3,3))) ∼= H i(C0(D(3,6))),

and the statement follows from Proposition 4.1. �

Unfortunately, all the examples of links for which we have computed non-
trivial BOS cohomology so far have determinant 0, so we cannot use the

BOS spectral sequence to make conclusions about ĤF of their branched
double covers. Consider now the black graph Bk = B(Ek), k ≥ 2, depicted
in Figure 3. Denote the corresponding link by Lk. This is a knot if k ≥ 3 is
odd and a link with two components when k ≥ 2 is even.

4.3. Theorem. For k ≥ 2,

rankH i(C0(Ek)) =


1 for i = 3/2, 5/2

k − 2 for i = 7/2

0 else.

Proof. Resolve the projection Ek at the edge a. The 0-resolution E0k is
D(3,3,k+1) after undoing a single R2 move, thus,

H i(C0(D(3,3,k+1))) ∼= H i+1/2(C0(E0k )),
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Figure 4

e1

ek

Figure 5

i.e.,

rankH i(C0(E0k )) =

{
1 for i = 3/2, 5/2

0 else.

On the other hand, the 1-resolution can be processed as follows: An R3
move combined with undoing a positive (nonheight changing) R1 move gives
a move shown in Figure 4.

Undoing three R2 moves and three positive R1 moves, we obtain the black
graph shown in Figure 5 and, after undoing two R2 moves, we obtain a cycle
of k− 2 height 0 edges when k > 2, and an unlink of two components when
k = 2.

We have then

rankH i(C0(E1k )) =

{
k − 2 for i = 3

0 else.

For k = 2, we are therefore done. For k > 2, we are done if we can show the
following statement. �
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4.4. Lemma. The connecting map

H i(C0(E0k ))
δ−−−→ H i+1/2(C0(E1k ))

of (3) is 0 for all i.

Proof. For k = 3, E3 is actually a projection of the mirror of T (7, 3), whose

ĤF has rank 3 by [8]. Therefore, we must have δ = 0 by the Baldwin–
Ozsváth–Szabó spectral sequence.

Now our proof will be by induction on k ≥ 3. Consider, for k > 3, the

0-resolutions E(1)k , E(2)k of Ek at ek−1, ek. Then every spanning tree of the

black graph of Ek gives rise to a spanning tree of E(i)k for i = 1 or i = 2, and
the spanning trees which give rise to both give rise to spanning trees of the

0-resolution E(12)k at both ek−1, ek.
We have, then, a “Mayer–Vietoris exact sequence”

(5) 0 // mc0(Ek)
ι // C0(E(1)k )⊕ C0(E(2)k ) // C0(E(12)k ) // 0.

One has, of course,

C0(E(i)k ) ∼= C0(Ek−1),

C0(E(12)k ) ∼= C0(Ek−2).
Moreover, the maps (5) induce maps of the long exact sequences correspond-
ing to resolution at the edge a. In particular, we obtain a commutative
square

(6)

H i(C0(E0k ))

ι∗ ��

δ // H i+1/2(C0(E1k ))

ι∗��

H i(C0(E(1)0k ))
⊕

H i(C0(E(2)0k ))

δ⊕δ//
H i+1/2(C0(E(1)1k ))

⊕
H i+1/2(C0(E(2)1k )).

By the induction hypothesis, the bottom row satisfies δ ⊕ δ = 0, while the
left column of (6) is injective by our computation of the 0-resolutions (the
two components omit the (k−3)’rd and (k−2)’nd summands of F⊕k where
F is the ground field, respectively). Since the left column of (6) is injective,
the top row then satisfies δ = 0, as claimed. This concludes the proof of
Lemma 4.4 and hence of Theorem 4.3. �

4.5. Theorem. For k ≥ 3, we have

rank ĤF (Σ(Lk)) = k,

while

det(Lk) = k − 2.
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Proof. The computation of the determinant follows from Theorem 4.3 (since
the determinant is, up to sign, the trace of BOS cohomology). Since

det(Lk) 6= 0,

the BOS spectral sequence then applies, with the E3-term given by The-
orem 4.3. By sparsity, no differential is possible, and hence the spectral
sequence collapses to E3 in this case. �

Comment. Note that while Theorems 4.3, 4.5 do not provide examples of
noncollapse of the BOS spectral sequence, they exhibit interesting behavior
in the sense of an “extension”: The BOS cohomology of Lk has nontrivial
elements in degrees 3/2 and 7/2, which are congruent modulo 2.

4.6. Proposition. For all but finitely many values of k > 3, the link Lk
(knot when k is odd) is hyperbolic

Proof. The moves converting E3 to the mirror of the standard knot projec-
tion of T (7, 3) can be made in such a way that the crossing x corresponding to
the edge e2 in Figure 3 is not involved in any Reidemeister move. Form a link
M3 by adding an unknotted link component ` to L3 encircling the crossing
x. Using SnapPea, the link M3 is hyperbolic with volume 6.551743287888.
Now Lk for k > 3 can be obtained from M3 by performing hyperbolic Dehn
filling on the link component `. Because of this, all but finitely many of the
links Lk are hyperbolic by Thurston’s theorem [9] (see also [1], Section 3).
�

Comment. The only example of k > 3 we know for which Lk is not hy-
perbolic is k = 5. The knot L5 is actually the mirror image of T (8, 3). The
Jones polynomial of the mirror of Lk, k ≥ 3, is

t(k+9)/2

(
1 + t2 − t9 1 + tk−4

1 + t

)
.
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