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On Banach spaces of universal disposition

J. M. F. Castillo and Marilda A. Simões

ABSTRACT. We present: i) an example of a Banach space of universal disposi-
tion that is not separably injective; ii) an example of a Banach space of universal
disposition with respect to finite dimensional polyhedral spaces with the Separa-
ble Complementation Property; iii) a new type of space of universal disposition
nonisomorphic to the previous existing ones.

CONTENTS

1. Introduction 605
2. A space of universal disposition that is not separably injective 606
3. Universal disposition and the Separable Complementation Property 609
4. A new space of universal disposition 611
References 612

1. Introduction
The monograph [1] contains a study of separably injective spaces, among which

one encounters two somewhat unexpected classes: ultrapowers of spaces of type
L∞,λ and spaces of universal disposition with respect to the the class of separable
spaces. Recall from [9] that given a class M of Banach spaces the space U is
said to be of almost universal disposition for M if given and ε > 0, A,B ∈M and
isometries u : A→ U and ı : A→ B there is an ε-isometry u′ : B→ U such that
u = u′ı. The space U is said to be of universal disposition for M (sometimes called
of M-universal disposition) if the condition above also holds for ε = 0.

We are particularly interested in the classes M=S of separable Banach spaces
and M = F of finite dimensional Banach spaces. Spaces of (almost) universal
disposition for F will simply be called spaces of (almost) universal disposition.

A Banach space E is said to be separably injective if for every separable Banach
space X and each subspace Y ⊂ X , every operator t : Y → E extends to an operator
T : X → E. In [1, Thm. 3.5] it is established that spaces of S-universal disposition
are separably injective, as well as the ultrapowers of L∞,λ -spaces [1, Thm. 4.4].
Which raises the question, not considered in [1], of whether spaces of universal
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disposition must also be separably injective. Our first result is to show that such is
not the case.

2. A space of universal disposition that is not separably injective
To proceed with the example, we need to recall the construction of F ω1(R), the

only known example of space that is of universal disposition with respect to finite
dimensional spaces but not with respect to separable spaces. Recall first the push-
out construction; which, given an isometry u : A→ B and an operator t : A→ E
will provides us with an extension of t through u at the cost of embedding E in a
larger space as it is showed in the diagram

A u−−−−→ B

t

y yt ′

E u′−−−−→ PO
where t ′u = u′t. It is important to realize that u′ is again an isometry and that t ′ is
a contraction or an isometry if t is. Once a starting Banach space X has been fixed,
the input data we need for our construction are:

• a class M of Banach spaces;
• the family J of all isometries acting between the elements of M;
• a family L of norm one X-valued operators defined on elements of M.

For any operator s : A→ B, we establish dom(s) = A and cod(s) = B. Notice that
the codomain of an operator is usually larger than its range, and that the unique
codomain of the elements of L is X . Set Γ = {(u, t) ∈ J×L : domu = dom t} and
consider the Banach spaces of summable families `1(Γ,domu) and `1(Γ,codu).
We have an obvious isometry

⊕J : `1(Γ,domu)−→ `1(Γ,codu)

defined by (x(u,t))(u,t)∈Γ 7−→ (u(x(u,t)))(u,t)∈Γ; and a contractive operator

ΣL : `1(Γ,domu)−→ X ,

given by (x(u,t))(u,t)∈Γ 7−→ ∑(u,t)∈Γ t(x(u,t)). Observe that the notation is slightly
imprecise since both⊕J and ΣL depend on Γ. We can form their push-out diagram

`1(Γ,domu)
⊕J
//

ΣL
��

`1(Γ,codu)

��

E ı // PO.

We obtain in this way an isometric enlargement of X such that for every t : A→
X in L, the operator ıt can be extended to an operator t ′ : B→ PO through any
embedding u : A→ B in J provided domu = dom t = A. In the next step we keep
the family J of isometries, replace the starting space X by PO and L by a family of
norm one operators domu→ PO, u ∈ J, and proceed again.
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We start with S 0(X) = X . The inductive step is as follows. Suppose we have
constructed the directed system (S α(X))α<β , including the corresponding linking
maps ı(α,γ) : S α(X) −→S γ(X) for α < γ < β . To define S β (X) and the maps
ı(α,β ) : S α(X) −→S β (X) we consider separately two cases, as usual: if β is a
limit ordinal, then we take S β (X) as the direct limit of the system (S α(X))α<β

and ı(α,β ) : S α(X) −→S β (X) the natural inclusion map. Otherwise β = α + 1
is a successor ordinal and we construct S β (X) applying the push-out construction
as above with the following data: S α(X) is the starting space, J keeps being the
set of all isometries acting between the elements of M and Lα is the family of all
isometries t : S→S α(X), where S ∈M.

We then set Γα = {(u, t) ∈ J×Lα : domu = dom t} and make the push-out

(1)

`1(Γα ,domu) ⊕Iα−−−−→ `1(Γα ,codu)

ΣLα

y y
S α(X) −−−−→ PO

thus obtaining S α+1(X) = PO. The embedding ı(α,β ) is the lower arrow in the
above diagram; by composition with ı(α,β ) we get the embeddings

ı(γ,β ) = ı(α,β )ı(γ,α),

for all γ < α .
Set now as input data: M= F the family of all finite dimensional spaces, J the

set of all isometries between elements of F and L all X-valued isometries defined
on elements of F. Proceeding inductively until ω1 we get the space F ω1(X). This
space is of universal disposition (cf. [1, Chapter 3]). We prove first a structure
theorem.

Theorem 2.1. The space F ω1(R) is not separably injective.

Proof. In [1, Thm. 3.23 (2)] it is proved that for all separable X , all the spaces
F ω1(X) are isometric; thus isometric to F ω1(R).

Claim. The space C[0,1] is (1+ ε)-complemented in S α(C[0,1]) for all α < ω1
and all ε > 0.

Proof. Recall that a convex body is said to be a polyhedron if it is the convex hull
of a finite set of points. A Banach space is said to be polyhedral if the unit ball of
each of its finite dimensional subspaces is a polyhedron. It is a well-known fact
that C[0,1]-valued operators defined on finite-dimensional polyhedral spaces can
be extended with the same norm. A simple proof for this result can be derived from
Kalman’s theorem [10], which in turn can be easily proved by triangularisation.
See also [11, 12] for the state-of-the-art about the problem of extension of C(K)-
valued Lipschitz maps. Since every norm on a finite dimensional space can, for
every ε > 0, be ε-approximated by a polyhedral norm, it follows that every norm
one C[0,1]-valued operator defined on a finite dimensional Banach space can, for
every ε > 0, be extended with norm at most 1+ ε .
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Thus, if 1C denotes the identity of C[0,1] and ε > 0 has been fixed, as well as
a limit ordinal β < ω1, pick a sequence (ε j) j<β with all ε j > 0 so that ∑ j ε j < ε .
If β is nonlimit, pick the sequence (ε j) j≤β so that each ε j > 0 and ∑ j ε j < ε .
Now, all the elements in the composition 1C ∑L are norm one finite rank operators
that extend to C[0,1]-valued operators with norm at most (1+ ε1); thus, 1C ∑L
extends to an operator `1(Γ,codu)→ C[0,1] with norm at most (1+ ε1), hence
to an operator S 1(C[0,1])→ C[0,1] with norm at most (1+ ε1). I.e., C[0,1] is
(1+ε1)-complemented in S 1(C[0,1]). Iterating the argument, one gets that C[0,1]
is actually (1+ ε)-complemented in S β (C[0,1]). The Claim follows. �

Assume now that F ω1(C[0,1]) is separable injective. Let S→ S′ be an injective
isometry between two separable spaces and let τ : S→C[0,1] be an operator. As
an operator S→C[0,1]→F ω1(C[0,1]), it can be extended to an operator

T : S′→F ω1(C[0,1]).

However, the uncountable cofinality of ω1 means that T actually has its range con-
tained in some S β (C[0,1]). A composition with the projection

S β (C[0,1])→C[0,1]

provides an extension S′→C[0,1] of τ . In other words, C[0,1] would be separably
injective, which it is not. The proof of Theorem 2.1 is complete. �

The result above can be improved for separable Lindenstrauss spaces. Recall
that a Banach space is called a Lindenstrauss space if it is an isometric predual of
some L1(µ).

Corollary 2.1. Every separable Lindestrauss space is (1+ ε)-complemented in
S α(C[0,1]) for all α < ω1 and all ε > 0.

Proof. Indeed, one can skip using Kalman’s theorem and use instead the fact that
norm one finite range operators with values on a Lindenstrauss space can be ex-
tended, for every ε > 0, with norm at most 1+ ε . �

Proposition 2.1. The space F ω1(R) contains 1-complemented copies of all iso-
metric preduals of `1.

Proof. Let X be an isometric `1-predual; it can therefore be renormed as follows to
be a polyhedral Lindenstrauss space [8]: Let (en) be the canonical basis of `1 = X∗

and let (εn) ∈ c0 be a sequence of positive scalars. Set ‖x‖ = supn(1+ εn)|en(x)|.
See [8] for details. A result of Lazar [13] shows that every compact operator with
values on a polyhedral Lindenstrauss space can be extended to any separable su-
perspace with the same norm. The paper [2] claims that the additional condition

(∗) ∀x ∈ X ;‖x‖= 1 dim{ f ∈ X∗ : f (x) = 1}<+∞

has to be added to Lazar’s result. But the renorming above mentioned satisfies
condition (∗).
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Consider the space F ω1(X) = F ω1(R) and let 1X be the identity of X . All
the elements in the composition 1C ∑L are norm one finite rank operators that ex-
tend to norm one X-valued operators; thus, 1C ∑L extends to a norm one operator
`1(Γ,codu)→ X ; hence, to a norm one operator S 1(X)→ X . Iterating the argu-
ment, one gets that X is actually 1-complemented in F ω1(X). �

3. Universal disposition and the Separable Complementation
Property

As we have seen, the key point seems to be that c0 is the only possible separable
complemented subspace of a separably injective space, which means that there are
few complemented separable subspaces in separably injective spaces. Let us con-
sider the case of spaces of universal disposition. A property that somehow means
the existence of many separable complemented subspaces is the so-called Separa-
ble Complementation Property (in short, SCP). Recall from [14], see also[6], that a
Banach space X is said to have SCP if every separable subspace of X is contained in
a separable subspace complemented in X . Recall from [1, Def. 2.25] that a Banach
space X is said to be upper-c0-saturated if every separable subspace is contained in
a copy of c0 contained in X . A few straightforward facts are:

Lemma 3.1. A separably injective space with SCP is upper-c0-saturated. In par-
ticular, it is c0-saturated. A space of universal disposition with respect to separable
spaces cannot have SCP.

Proof.
(1) Indeed, every separable subspace must be contained in a separable separa-

bly injective subspace; i.e., in c0.
(2) Observe that every copy of c0 in a space with SCP must be complemented.

But a space of universal disposition with respect to separable spaces must
contain isometric copies of all spaces with density character ℵ1 (see [1,
Prop. 3.13 (2)]), which prevents them to have SCP since there are spaces
with density character ℵ1 containing uncomplemented copies of c0: The
simplest example being the space C(∆) of continuous functions on the
compact dyadic tree — the compact space having three types of points:
the nodes of the dyadic tree, which are isolated points; the branches, each
branch is the limit of its nodes, and the infinity point that appears by one-
point compactification (see [4] for details). This space can be represented
as a nontrivial twisted sum 0→ c0 → C(∆)→ c0(ℵ1)→ 0 and thus it is
separably injective (see [1, Prop. 2.11]; also [3]). �

A different question is whether spaces of universal disposition can have SCP.
Since, as we remarked in (2) above, every copy of c0 in a space with SCP is
complemented, picking a space E with density character ℵ1 containing an un-
complemented copy of c0 immediately yields a space F ω1(E) that is of universal
disposition, which has density character ℵ1 and without SCP. We have not been
able to settle the question of whether F ω1(c0) has SCP. We however show:
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Lemma 3.2. Under CH, every subspace of F ω1(R) isomorphic to c0 is comple-
mented.

Proof. Under CH, c = ℵ1, which means that a set C of size c can be written as
a union

⋃
α<ω1

Cα of countable sets Cα . Do this and write the set of all finite
dimensional spaces as F =

⋃
α<ω1

Fα and the set of all isometries between them
as I =

⋃
α<ω1

Iα . Do the same with the set of isometric embeddings between
elements of F and R, say L0 =

⋃
α<ω1

L0
α and keep in mind that when S µ has been

obtained one has to work with the set of isometric embeddings between elements
of F and S µ , say Lµ =

⋃
α<ω1

L
µ

α . Now proceed with the construction of F ω1(R)
with the restriction that at step α < ω1 one will only consider to make push-out the
elements of Fα and Iα and ∪ν ,µ≤αL

µ

ν .
The immediate consequence of acting this way is that each space S α is separa-

ble.
Now, pick a λ -isomorphic copy of Y of c0 inside F ω1(R) and let φ : Y → c0

be a λ -isomorphism. Since ω1 has uncountable cofinality, there must be some
α < ω1 so that Y ⊂S α . By Sobczyk’s theorem, φ can be extended to an operator
Φ : S α → c0 with norm at most 2λ . Since c0-valued finite-rank operators can
be extended with the same norm everywhere (a well-known fact, see [1, Lemma
3.14] for details; it follows that the composition Φ∑Lα (see diagram (1)) can
be extended to `1(Γα ,codu) with the same norm, hence to S α+1. Proceeding
inductively, one gets an extension Φ̂ : F ω1(R)→ c0 of Φ. The operator φ−1Φ̂ is a
projection onto Y . �

For smaller classes M it is however possible to enjoy SCP. Let Pol denote the
class of finite dimensional polyhedral spaces.

Proposition 3.1. There is a space of universal disposition for the class Pol en-
joying the SCP; precisely, such that every separable subspace is contained in a
1-complemented copy of C[0,1].

Proof. Set the controls of the device at: M=Pol; the starting space will be C[0,1]
and we will call Xα =C(BS α ∗). Then proceed inductively. The first step is

(2)

`1(Γα ,domu) ⊕Iα−−−−→ `1(Γα ,codu)

ΣLα

y y
X −−−−→ PO δ−−−−→ C(BPO∗)

where δ is the canonical isometric embedding. I.e., instead of replacing X by S 1

at the first step, set C(BS 1∗), and so on. Thus, step α will then be

(3)

`1(Γα ,domu) ⊕Iα−−−−→ `1(Γα ,codu)

ΣLα

y y
Xα −−−−→ S α+1 δ−−−−→ C(BS α+1∗).



ON BANACH SPACES OF UNIVERSAL DISPOSITION 611

Let us call Pω1(C[0,1]) the outcome of the device at ω1.
To show that Pω1(C[0,1]) has the desired property, observe that every operator

from a finite-dimensional polyhedral space into a C(K)-space can be extended with
the same norm to any separable superspace. �

Observe that the space Pω1(C[0,1]) is of almost universal disposition.

4. A new space of universal disposition
In [1, Section 6.6. Problem 16] is formulated the conjecture that there is a con-

tinuum of mutually nonisomorphic spaces of universal disposition having density
character c. So far only two types are known: one is the space F ω1(R); as for the
other, one has to pick as family M that of separable spaces, and as I that of into
isometries between separable spaces. With this choice and the same construction
as for F ω1(R) one gets the space Sω1(R), which is of universal disposition for
separable spaces and therefore separably injective. Actually, under CH it is iso-
metric to the Fraissé limit in the category of separable spaces and into isometries
[1, Prop. 3.3 and Thm. 3.23]. Here we construct a third type. Recall that C(∆)
represents here the space of continuous functions on the compact dyadic tree space
as described above.

Proposition 4.1. Under CH, for every separable C(K) the space

F ω1(C(∆)⊕C(K))

is a space of universal disposition that is not isomorphic to either F ω1(R) or
Sω1(R).

Proof. We settle first the case C(K)' c0, in which case C(∆)⊕C(K)'C(∆). The
space F ω1(C(∆)) is a space of universal disposition for exactly the same reason
as F ω1(R). It cannot be isomorphic to F ω1(R) because it contains an uncomple-
mented copy of c0. Let us show that it cannot be isomorphic to Sω1(R) either:

From [7, Thm. 11] it follows that C(∆) admits a polyhedral Lindenstrauss
renorming with property (∗). Reasoning now as in Proposition 2.1, it follows that
C(∆) is 1-complemented in F ω1(C(∆)). Assume that F ω1(C(∆)) is isomorphic to
Sω1(R). This is a Grothendieck space [1, Thm 3.5 and Prop. 2.31] — operators into
c0 are weakly compact — hence F ω1(C(∆)) should also be; which is impossible
since it contains a complemented copy of c0 (the subspace of continuous functions
on ∆ with support contained in a given branch).

If C(K) is not isomorphic to c0 then it is not separably injective, by Zippin’s
theorem. The space F ω1(C(∆)⊕C(K)) is a space of universal disposition not
isomorphic to F ω1(R) exactly as before. Let us show that it cannot be isomorphic
to Sω1(R) either:

Reasoning now as in the Claim of Theorem 2.1, C(∆)⊕C(K) is complemented
in every S α(C(∆)⊕C(K)). Since Sω1(R) is separably injective, an isomorphism
between F ω1(C(∆)⊕C(K)) and Sω1(R) would imply that C(∆)⊕C(K) is separa-
bly injective; in particular C(K) should be separably injective, which is not. �
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And, taking Corollary 2.1 into account one gets:

Corollary 4.1. Under CH, for every separable Lindenstrauss space L,

F ω1(C(∆)⊕L)

is a space of universal disposition that is not isomorphic to either F ω1(R) or
Sω1(R).

Acknowledgement. Corollaries 2.1 and 4.1 have been observed by Jesús Suárez.
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[9] GURARIĬ, V. I. Spaces of universal placement, isotropic spaces and a problem of Mazur
on rotations of Banach spaces. Sibirsk. Mat. Ž. 7 (1966), 1002–1013. MR0200697, Zbl
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