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On the integrability of
co-CR quaternionic structures

Radu Pantilie

Abstract. We characterise the integrability of any co-CR quaternionic
structure in terms of the curvature and a generalized torsion of the
connection.
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Introduction

The twistor spaces emerged in differential geometry through the notions of
anti-self-dual structures [1] and the three-dimensional Einstein–Weyl spaces
[2]. Up to conjugations, the corresponding twistor spaces are characterised
as complex manifolds endowed with locally-complete families [5] of embed-
ded (Riemann) spheres with normal bundles 2O(1) and O(2), respectively,
where O(j) denotes the holomorphic line bundle of Chern number j (∈ Z)
over the sphere. There are, also, the quaternionic manifolds [15] whose
twistor spaces are complex manifolds endowed with locally-complete fami-
lies of spheres with normal bundles 2kO(1), (k ∈ N). Another construction
of twistor spaces is provided by [6] which works for any three-dimensional
conformal manifold and which produces a CR manifold; moreover, the CR
structure of the twistor space is obtained through an embedding as a real
hypersurface into a complex manifold if and only if the given conformal
structure is real-analytic.

In [9] and [10] (see, also, [12]) the unification of the above mentioned clas-
sical geometric structures was initiated, through the notions of CR quater-
nionic and co-CR quaternionic manifolds. For the reader’s convenience we
briefly describe these notions here, up to integrability. As this paper deals,
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mainly, with co-CR quaternionic manifolds, details about these will be given
in Section 2, below. As for the CR quaternionic manifolds, we refer the
reader to [9], for more information.

Firstly, recall that a quaternionic vector bundle is a vector bundle E whose
structural group is the Lie group Sp(1) ·GL(k,H ) acting on the typical fibre
Hk by

(
±(a,A), q

)
7→ aqA−1, for any ±(a,A) ∈ Sp(1)·GL(k,H ) and q ∈ Hk.

Then the morphism of Lie groups Sp(1) ·GL(k,H )→ SO(3), ±(a,A) 7→ ±a,
induces an oriented Riemannian vector bundle of rank three whose sphere
bundle Z is the bundle of admissible linear complex structures on E. Note
that, any J ∈ Z is a linear complex structure on Eπ(J), where π : Z →M is
the projection.

Now, an almost CR quaternionic structure on a manifold M is a pair
(E, ι), where E is a quaternionic vector bundle over M , and ι : TM → E
is an injective morphism of vector bundles such that, for any admissible
linear complex structure J on E, we have im ιπ(J) + J

(
im ιπ(J)

)
= Eπ(J),

where, as above, π : Z → M is the projection of the bundle of admissible
linear complex structures on E. If dimM = 3 then an almost CR quater-
nionic structure on M is just a conformal structure (this comes from the
fact that, for vector bundles of rank four, a linear quaternionic structure is
just an oriented linear conformal structure). Also, an almost CR quater-
nionic structure (E, ι) with ι an isomorphism is just an almost quaternionic
structure.

Dualizing, an almost co-CR quaternionic structure on M is a pair (E, ρ),
where E is a quaternionic vector bundle over M , and ρ : E → TM is a
surjective morphism of vector bundles such that, for any admissible linear
complex structure J on E, we have kerρπ(J)∩J

(
kerρπ(J)

)
= {0}. Note that,

an almost co-CR quaternionic structure (E, ρ) with ρ an isomorphism is just
an almost quaternionic structure.

It may happen for a manifold M to be endowed with ‘compatible’ al-
most CR quaternionic and co-CR quaternionic structures. This happens
precisely when M is endowed with a pair (E, V ), where E is a quaternionic
vector bundle over M , such that V, TM ⊆ E are vector subbundles with
E = V ⊕ TM and JVπ(J) ⊆ Tπ(J)M , for any admissible J on E. Note that,
(E, ι) and (E, ρ) are almost CR quaternionic and almost co-CR quaternionic
structures on M , where ι : TM → E and ρ : E → TM are the inclusion
and the projection, respectively. Moreover, any admissible J on E induces a
linear f -structure on Tπ(J)M , that is, a linear map F satisfying F 3 +F = 0,

characterised by kerF = JVπ(J) and ker
(
F + i

)
= TC

π(J)M ∩
(
ker

(
J + i)

)
.

Therefore we call (V,E) an almost f -quaternionic structure (and, in this
setting, Z can be, also, seen as the bundle of admissible linear f -structures
on M).

The main source of CR quaternionic manifolds is provided by (certain)
submanifolds of quaternionic manifolds (for example, any hypersurface of a
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quaternionic manifold is canonically endowed with a CR quaternionic struc-
ture). Moreover, assuming real-analiticity, any CR quaternionic manifold
is obtained this way [9] (in dimension three, this reduces to a result of [6],
mentioned above).

As for the co-CR quaternionic manifolds, up to now, we have the following
classes of examples:

(a) The three-dimensional Einstein–Weyl spaces.
(b) The quaternionic manifolds (in particular, the anti-self-dual mani-

folds).
(c) The local orbit spaces of any nowhere zero quaternionic vector field

on a quaternionic manifold.
(d) A principal bundle built over any quaternionic manifold (e.g., S4n+3);

the corresponding twistor space is the product of the sphere with
the twistor space of the quaternionic manifold (CP 1 × CP 2n+1 for
S4n+3).

(e) Vector bundles over any quaternionic manifold; the twistor spaces
are holomorphic vector bundles over the twistor space of the quater-
nionic manifold.

(f) The Grassmannian of oriented three-dimensional vector subspaces
of the Euclidean space of dimension n + 1; the twistor space is the
nondegenerate hyperquadric in the n-dimensional complex projec-
tive space, n ≥ 3.

(g) The complex manifold MV formed of the isotropic two-dimensional
vector subspaces of any complex symplectic vector space V ; the
twistor space is MV itself.

(h) The space of holomorphic sections of P
(
O ⊕ O(n)

)
induced by the

holomorphic sections of O(m)⊕O(m+ n) which intertwine the an-
tipodal map and the conjugation; the twistor space is P

(
O⊕O(n)

)
,

where m,n ∈ N are even, n 6= 0.
(i) The space of holomorphic maps of a fixed odd degree from CP 1 to

CP 1 which commute with the antipodal map; the twistor space is,
now, CP 1 × CP 1.

The details for (d), (f), (g) can be found in [10], for (c), (h), (i) in [12],
whilst the details for (e) will be given in Section 2, below.

In this paper, we settle the problem of finding a useful characterisation
for the integrability of the co-CR quaternionic structures (the corresponding
problem for CR quaternionic structures was settled in [9]). For this, we use
a seemingly new generalized torsion associated to any connection on a vector
bundle E, over a manifold M , endowed with a morphism ρ : E → TM (if
ρ is an isomorphism this reduces to the classical torsion of a connection on
a manifold). This is studied in Section 1, where we show that it provides a
necessary tool to handle the integrability of distributions defined on Grass-
mannian bundles.
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In Section 2, we give the main integrability result (Theorem 2.2), and its
first applications. For example, there we prove (Theorem 2.3) that the fol-
lowing holds for any holomorphic vector bundle Z, over the twistor space Z
of a quaternionic manifold M , endowed with a conjugation covering the con-
jugation of Z : if the Birkhoff–Grothendieck decomposition of Z restricted to
each twistor line contains only terms of Chern number m ≥ 1 then Z is the
twistor space of a co-CR quaternionic manifold, built on the total space of
a vector bundle over M . This gives example (e), above, and, in particular,
for m = 1 it reduces to [15, Theorem 7.2].

As already mentioned, an important particular type of co-CR quater-
nionic manifolds is provided by the f -quaternionic manifolds. These are
endowed with a CR quaternionic structure and a co-CR quaternionic struc-
ture, which are compatible. Furthermore, the twistor space of the latter has
the property that the Birkhoff–Grothendieck decomposition of the normal
bundle of each twistor sphere contains only terms whose Chern numbers
belong to {1, 2}. As for examples, all of the (a), (b), (d), (f), and (g), above,
give such manifolds. Also, the same applies to example (e) (Theorem 2.3) if
m = 2.

In Section 3, we apply Theorem 2.2, to study the integrability of f -
quaternionic structures. This leads to Corollary 3.5 which gives a new
proof, and slightly corrects [10, Theorem 4.9]. Moreover, along the way,
we obtain Theorem 3.7 by which, under generic dimensional conditions, any
manifold endowed with an almost f -quaternionic structure and a compati-
ble torsion free connection is, locally, a product of a hypercomplex manifold
with (ImH)k, for some k ∈ N.

I am grateful to C. R. LeBrun and to the referee for useful comments and
suggestions which improved the presentation of the paper.

1. A generalized torsion

We work in the smooth and the complex-analytic categories (in the latter
case, by the tangent bundle we mean the holomorphic tangent bundle). For
simplicity, sometimes, the bundle projections will be denoted in the same
way, when the base manifold is the same.

Let E be a vector bundle, endowed with a connection ∇, over a manifold
M . Suppose that we are given a morphism of vector bundles ρ : E → TM .

Then, firstly, note that there exists a unique section T of TM ⊗ Λ2E∗

such that

(1.1) T (s1, s2) = ρ ◦
(
∇ρ◦s1s2 −∇ρ◦s2s1

)
− [ρ ◦ s1, ρ ◦ s2]

for any (local) sections s1 and s2 of E; we call T the torsion (with respect
to ρ) of ∇.

Let F and G be the typical fibre and structural group of E, respectively;
assume ∇ compatible with G. Denote by (P,M,G) the frame bundle of E
and let H ⊆ TP be the principal connection on P corresponding to ∇.
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On composing the projection P×F → E with ρ, we obtain a morphism of
vector bundles from P × F to TM which covers the projection π : P →M .
Consequently, this morphism factorises as a morphism of vector bundles,
over P , from P × F to H followed by the canonical morphism from

H
(
= π∗(TM)

)
onto TM . Thus, if ξ ∈ F the corresponding (constant) section of P × F
determines a horizontal vector field B(ξ) on P .

Note that, B(ξ) is characterised by dπ
(
B(ξ)u

)
= ρ(uξ), for any u ∈ P ,

and the fact that it is horizontal (compare [4, p. 119]). However, unlike the
classical case B(ξ) may have zeros; indeed B(ξ) is zero at u ∈ P if and only
if ρ(uξ) = 0. Also, H is generated as a vector bundle by all B(ξ), ξ ∈ F , if
and only if ρ is surjective.

Furthermore, B : F → Γ(TP ) is G-equivariant. Indeed, if we denote by
Ra (the differential of) the right translation by some a ∈ G on P , we have

dπ
((
Ra

(
B(ξ)

))
u

)
= dπ

(
B(ξ)ua−1

)
= ρ

(
u(a−1ξ)

)
.

Hence, Ra
(
B(ξ)

)
= B(a−1ξ), for any a ∈ G and ξ ∈ F ; in particular,

[A,B(ξ)] = B(Aξ) for any A ∈ g and ξ ∈ F , where g is the Lie algebra
of G and we denote in the same way its elements and the corresponding
fundamental vector fields on P (compare [4, Proposition III.2.3]).

Remark 1.1. Let ξ ∈ F and let (u(t))t be an integral curve of B(ξ); denote
c = π◦u, s = uξ. Then c is a curve in M , and s is a section of c∗E satisfying
ρ ◦ s = ċ and (c∗∇)(s) = 0. These curves s lead to a natural generalization
of the notion of geodesic of a connection on a manifold. Note that, for any
e ∈ E there exists a unique germ of such a curve s with s(0) = e.

In this setting, Cartan’s first structural equation is replaced by the fol-
lowing fact.

Proposition 1.2. For any u ∈ P and ξ, η ∈ F we have

(1.2) T (uξ, uη) = −dπ
(
[B(ξ), B(η)]u

)
.

Proof. Let u0 ∈ P and let u be a local section of P , defined on some open
neighbourhood U of x0 = π(u0), such that ux0 = u0 and the local connection
form Γ of H , with respect to u, is zero at x0.

If ξ ∈ F then, under the isomorphism P |U = U ×G corresponding to u,
we have B(ξ)ua =

(
ρ(uaξ),−Γ

(
ρ(uaξ)

)
a
)
, for any a ∈ G.

By using the fact that Γx0 = 0, we quickly obtain that, at u0, both sides
of (1.2) are equal to −[ρ(uξ), ρ(uη)]x0 , for any ξ, η ∈ F . �

Also, we obtain the following natural generalization of the first Bianchi
identity.

Proposition 1.3. Let E be a vector bundle, over M , and suppose that there
exists a morphism of vector bundles ρ : E → TM .
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Then the curvature form R of any torsion free connection on E satisfies

(1.3) ρ

(
R
(
ρ(e1), ρ(e2)

)
e3 +R

(
ρ(e2), ρ(e3)

)
e1 +R

(
ρ(e3), ρ(e1)

)
e2

)
= 0,

for any e1, e2, e3 ∈ E.

Proof. Let Ω be the curvature form of the corresponding principal connec-
tion on the frame bundle P of E (we think of Ω as a two-form on P with
values in the Lie algebra of the structural group of E; see [4]). Equation
(1.3) is equivalent to the following

(1.4) B

(
Ωu

(
B(ξ), B(η)

)
µ+ Ωu

(
B(η), B(µ)

)
ξ + Ωu

(
B(µ), B(ξ)

)
η

)
u

= 0,

for any u ∈ P and ξ, η, µ in the typical fibre F of E.
By using the fact that the connection is torsion free, we obtain that, for

any u ∈ P and ξ, η, µ ∈ F , the horizontal part of
[
B(µ), [B(ξ), B(η)]

]
u

is

B
(
Ωu

(
B(ξ), B(η)

)
µ
)
u
. Therefore (1.4) is just the horizontal part, at u, of

the Jacobi identity, for the usual bracket, applied to B(ξ), B(η), B(µ). �

Let S be a submanifold of a Grassmannian of F on which G acts transi-
tively. Then Z = P ×G S is a subbundle of a Grassmannian bundle of E on
which ∇ induces a connection H ⊆ TZ.

Suppose that for any p ∈ Z the restriction of ρ to p is an isomorphism
onto some vector subspace of Tπ(p)M , where π : Z → M is the projection.
Then we can construct a distribution C on Z by requiring C ⊆ H and
dπ(Cp) = ρ(p), for any p ∈ Z.

Proposition 1.4. The following assertions are equivalent, where R and T
are the curvature form and the torsion of ∇, respectively:

(i) C is integrable.
(ii) R

(
Λ2
(
ρ(p)

))
(p) ⊆ p and T

(
Λ2p

)
⊆ ρ(p), for any p ∈ Z.

Consequently, if ∇ is torsion free and C is integrable then

(1.5) R
(
ρ(e1), ρ(e2)

)
e3 +R

(
ρ(e2), ρ(e3)

)
e1 +R

(
ρ(e3), ρ(e1)

)
e2 = 0,

for any p ∈ Z and e1, e2, e3 ∈ p.

Proof. Let (P,M,G) be the frame bundle of E, and let H be the isotropy
subgroup of G at some p0 ∈ S. Then Z = P/H, and let σ : P → Z be the
projection.

If we denote CP = (dσ)−1(C) then, as σ is a surjective submersion, we also
have C = (dσ)(CP ). Therefore C is integrable if and only if CP is integrable.

Now, note that CP is generated by all B(ξ), with ξ ∈ p0 and all (the
fundamental vector fields) A ∈ h, where h is the Lie algebra of H. Hence, CP
is integrable if and only if [B(ξ), B(η)] is a section of CP , for any ξ, η ∈ p0;
equivalently, Ωu

(
B(ξ), B(η)

)
∈ h and dπ

(
[B(ξ), B(η)]u

)
∈ ρ(up0) for any

u ∈ P and ξ, η ∈ p0. Together with Cartan’s second structural equation and
Proposition 1.2, this completes the proof. �
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Note that, the last statement of Proposition 1.4 could have been proved
directly by observing that, under that hypothesis, the leaves of C are, locally,
projected by π onto submanifolds of M on which ∇ induces a torsion free
connection.

In the following definition, the notations are as in Proposition 1.4.

Definition 1.5.

(1) We say that ∇ satisfies the first Bianchi identity if it is torsion free
and (1.5) holds for any e1, e2, e3 ∈ E.

(2) We say that ∇ satisfies the first Bianchi identity, with respect to Z,
if it is torsion free and (1.5) holds for any p ∈ Z and e1, e2, e3 ∈ p.

We shall, also, need the following definition.

Definition 1.6 (see [8]). A Lie algebroid on M is a triple (E, [·, ·], ρ), where
E is a vector bundle over M , ρ : E → TM is a morphism of vector bundles,
and [·, ·] is a Lie bracket on the sheaf of sections of E, satisfying:

(1) [s1, fs2] = (ρ ◦ s1)(f) s2 + f [s1, s2], for any (local) sections s1 and s2
of E, and any function f on M .

(2) ρ ◦ [s1, s2] = [ρ ◦ s1, ρ ◦ s2], for any sections s1 and s2 of E.

Let E be a vector bundle, endowed with a connection ∇, over a manifold
M . Suppose that ρ : E → TM is a morphism of vector bundles and let
[s1, s2] = ∇ρ◦s1s2 −∇ρ◦s2s1, for any sections s1 and s2 of E.

Proposition 1.7. The following assertions are equivalent:

(i) ∇ satisfies the first Bianchi identity.
(ii) (E, [·, ·], ρ) is a Lie algebroid.

Proof. This is a straightforward computation. �

2. On the integrability of co-CR quaternionic structures

A quaternionic vector bundle is a vector bundle E whose structural group
is Sp(1) ·GL(k,H ) acting on the typical fibre Hk by

(
±(a,A), q

)
7→ aqA−1,

for any ±(a,A) ∈ Sp(1) ·GL(k,H ) and q ∈ Hk. Then the morphism of Lie
groups Sp(1) ·GL(k,H ) → SO(3), ±(a,A) 7→ ±a, induces an oriented Rie-
mannian vector bundle of rank three whose sphere bundle Z is the bundle
of admissible linear complex structures on E; we shall denote by π : Z →M
the projection of this bundle.

An almost co-CR quaternionic structure on M is a pair (E, ρ) where E
is a quaternionic vector bundle over M and ρ : E → TM is a surjective
morphism of vector bundles whose kernel contains no nonzero subspace pre-
served by some admissible linear complex structure of E.

By duality, we obtain the notion of almost CR quaternionic structure.
Let (M,E, ρ) be an almost co-CR quaternionic manifold and let ∇ be a

compatible connection on E (that is, ∇ is compatible with the structural
group of E). Then we can construct a complex distribution C on the bundle
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Z of admissible linear complex structures of E, as follows. Firstly, for any
J ∈ Z, let BJ be the horizontal lift of ρ

(
ker(J+i)

)
, with respect to ∇. Then

C = (ker dπ)0,1 ⊕ B is a complex distribution on Z such that C + C = TCZ;
that is, C is an almost co-CR structure on Z.

Now, we can make the following [10]:

Definition 2.1. We say that (E, ρ) is integrable, with respect to ∇, if C is
integrable; then (E, ρ,∇) is a (integrable) co-CR quaternionic structure.

A co-CR quaternionic manifold is a manifold endowed with a co-CR
quaternionic structure.

Let (M,E, ρ,∇) be a co-CR quaternionic manifold. Then C ∩ C is the
complexification of (the tangent bundle of) a foliation F on Z; moreover,
with respect to it, C is projectable onto complex structures on the local
leaf spaces of F . If there exists a surjective submersion πZ : Z → Y such
that ker dπY = F , whose restriction to each fibre of π is injective, and C
is projectable with respect to πY (the latter condition is unnecessary if the
fibres of πY are connected) then the complex manifold

(
Y,dπY (C)

)
is the

twistor space of (M,E, ρ,∇).

Z
πY

��

π

  

Y M

Note that, if ρ is an isomorphism then we obtain the classical notion of
quaternionic manifold [15] (see [3, Remark 2.10(2)]).

Also, each fibre of π is holomorphically embedded, through the restriction
of πY , into Y . Then, for each x ∈ M , the embedded sphere πY

(
π−1(x)

)
is

the (real) twistor sphere corresponding to x. Further, the map Z → Y ×M ,
z 7→

(
πY (z), π(z)

)
, is an embedding.

In this context, a twistorial map ( [13], [7]) between the co-CR quater-
nionic manifolds M and N , with twistor spaces YM and YN , respectively, is
a map ϕ : M → N which corresponds to a holomorphic map Φ : YM → YN .
By this we mean, that the map Φ×ϕ gives by restriction a map between the
corresponding bundles of admissible linear complex structures over M and
N , respectively; in particular, ϕ(x) = y if and only if Φ maps the twistor
sphere corresponding to x ∈ M diffeomorphically onto the twistor sphere
corresponding to y ∈ N .

More information on (co-)CR quaternionic manifolds can be found in [9],
[10], [11], [12].

Theorem 2.2. Let (M,E, ρ) be an almost co-CR quaternionic manifold and
let Z be the bundle of admissible linear complex structures on E. Let ∇ be
a compatible connection on E.

The following assertions are equivalent, where R and T are the curvature
form and the torsion of ∇, respectively:
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(i) (E, ρ,∇) is integrable.
(ii) R

(
Λ2
(
ρ
(
EJ

)))(
EJ

)
⊆ EJ and T

(
Λ2

(
EJ

))
⊆ ρ

(
EJ

)
, for any J ∈ Z,

where EJ = ker(J + i).

Proof. Assuming real-analyticity, this follows quickly from Proposition 1.4,
after a complexification. In the smooth category, this follows from an ex-
tension of Proposition 1.4, similar to [9, Theorem A.3]. �

Let M be a quaternionic manifold, dimM = 4k, endowed with a torsion
free compatible connection. Denote by L the complexification of the line
bundle overM characterised by the fact that its 4k tensorial power is Λ4kTM
(we use the orientation on M compatible with all of the admissible linear
complex structures on it).

Then, at least locally, we have TCM = H ⊗ W , where H and W are
complex vector bundles of rank 2 and 2k, respectively, and the structural
group of H is SL(2,C) (H and W exist globally if and only if the vector
bundle generated by the admissible linear complex structures on M is spin).

Denote H ′ = (L∗)k/k+1 ⊗ H. Then H ′ \ 0 is endowed with a natural
hyper-complex structure ([15]; see [14]), such that the projection onto M
is twistorial. In particular, on endowing H ′ \ 0 with one of the admissible
complex structures (corresponding to some imaginary quaternion of length
1) then H ′ \ 0 is the total space of a holomorphic principal bundle over the
twistor space Z of M , with group C \ {0}. We shall denote by L the dual of
the corresponding holomorphic line bundle over Z; note that, if m is even
then Lm is globally defined. For example, if M = HP k then L is just the
hyperplane line bundle over CP 2k+1.

Now, let Um = �m(H ′)∗, where � denotes the symmetric product, m ∈ N.
If m is even then Um is globally defined and is the complexification of

a (real) vector bundle which will be denote in the same way (note that,

Lk/k+1 ⊗ U2 is just the oriented Riemannian vector bundle of rank three
generated by the admissible linear complex structures on M). Let F be a
vector bundle over M endowed with a connection whose (0, 2) components
of its curvature, with respect to any admissible linear complex structure
on M , are zero. We endow F = (π∗F )C with the (Koszul–Malgrange)
holomorphic structure determined by the pull back of the connection on F
and the complex structure of Z.

If m is odd then Um is a hypercomplex vector bundle. Therefore if F is a
hypercomplex vector bundle over M then Um⊗F is the complexification of a
vector bundle which will be denoted in the same way; in the tensor product
Um and F are endowed with I1 and J1, respectively, whilst the conjugation
on Um⊗F is I2⊗J2, where Ii and Ji, i = 1, 2, 3, give the linear hypercomplex
structures of Um and F , respectively. Suppose that F is endowed with a
compatible connection whose (0, 2) components of its curvature, with respect
to any admissible linear complex structure on M , are zero. On endowing F
with J1, let F = π∗F endowed with the holomorphic structure determined
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by the pull back of the connection on F and the complex structure of Z.
Before giving our next result, recall the classical Birkhoff–Grothendieck

decomposition, according to which any holomorphic vector bundle over the
(Riemann) sphere is of the form O(a1) ⊕ · · · ⊕ O(ar), where a1, . . . , ar are
integers with a1 ≤ · · · ≤ ar, and O(j) denotes the holomorphic line bundle
of Chern number j over the sphere.

In the next result m ∈ N \ {0}, and, note that, for m = 1 it gives [15,
Theorem 7.2],

Theorem 2.3.

(a) There exists a natural co-CR quaternionic structure on the total
space of Um ⊗ F whose twistor space is Lm ⊗F .

(b) Conversely, let Z be a holomorphic vector bundle over Z such that:
(i) The Birkhoff–Grothendieck decomposition of Z restricted to each

twistor line contains only terms of Chern number m.
(ii) Z is endowed with a conjugation covering the conjugation of Z.

Then Z is the twistor space of a co-CR quaternionic manifold, ob-
tained as in (a).

Proof. For simplicity, we work in the complex-analytic category. Thus,
in particular, at least locally, a (complex-)quaternionic vector bundle is a
bundle which is the tensor product of a vector bundle of rank 2 and another
vector bundle; for example, on denoting V = Lk/k+1 ⊗W , we have

TM = U∗1 ⊗ V.

Also, let E = (Um−2 ⊕ Um)⊗ F , with U−1 the (trivial) zero bundle over
M . As Um−2 ⊕ Um = U1 ⊗ Um−1, we have E = U1 ⊗ Um−1 ⊗ F , and, in
particular, E is a quaternionic vector bundle. Furthermore, by using the
fact that the structural group of Lk/k+1 ⊗ U∗1 is SL(2,C), we obtain that

U1 = U∗1 ⊗ L2k/k+1. Hence, also, E ⊕ TM is a quaternionic vector bundle.
By using the induced connection on Um ⊗ F we obtain

T (Um ⊗ F ) = π∗(Um ⊗ F )⊕ π∗(TM),(2.1)

π∗(E ⊕ TM) = T (Um ⊗ F )⊕ π∗(Um−2 ⊗ F ),

where π : Um ⊗ F →M is the projection.
Thus, π∗(E⊕TM) and the projection ρ from it onto T (Um⊗F ) provide an

almost co-CR quaternionic structure on Um ⊗ F . Furthermore, the connec-
tions on M and F induce a compatible connection ∇ on π∗(E⊕TM), which
preserves the decomposition given by the second relation of (2.1). Thus, ∇
is flat when restricted to the fibres of Um ⊗ F , whilst if X ∈ π∗(TM) then
∇X is given by the pull back of the connection on E ⊕ TM ; in particular,
if X and Y are pull backs of local vector fields on M then ∇XY is the pull
back of the covariant derivative of dπ(Y ) along dπ(X).

We have Um = �mU1, where � denotes the symmetric product. Also,
each e ∈ U1 may be extended to a local section of U1 whose covariant
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derivative is zero along {e ⊗ f | f ∈ V } (this is the reason for which the

‘tensorisation’ with (L∗)k/k+1 is needed).
In this setting, the bundle of admissible linear complex structures on M

is replaced by P (U∗1 ) so that if J ‘corresponds’ to [e], for some e ∈ U∗1 , then
ker(J + i) corresponds to the space {e ⊗ f | f ∈ V }. Then, on denoting
E = π∗(E ⊕ TM), for any nonzero e ∈ U1, we have that ρ(Ee) is isomorphic
to the direct sum of {e ⊗ f | f ∈ V } and the tensor product of the corre-
sponding fibre of F with the space of polynomials from Um = �mU1 which
are divisible by e.

To verify that condition (ii) of Theorem 2.2 is satisfied we shall, also, use
the fact that ∇ restricted to each fibre of Um ⊗ F is flat. This and the
fact that M is quaternionic (and endowed with a torsion free compatible
connection) quickly implies that the curvature form of ∇ satisfies (ii) of
Theorem 2.2. For the torsion T , it is sufficient to check the condition on
pairs of local sections A,X and X,Y from Ee with A induced by a section
of E and X,Y induced by sections of TM , where e ∈ U1. Then we have
T (A,X) = −ρ(∇XA) − [ρ(A), X] and T (X,Y ) is the ‘vertical’ component
of −[X,Y ]; in particular, T (X,Y ) is determined by the curvature form of
Um ⊗ F , applied to (X,Y ).

Locally, we may assume L trivial so that U1 = U∗1 but, note that, this
isomorphism does not preserve the connections (the connection on U1 is
just the dual of the connection on U∗1 ). Then we may choose (e1, e2) a lo-
cal frame for U∗1 such that it corresponds to (e2,−e1), where (e1, e2) is the
dual of (e1, e2), and such that the covariant derivative of e1 is zero along
{e1 ⊗ f | f ∈ V }. Thus, we have to check that T (A,X) and T (X,Y ) are
contained by ρ(Ee1), where A is the pull back of the tensor product of a
local section of F and a polynomial of degree m which is divisible by e2,
whilst X = π∗(e1 ⊗ u) and Y = π∗(e1 ⊗ v), with u and v local sections of
V . Now, the condition on the torsion follows quickly by using the fact that
the covariant derivative of e1 is zero along {e1 ⊗ f | f ∈ V } and the fact
that the curvature form of F is zero when restricted to spaces of the form
{e⊗ f | f ∈ V }, with e ∈ U∗1 .

In the complex-analytic category, the twistor space of M is (locally) the
leaf space of the foliation V on P (U1) which, at each [e] ∈ P (U1), is the
horizontal lift of the space {e ⊗ f | f ∈ V }. Similarly, the twistor space of
Um ⊗ F is the leaf space of the foliation Vm on π∗

(
P (U1)

)
which at each

π∗[e] is the horizontal lift of ρ(Ee).
On the other hand, the pull back of L∗ \ 0 to P (U1) is the principal bun-

dle whose projection is U1 \ 0 → P (U1); equivalently, the pull back of L∗
to P (U1) is the tautological line bundle over P (U1). This is, further, equiv-
alent to the fact that the pull back of L to P (U1) is (locally; globally, if
H1(M,C \ {0}) is zero) isomorphic to the quotient of π∗1(U1) through the
tautological line bundle over P (U1), where πm : Um →M is the projection.
Therefore L is the leaf space of the foliation on π∗1

(
P (U1)

)
which at each
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π∗1[e] is the horizontal lift of [e]⊕ {e⊗ f | f ∈ V }. Similarly, we obtain that
the twistor space of Um is Lm. Together with π∗m

(
P (U1)

)
= Um + P (U1),

this gives a surjective submersion ϕm : Um + P (U1) → Lm which is linear
along the fibres of the projection from Um+P (U1) onto P (U1); that is, ϕm is
a surjective morphism of vector bundles, covering the surjective submersion
P (U1)→ Z.

Also, the condition on the connection of F is equivalent to the fact that its
pull back to P (U1) is flat when restricted to the leaves of V . Hence, the pull
back of F to P (U1) is, also, the pull back of a vector bundle F on Z. Thus,
we, also, have a surjective morphism of vector bundles ϕ : F + P (U1)→ F ,
covering P (U1)→ Z.

Therefore there exists a morphism of vector bundles ψ from

(Um ⊗ F ) + P (U1)

onto Lm ⊗F , covering P (U1)→ Z. Moreover, ker dψ = Vm and, hence, the
twistor space of Um ⊗ F is Lm ⊗F .

Conversely, if Z is a vector bundle over Z satisfying (i) then
(
L∗

)m ⊗ Z
restricted to each twistor line is trivial. Thus, it corresponds (through the
Ward transform) to a vector bundle F over M endowed with a connection
whose curvature form is zero when restricted to spaces of the form

{e⊗ f | f ∈ V }

with e ∈ U1. Similarly to above, we obtain that Z is the twistor space of
Um ⊗ F , and the proof is complete. �

With the same notations as in Theorem 2.3, the projection from Um ⊗ F
onto M is the twistorial map corresponding to the projection from Lm ⊗F
onto Z. Also, further examples of co-CR quaternionic manifolds can be
obtained by taking direct sums of bundles Um⊗F (with different values for
m).

Here is another application of Theorem 2.2.

Corollary 2.4. Let (M,E, ρ) be an almost co-CR quaternionic manifold,
rankE > 4, and let Z be the bundle of admissible linear complex structures
of E.

If there exists a compatible connection ∇ on E which satisfies the first
Bianchi identity, with respect to Z, then (E, ρ,∇) is integrable.

Proof. Locally, we may suppose EC = H⊗F , where H and F are complex
vector bundles with rankH = 2. Moreover, the following hold:

(1) Z = PH such that if J ∈ Z corresponds to [e] ∈ PH then

EJ = {e⊗ f | f ∈ Fπ(e)},

where π is the projection.
(2) ∇ = ∇H ⊗∇F for some connections ∇H on H and ∇F on F .
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By Theorem 2.2, we have to show that, for any e ∈ H and f1, f2, f3 ∈ F ,
we have

R
(
ρ(e⊗ f1), ρ(e⊗ f2)

)
(e⊗ f3) ∈ {e⊗ f | f ∈ Fπ(e)};

equivalently, RE
(
ρ(e⊗ f1), ρ(e⊗ f2)

)
e is proportional to e, where RE is the

curvature form of ∇E .
We know that, for any e ∈ H and f1, f2, f3 ∈ F , we have

R
(
ρ(e⊗ f1), ρ(e⊗ f2)

)
(e⊗ f3) + circular permutations = 0,

which implies

(2.2)
(
RE

(
ρ(e⊗ f1), ρ(e⊗ f2)

)
e
)
⊗ f3 + circular permutations

∈ {e⊗ f | f ∈ Fπ(e)}.
As rankE > 4, we have rankF > 2. Therefore (2.2) holds, for any e ∈ H

and f1, f2, f3 ∈ F , if and only if each term of the left hand side of (2.2) is
contained by {e⊗f | f ∈ Fπ(e)}, for any e ∈ H and f1, f2, f3 ∈ F . The proof
is complete. �

Note that, in the proof of Corollary 2.4 it is not used the fact that
rankH = 2.

Proposition 2.5. Let (M,E, ρ) be an almost co-CR quaternionic manifold
such that rankE > 4 and there exists a compatible connection ∇ on E which
satisfies the first Bianchi identity.

Then, locally, kerρ can be endowed with a quaternionic structure such that
the projection from kerρ onto M is a twistorial map.

Proof. From Proposition 1.7 and [8, Theorem 2.2] it follows that, locally,
there exists a section ι : TM → E of ρ such that for any sections s1 and
s2 of the vector subbundle im ι ⊆ E we have that ∇ρ◦s1s2 − ∇ρ◦s2s1 is a
section of im ι. In particular, we have E = kerρ⊕ TM , where we have used
the obvious isomorphism TM = im ι.

Furthermore, Proposition 1.7 quickly implies that ∇ restricts to a flat
connection ∇v on kerρ. Locally, we may suppose that ∇v is the trivial
connection corresponding to some trivialization of kerρ; that is, kerρ is gen-
erated by (global) sections which are covariantly constant, with respect to
∇.

Let π : kerρ→M be the projection. Note that, we have two decomposi-
tions π∗E = π∗(kerρ)⊕ π∗(TM) and T (kerρ) = π∗(kerρ)⊕ π∗(TM), where
the latter is induced by ∇v. Therefore we have a vector bundle isomorphism
T (kerρ) = π∗E which depends only of ι (and the given co-CR quaternionic
structure). Hence, kerρ is endowed with an almost quaternionic structure.

To complete the proof it is sufficient to prove that π∗∇ is torsion free.
Indeed, let U, V be sections of π∗(kerρ) induced by sections of kerρ which
are covariantly constant, with respect to ∇, and let X,Y be sections of
π∗(TM) induced by vector fields on M ; in particular, X,Y are projectable,
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with respect to dπ.
Then we have that all of [U, V ], [U,X], (π∗∇)UV , (π∗∇)V U , (π∗∇)UX,

(π∗∇)XU are zero. Also, as ∇ is torsion free, we have

(π∗∇)XY − (π∗∇)YX − [X,Y ] = 0,

thus, completing the proof. �

Let N be a quaternionic-Kähler manifold and let ∇ be its Levi–Civita
connection. If M ⊆ N is a hypersurface or a CR quaternionic submanifold
[11] then the following assertions are equivalent:

(i) ∇ restricted to TN |M satisfies the first Bianchi identity.
(ii) M is geodesic and the normal connection is flat.

3. On the integrability of f-quaternionic structures

An almost f -quaternionic structure [10] on a manifold M is a pair (E, V ),
where E is a quaternionic vector bundle over M , with V, TM ⊆ E vector
subbundles such that E = V ⊕TM and JVπ(J) ⊆ Tπ(J)M for any admissible
linear complex structure J of E. Then (E, ι) and (E, ρ) are almost CR
quaternionic and almost co-CR quaternionic structures on M , where ι :
TM → E and ρ : E → TM are the inclusion and the projection, respectively.
If E is endowed with a compatible connection ∇, we can make the following
[10] (see, also, [9] for the integrability of CR quaternionic structures):

Definition 3.1. The almost f -quaternionic structure (E, V ) is integrable
with respect to ∇ if both (E, ι,∇) and (E, ρ,∇) are integrable; then (E, V,∇)
is an (integrable) f -quaternionic structure.

A manifold endowed with an f -quaternionic structure is called an f -
quaternionic manifold.

Any almost f -quaternionic structure on M corresponds to a reduction
of its frame bundle to the group Gl,m of f -quaternionic linear isomor-

phisms of (ImH)l × Hm, in particular dimM = 3l + 4m. More precisely,
Gl,m = GL(l,R)×

(
Sp(1) ·GL(m,H )

)
, where Sp(1) ·GL(m,H ) acts canon-

ically on Hm, whilst the action of Gl,m on (ImH)l = Rl ⊗ ImH is given by
the tensor product of the canonical representations of GL(l,R) and SO(3)
on Rl and ImH , respectively, and the canonical morphisms of Lie groups
from Gl,m onto GL(l,R) and SO(3). Furthermore, Gl,m is isomorphic to the

group of quaternionic linear isomorphisms of Hl+m which preserve both Rl
and (ImH)l ×Hm.

Consequently, any almost f -quaternionic structure on M , also, corre-
sponds to a decomposition TM = (V ⊗Q)⊕W , where V is a vector bundle,
Q is an oriented Riemannian vector bundle of rank three, and W is a quater-
nionic vector bundle such that the frame bundle of Q is the principal bundle
induced by the frame bundle of W through the canonical morphism of Lie
groups Sp(1) ·GL(m,H )→ SO(3), where rankW = 4m.
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Thus, any connection ∇ on E compatible with Gl,m induces a connection

D on M such that ∇ = DV ⊕ D, where DV is the connection induced by
D on V ; then we say that D is compatible with (E, V ). Moreover, if we
denote by TE and T the torsions of ∇ and D, respectively, then TE = ρ∗T ;
in particular, ∇ is torsion free if and only if D is torsion free.

Furthermore, D =
(
DV ⊗ DQ

)
⊕ DW , where DW is a compatible con-

nection on the quaternionic vector bundle W , and DQ is the connection
induced by DW on Q. In particular, if D is torsion free then V ⊗Q and W
are foliations on M , and the leaves of the latter are quaternionic manifolds.

Corollary 3.2. Let (E, V ) be an almost f -structure on M and let ∇ be
the connection on E induced by some connection D on M , compatible with
(E, V ). Let ρ : E → TM be the projection, T the torsion of D, and RQ the
curvature form of the connection induced on Q.

Then (E, ρ,∇) is integrable if and only if, for any J ∈ Z, we have

T
(
Λ2
(
ρ
(
EJ

)))
⊆ ρ

(
EJ

)
,(3.1)

RQ
(
Λ2
(
ρ
(
EJ

)))
(J) ⊆ (J ′ + iJ ′′)⊥,

where EJ = ker(J + i), and J ′, J ′′ ∈ Z such that (J, J ′, J ′′) is a positive
orthonormal frame.

Proof. Let DV be the connection induced on V and TE the torsion of ∇.
Because TE = ρ∗T , from Theorem 2.2 we obtain that it is sufficient to prove
that, for any J ∈ Z, the second relation of (3.1) holds if and only if

(3.2) RE
(
Λ2
(
ρ
(
EJ

)))(
EJ

)
⊆ EJ ,

where RE is the curvature form of ∇.
We have RQ(X,Y )J =

[
RE(X,Y ), J

]
, for any J ∈ Z and X,Y ∈ TM .

Therefore if J ∈ Z and A,B,C ∈ EJ then(
RQ

(
ρ(A), ρ(B)

)
J
)
C = −(J + i)

(
RE

(
ρ(A), ρ(B)

)
C
)
.

As, up to a nonzero factor, J+i is the projection from EC onto EJ , we have
that (3.2) holds if and only if

(
RQ

(
Λ2
(
ρ
(
EJ

)))
(J)

)(
EJ

)
= 0. But, for any

X,Y ∈ TM , we have RQ(X,Y )J = α(X,Y )(J ′ + iJ ′′) + β(X,Y )(J ′ − iJ ′′),
for some two-forms α and β.

To complete the proof just note that the obvious relation

J ′ + iJ ′′ = J ′ ◦ (1− iJ)

and its conjugate imply that (J ′ + iJ ′′)
(
EJ

)
= 0 whilst J ′ − iJ ′′ maps EJ

isomorphically onto EJ . �

Proposition 3.3. Let (E, V ) be an almost f -structure on M and let ∇
be the connection on E induced by some torsion free connection on M ,
compatible with (E, V ).

If rankE > 4 rankV ≥ 8 then the connection induced on Q is flat.
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Proof. Let TM = (V ⊗ Q) ⊕ W be the decomposition corresponding to
(E, V ). Note that, rankE > 4 rankV if and only if rankW > 0. Also, for
any J ∈ Z (⊆ Q) and U ∈ V , we have JU = U ⊗ J .

Let D, DV , DQ, DW be the connections induced on TM , V , Q, W , and
let RM , RV , RQ, RW be their curvature forms, respectively; recall that,
D =

(
DV ⊗DQ

)
⊕DW .

Now, firstly, let J ∈ Z, U ∈ V and X,Y ∈ W . From the first Bianchi
identity applied to D we obtain

RM (X,Y )(U ⊗ J) +RM (Y,U ⊗ J)X +RM (U ⊗ J,X)Y = 0;

hence, we, also, have

(3.3)
(
RV (X,Y )U

)
⊗ J + U ⊗

(
RQ(X,Y )J

)
= 0.

As RQ(X,Y )J ∈ J⊥, from (3.3) we obtain RQ(X,Y )J = 0.
Secondly, let J, J ′ ∈ Z, S,U ∈ V , and X ∈W . Then we have

(3.4) RM (X,S ⊗ J)(U ⊗ J ′) +RM (S ⊗ J, U ⊗ J ′)X
+RM (U ⊗ J ′, X)(S ⊗ J) = 0.

Relation (3.4) implies RW (S⊗J, U ⊗J ′)X = 0, and, as this holds for any
X ∈W , we obtain RQ(S ⊗ J, U ⊗ J ′) = 0.

Furthermore, with J = J ′, relation (3.4), also, gives

(3.5)
(
RV (X,S ⊗ J)U

)
⊗ J + U ⊗

(
RQ(X,S ⊗ J)J

)
+
(
RV (U ⊗ J,X)S

)
⊗ J + S ⊗

(
RQ(U ⊗ J,X)J

)
= 0.

Thus, if in (3.5) we assume S,U linearly independent, we obtain

RQ(X,S ⊗ J)J = 0

for any X ∈W ; equivalently,

(3.6) 〈RQ(X,S ⊗ J)J ′, J〉 = 0,

for any X ∈ W and J ′ ∈ Z, orthogonal on J , where 〈·, ·〉 denotes the
Riemannian structure on Q.

Finally, if (J, J ′, J ′′) is an orthonormal frame on Q, then (3.4) gives

(3.7)
(
RV (X,S ⊗ J)U

)
⊗ J ′ + U ⊗

(
RQ(X,S ⊗ J)J ′

)
+
(
RV (U ⊗ J ′, X)S

)
⊗ J + S ⊗

(
RQ(U ⊗ J ′, X)J

)
= 0,

for any S,U ∈ V and X ∈ W . Hence, if S,U are linearly independent, we
deduce 〈RQ(X,S⊗ J)J ′, J ′′〉 = 0, for any X ∈W . Together with (3.6), this
shows that RQ(X,S ⊗ J)J ′ = 0, and the proof is complete. �

Proposition 3.4. Let (E, V ) be an almost f -structure on M and let ∇
be the connection on E induced by some torsion free connection on M ,
compatible with (E, V ); denote by ρ : E → TM the projection.

If rankE = 4 rankV ≥ 12 then (E, ρ,∇) is integrable.
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Proof. We shall use the same notations as in the proof of Proposition 3.3.
Note that, rankE = 4 rankV ≥ 12 if and only if W = 0 and rankV ≥ 3.

Firstly, we shall prove that, for any S,U ∈ V and any orthonormal frame
(J, J ′, J ′′) on Q, the folowing relations hold:

RQ(S ⊗ J, U ⊗ J)J = 0,(3.8)

RQ(S ⊗ J, U ⊗ J)J ′ = 0,

RQ(S ⊗ J, U ⊗ J ′)J ′′ = 0.

From the first Bianchi identity applied to D we obtain that, for any
J, J ′ ∈ Z and S, T, U ∈ V , we have:(

RV (S ⊗ J, T ⊗ J)U
)
⊗ J ′ + U ⊗

(
RQ(S ⊗ J, T ⊗ J)J ′

)
(3.9)

+
(
RV (T ⊗ J, U ⊗ J ′)S

)
⊗ J + S ⊗

(
RQ(T ⊗ J, U ⊗ J ′)J

)
+
(
RV (U ⊗ J ′, S ⊗ J)T

)
⊗ J + T ⊗

(
RQ(U ⊗ J ′, S ⊗ J)J

)
= 0.

If in (3.9) we take J = J ′ and S, T, U linearly independent, we obtain that
the first relation of (3.8) holds, for any J ∈ Z and S,U ∈ V (note that, if
S,U are linearly dependent then the first two relations of (3.8) are trivial).

If in (3.9) we take J ⊥ J ′ and S, T, U linearly independent, or S = U and
S, T linearly independent, we obtain

〈RQ(S ⊗ J, U ⊗ J)J ′, J ′′〉 = 0,(3.10)

〈RQ(S ⊗ J, U ⊗ J ′)J, J ′′〉 = 0,

for any orthonormal frame (J, J ′, J ′′) on Q, and any S,U ∈ V .
On swapping J and J ′, in the second relation of (3.10), we deduce

(3.11) 〈RQ(S ⊗ J, U ⊗ J ′)J ′, J ′′〉 = 0,

for any orthonormal frame (J, J ′, J ′′) on Q, and any S,U ∈ V .
Now, the second relation of (3.10) and (3.11) imply that the third relation

of (3.8) holds, as claimed.
Further, the first relation of (3.10) implies that the second relation of (3.8)

holds if and only if 〈RQ(S ⊗ J, U ⊗ J)J ′, J〉 = 0; but this is a consequence
of the first relation of (3.8).

To complete the proof, we use Corollary 3.2. Thus, we have to prove that
for any positive orthonormal frame (J, J ′, J ′′) on Q, and any S,U ∈ V , the
following holds:

〈RQ(S ⊗ J, U ⊗ J)J, J ′ + iJ ′′〉 = 0,(3.12)

〈RQ
(
S ⊗ J, U ⊗ (J ′ + iJ ′′)

)
J, J ′ + iJ ′′〉 = 0,

〈RQ
(
S ⊗ (J ′ + iJ ′′), U ⊗ (J ′ + iJ ′′)

)
J, J ′ + iJ ′′〉 = 0.

Obviously, the first relation of (3.12) is an immediate consequence of the
first relation of (3.8).
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Note that, the second relation of (3.10) implies that, for any A ∈ J⊥\{0},
we have

RQ(S ⊗ J, U ⊗A)J =
〈RQ(S ⊗ J, U ⊗A)J,A〉

〈A,A〉
A;

in particular, 〈RQ(S ⊗ J, U ⊗ A)J,A〉 = c〈A,A〉 for any A ∈ J⊥, where c
does not depend of A. As J ′ + iJ ′′ is isotropic this shows that the second
relation of (3.12) holds.

Finally, the last two relations of (3.8) (applied to suitable orthonormal
frames) imply RQ

(
S ⊗ (J ′ + iJ ′′), U ⊗ (J ′ + iJ ′′)

)
J = 0. Hence, also, the

third relation of (3.12) holds. �

We can, now, give a new proof for [10, Theorem 4.9], where, note that,
the condition rankV 6= 1 was discarded, due to a misprint.

Corollary 3.5. Let (E, V ) be an almost f -structure on M and let ∇ be the
connection on E induced by some torsion free connection D on M , compat-
ible with (E, V ).

If either rankE > 4 rankV ≥ 8 or rankE = 4 rankV ≥ 12 then (E, V,∇)
is integrable.

Proof. The integrability of the underlying almost co-CR quaternionic struc-
ture is a consequence of Corollary 3.2, and Propositions 3.3 and 3.4.

The integrability of the undelying almost CR quaternionic structure is a
consequence of Proposition 3.3 and [9, Proposition 4.5]. �

Corollary 3.6. Let (E, V ) be an almost f -structure on M and let ∇ be the
connection on E induced by some torsion free connection on M , compatible
with (E, V ).

If the connection induced on Q is flat then, also, the connection induced
on V is flat.

The converse also holds if rankV ≥ 3.

Proof. As in the proof of Proposition 3.3 we deduce that (3.3) and (3.7)
hold. Hence, if RQ = 0 then RV (X,Y )U = 0 and RV (S ⊗ J,X)U = 0 for
any S,U ∈ V , X,Y ∈W and J ∈ Z.

From the first Bianchi identity applied to D we obtain that, for any
J, J ′, J ′′ ∈ Z and S, T, U ∈ V , we have:(

RV (S ⊗ J, T ⊗ J ′)U
)
⊗ J ′′ + U ⊗

(
RQ(S ⊗ J, T ⊗ J ′)J ′′

)
(3.13)

+
(
RV (T ⊗ J ′, U ⊗ J ′′)S

)
⊗ J + S ⊗

(
RQ(T ⊗ J ′, U ⊗ J ′′)J

)
+
(
RV (U ⊗ J ′′, S ⊗ J)T

)
⊗ J ′ + T ⊗

(
RQ(U ⊗ J ′′, S ⊗ J)J ′

)
= 0.

If RQ = 0 and J, J ′, J ′′ are linearly independent then, from (3.13) we
obtain that RV (S⊗A, T ⊗B)U = 0 for any S, T, U ∈ V and A,B ∈ Q (here,
we have used the continuity of the map (A,B) 7→ RV (S ⊗ A, T ⊗ B)U , to
allow A,B linearly dependent).
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Similarly, if rankV ≥ 3 and RV = 0, from Proposition 3.3 and (3.13) we
obtain RQ = 0. �

We end with the following result.

Theorem 3.7. Let (E, V ) be an almost f -structure on M and let ∇ be the
connection on E induced by some torsion free connection on M , compatible
with (E, V ).

If rankE > 4 rankV ≥ 8 then, locally, (M,E, V,∇) is the product of
(ImH)rankV with a hypercomplex manifold.

Proof. By Proposition 3.3 and Corollary 3.6 the connections induced on
V and Q are flat. Furthermore, as in the proof of Proposition 2.5 (note
that, here, we do not need [8, Theorem 2.2]) we obtain that, locally, V is a
hypercomplex manifold such that the projection onto M is twistorial.

Moreover, we have that π∗∇ restricts to give a flat connection on the
quaternionic distribution K on V generated by ker dπ; indeed, we have
K = π∗

(
V ⊕ (V ⊗ Q)

)
. Therefore K is integrable and, as π∗∇ is, also,

torsion free, its leaves are, locally, quaternionic vector spaces, whose linear
quaternionic structures are preserved by the parallel transport of π∗∇. Thus,
if U is a covariantly constant section of K and X is a section of π∗W then
[U,X] = (π∗∇)UX is a section of π∗W . Hence, the linear quaternionic
structures on the leaves of K are (locally) projectable with respect to π∗W .
Therefore, locally, there exists a quaternionic submersion ϕ from V onto
HrankV which, by [3] is twistorial. Thus, ϕ restricted to M , identified with
the zero section of V , is a twistorial submersion onto (ImH)rankV whose
fibres are the leaves of W .

Now, as Q is flat, V is locally a hypercomplex manifold and π∗∇ is its
Obata connection. Let J be any covariantly constant admissible complex
structure on V . Thus, T JV = ker(J + i) is preserved by π∗∇. Hence, if X
is a section of T JV and U is section of K we have that

[U,X] = (π∗∇)UX − (π∗∇)XU

is a section of T J + K. Therefore T JV is projectable with respect to K.
This shows that, locally there exists a triholomorphic submersion from V
onto a hypercomplex manifold N , with dimN = rankW , which factorises
into π followed by a twistorial submersion ψ from M to N ; also, the latter
is triholomorphic when restricted to the leaves of W .

Finally, the map

M → (ImH)rankV ×N,
x 7→

(
ϕ(x), ψ(x)

)
provides the claimed (twistorial) identification. �
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