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Filling sets of curves on punctured
surfaces

Federica Fanoni and Hugo Parlier

Abstract. We study filling sets of simple closed curves on punctured
surfaces. In particular we study lower bounds on the cardinality of sets of
curves that fill and that pairwise intersect at most k times on surfaces
with given genus and number of punctures. We are able to establish
orders of growth for even k and show that for odd k the orders of growth
behave differently. We also study the corresponding questions when
one requires that the curves be represented as systoles on hyperbolic
complete finite area surfaces.
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1. Introduction

A set of simple closed curves on a surface is said to fill if it cuts the
surface into topological disks and once-punctured disks. Any such filling set
must contain at least two curves; by a simple topological argument (see for
instance [AouH15]) if two curves fill, they must intersect at least |χ| times,
where χ is the Euler characteristic of the surface. So if we bound the number
of times they can intersect and increase the complexity of the surface, we
will need more curves; but how many? The main goal of this paper is to
give an answer to this question.
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For closed surfaces of genus g, it is known [AnPP11] that the number N
of curves in a filling set of curves that pairwise intersect at most k times
satisfies

N2 −N ≥ 4g − 2

k
.

Moreover the bound is essentially sharp.
In this paper we study finite type surfaces of negative Euler characteristic

and with punctures. Somewhat surprisingly, the bounds we obtain differ
depending on the parity of k, the number of times curves are allowed to
pairwise intersect. For even k, we obtain a similar result to the one for
closed surfaces mentioned above.

Theorem 1. Let S be a surface with at least one puncture and let k be a
positive even integer. Any filling set of curves on S pairwise intersecting
at most k times has cardinality at least N , where N is the smallest integer
satisfying

N(N − 1) ≥ 2

k
|χ(S)|.

Furthermore, if g(S) ≤ 1 then there exists a filling set of curves pairwise
intersecting at most k times of size N . If the surface has genus at least two
then there exists a filling set of size less than√

2|χ(S)|
k

+
1

4
+

7

2
.

Note that the above formulas determine the order of growth (in function
of the Euler characteristic) of a minimal filling set (the leading term being√

2|χ(S)|
k ).

In contrast for odd k we show that the order of growth is different; to
explain our result we need to talk a little bit about a related problem. We
denote Mg(k) the maximum number of curves that pairwise intersect at most
k times on a closed genus g surface. Determining Mg(k) is a surprisingly
hard problem. Although bounds are known (see the work of Przytycki in
[Prz15] and also Aougab in [Aou15], Juvan–Malnič–Mohar in [JMM96], and
Malestein–Rivin–Theran [MRT14]) even the rough order of growth of Mg(k)
is not known. For k = 1, its growth in terms of the genus is known to
be somewhere between quadratic and cubic. This somewhat mysterious
quantity appears in our next theorem.

Theorem 2. Let S be a surface of genus g with at least one puncture. Then
a filling set of curves pairwise intersecting at most k times has cardinality
at least N , where N is the smallest integer satisfying

k

2
N(N − 1)− N

2

(
N

Mg(k)
− 1

)
≥ |χ(S)|.

Note that the order of growth is really different from the one in Theorem 1

because of the extra term −N
2

(
N

Mg(k)
− 1
)

.
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In light of the problem of determining and realizing the quantity Mg(k),
when k is odd we are not able to give explicit constructions for small filling
sets of curves pairwise intersecting at most k times that match our lower
bound, with one notable exception.

When g = 1 and k = 1, it is not difficult to show that Mg(1) = 3. Using
this, when the surface is a punctured torus and k = 1 we can prove a precise
result.

Theorem 3. Let δ1, . . . , δN be a filling set of curves that pairwise intersect
at most once on a torus with n punctures. Then

N ≥
√

3n.

Conversely for a torus with n punctures, there exists a filling set of N iso-
topically distinct simple curves δ1, . . . , δN that pairwise intersect at most
once with

N ≤
√

3n+ 1.

The results described up until now are purely topological. One motivation
for understanding the topology of curves that pairwise intersect at most a
small number of times comes from the study of systoles on surfaces. A
systole is a shortest closed non contractible curve non isotopic to boundary.
For any given Riemannian metric, systoles intersect at most twice (and at
most once on a closed surface). An important class of metrics is complete
finite area hyperbolic surfaces; we consider systoles on these.

In particular, we can ask what happens to our previous bounds if one
requires that the curves be systoles and we show that the growth of the
lower bound is very different.

Theorem 4. Let S be a hyperbolic surface of signature (g, n) and systole
length `. If γ1, . . . , γM is a filling set of systoles, then

M ≥ 2π(2g − 1) + π(n− 2)

4`
.

We also give examples of constructions of surfaces with a filling set of
systoles of cardinality linear in the Euler characteristic, showing that the
order of growth of Theorem 4 is roughly correct.

The paper is organized as follows. In Section 2 we give the main definitions
and prove Theorem 3. In the subsequent section, we prove Theorem 1,
treating separately the constructions for the case of spheres, tori and higher
genus surfaces. Theorem 2 is proven in Section 4 and the final section is
dedicated to the lower bounds on the number of filling systoles.

Acknowledgement. The authors thank the referee for useful comments.
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2. The case of genus 1

In this section we introduce some of the objects of interest and illustrate
our objective by proving Theorem 3. Although it is relatively straightfor-
ward, it contains many of the main steps that will be used in the sequel.

A simple closed curve is essential if it is not homotopic to a point or to
a puncture. Throughout the paper, by curve we will mean a simple, closed,
essential curve.

A set Γ of pairwise nonhomotopic curves on a surface S fills if the com-
plement S \ Γ is a union of disks and once-punctured disks. A k-filling set
is a set of pairwise nonhomotopic curves which fill and pairwise intersect at
most k times.

With this notation, Theorem 3 can be restated as follows.

Theorem 2.1. Let δ1, . . . , δN be a 1-filling set on a torus T with n punc-
tures. Then

N ≥
√

3n.

Conversely for T a torus with n punctures, there exists a 1-filling set of
cardinality N with

N ≤
√

3n+ 1.

Proof. We begin by recalling the well-known fact that for n = 0 (or n = 1),
there can be at most 3 topologically distinct curves that pairwise intersect
at most once. Associated to T is the torus T 0 obtained by forgetting the
punctures of T . This map acts on curves of T sending them to curves on T 0

and is called the forgetful map. Note that if two curves on S, say δ and δ̃,
intersect at most once, their images on S do as well.

Now given a set of curves δ1, . . . , δN that pairwise intersect at most once,
let’s consider the curves obtained on T 0 via the forgetful map. The image
consists in at most three curves. Let’s denote these curves α, β and γ (if
the image is smaller, we arbitrarily choose the remaining curves so that they
intersect at most once). We can split the the curves δ1, . . . , δN into three sets
depending on whether they are preimages of α, β or γ. Up to renumbering,
let’s assume that the preimages of α are

δ1, . . . , δa,

those of β are
δa+1, . . . , δa+b,

and those of γ are
δa+b+1, . . . , δa+b+c

where N = a+ b+ c.
Observe that i(δi, δj) = 1 if and only if δi and δj are the preimages of

different curves among the set α, β, γ. As such the total number of pairwise
intersections among the curves δ1, . . . , δN is

ab+ bc+ ac.
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We can assume no intersection points coincide on S; by an Euler characteris-
tic argument the number above is also the number of connected components
of T \{δ1, . . . , δN}. As there must be at least as many connected components
as punctures we obtain:

n ≤ ab+ bc+ ac.

Via Lagrange, the quantity ab+bc+ac is maximal among all a, b, c satisfying
a+ b+ c = N when a, b, c are equal. Thus

n ≤ 1

3
N2

which proves the first assertion.
Note that if N is not divisible by 3 we can get a slightly better bound.

Indeed, in this case the maximum that can be achieved is N2−1
3 (for instance

for a = bN3 c, b = bN3 c+ 1 and c = a or b, depending on whether N ≡ 1 or 2
modulo 3). So in this case we get

n ≤ N2 − 1

3
.

To prove the second assertion it suffices to reverse engineer the above
process. Consider a torus T with three curves α, β and γ which all pairwise
intersect at most once. We begin by choosing the minimal N satisfying the
above inequality and take a := bN3 c parallel copies of α, b := bN3 c+d parallel

copies of β and c := bN3 c + d′ parallel copies of γ where 0 ≤ d, d′ ≤ 1 are
integers and a+ b+ c = N . We now have a collection of N curves on S.

Now as above, the number of connected components of the complementary
regions to all of the curves is ab + bc + ac. We place at most one puncture
in each of the connected regions for a total of n punctures. The result is an
n-times punctured torus with a filling set of curves that satisfies the desired
inequality. �

3. The topological setup: case k even

In this section we will always assume k to be an even positive integer.
We begin by proving a lower bound on the number of curves in a k-filling

set of curves on any punctured surface.

Theorem 3.1. Let S be a surface with at least one puncture and of negative
Euler characteristic. Any k-filling set of curves on S has cardinality at least
N , where N is the smallest integer satisfying

N(N − 1) ≥ 2

k
|χ(S)|.

Proof. Suppose {γ1, . . . , γm} is a k-filling set of curves on a surface S of
signature (g, n). Up to homotopy, we can assume no three curves intersect
in the same point and each intersection is transversal. This implies that
the curves define a 4-valent graph G on S, with the intersections as vertices
and edges given by the arcs of the curves. Denote by v(G) and e(G) the
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number of vertices and edges of G, and by f(G) the number of connected
components of S \ G. By the hand-shaking lemma, since G is 4-valent, we
have

e(G) = 2v(G).

Any two curves pairwise intersect at most k times, so the number of vertices
satisfies

v(G) ≤ k
(
m

2

)
= k

m(m− 1)

2
.

Moreover, since the set of curves is filling and the surface has n punctures,
there are at least n connected components of S \ G, i.e., f(G) ≥ n. By
computing the Euler characteristic of S as v(G) − e(G) + f(G) and using
the estimates on v(G) and f(G) we obtain the desired lower bound. �

Remark 3.2. Note that the lower bound of Theorem 3.1 holds for odd k
as well, but, as we will show later, for k odd we can get a better bound.

We begin with the case of the sphere - in this case we can show that the
lower bound of Theorem 3.1 is sharp.

Theorem 3.3. Let S be a sphere with n ≥ 4 punctures. There exists a
k-filling set of curves on S of cardinality N , where N is the smallest integer
satisfying

N(N − 1) ≥ 2n− 4

k
.

Proof. Fix k; we start by constructing the set of curves in the case in which

n =
kN(N − 1) + 4

2
for some integer N .

Consider the rectangle [0, kπ]× [−1, 1] ⊆ R2 and the graphs of the func-
tions fs(x) = sin(x + sε) for s ∈ {0, 1, . . . , N − 1} and ε small. Note that
we can choose ε small enough so that any two of the above graphs intersect
exactly k times and there are no triple intersections (as in Figure 1).

Figure 1. The graphs of f0, f1, f2 and f3 on the rectangle
[0, 12π]× [−1, 1]

Consider the cylinder obtained by identifying (0, t) with (kπ, t) for any
t ∈ [−1, 1]. On this cylinder, the graphs project to N curves, all pairwise
intersecting exactly k times, with no three curves intersecting in the same
point. We glue disks to the two boundary components of the cylinder to
obtain a sphere. As in the proof of the lower bound, we consider the graph G
induced by the curves on the sphere. Again it is 4-valent, so e(G) = 2v(G).
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Since all curves pairwise intersect exactly k-times and no three curves have
a common intersection, we have

v(G) = k

(
N

2

)
= k

N(N − 1)

2
= n− 2.

Since 2 = χ(S2) = v(G)−e(G)+f(G), the number of connected components
of the complement of G is

f(G) = 2 + v(G) = n.

So we add a puncture to each connected component. This gives a n-
punctured sphere with a k-filling set of the desired size.

Now consider n not of the form kN(N−1)+4
2 for any N . Then there exists

an integer N such that

(1)
k(N − 1)(N − 2) + 4

2
< n <

kN(N − 1) + 4

2
.

We construct a sphere with N curves pairwise intersecting k times as in
the previous case. The difference is that this time we have less cusps than
connected components. To be sure that no two curves are homotopic, it
is enough to place a single puncture to separate the first curve from all of
the other curves, then a puncture between the second and the subsequent
curves and so on. Hence it is enough to have n ≥ N − 1 punctures and this
inequality holds via the lower bound in (1). So again we obtain a filling set
of curves of the right size. �

With the same techniques we can prove a similar statement for tori.

Theorem 3.4. Let T be a torus with n ≥ 1 punctures and k be even. There
exists a k-filling set of curves on T of cardinality N , where N is the smallest
integer satisfying

N(N − 1) ≥ 2n

k
.

Proof. The proof is essentially the same as for spheres. The only difference
is that instead of gluing two disks to turn the cylinder with the curves into
a sphere, we glue its two boundary components to get a torus. �

To prove the result in the case of surfaces of genus at least two we combine
the idea of the construction in the cases of spheres and tori and a known
result about k-filling sets on closed surfaces from [AnPP11].

Theorem 3.5. Let S be a surface of signature (g, n), with g ≥ 2 and n ≥ 1.
For any even k ≥ 2, there is a k-filling set on S of size N satisfying

5

2
+

√
1

4
+

2|χ(S)|
k

≤ N <
7

2
+

√
1

4
+

2|χ(S)|
k

.
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Proof. We construct a k-filling set of the desired size.
Consider the closed surface S0 obtained by filling in the punctures. By a

result in [AnPP11], we know that there exists an k-filling set C0 of cardinality
x or x+ 1, where x is the smallest integer satisfying

(2) x(x− 1) ≥ 4g − 2

k
.

The construction in [AnPP11] has most curves that pairwise intersect ex-
actly k times. In fact, the curves are constructed algorithmically and this
property is true for all but (possibly) the final two curves in the construc-
tion. Pick a curve γ from the construction that is not one of the final two
and replace it with a thin cylinder with a set of y + 1 curves (as in the
construction of Theorem 3.3). We obtain set of curves C of cardinality x+y
or x + y + 1. We want y to be the smallest integer such that S0 \ C has at
least n connected components. Since at least x+ y − 2 curves of C pairwise
intersect exactly k times, the number of components of S0 \ C is at least

2− 2g + k

(
x+ y − 2

2

)
.

We then choose y to be the smallest integer such that

(3) 2− 2g + k

(
x+ y − 2

2

)
≥ n.

By a straightforward computation, x+ y satisfies

5

2
+

√
1

4
+

2|χ(S)|
k

≤ x+ y <
7

2
+

√
1

4
+

2|χ(S)|
k

.

Set N = |C|; we know that N = x+y or x+y+1. Moreover, the complement
of C is a union of disks. We want to place at most one puncture per connected
component. By construction, we have enough components. Also, all curves
are pairwise nonhomotopic, except possibly for the y+1 in the thin cylinder.
To be sure these are pairwise nonhomotopic, it is enough to have at least y
punctures, i.e., it is enough to have n ≥ y. This is true if y = 0 or y = 1
(by assumption). Note that if y = 1, S0 \ C has at least three connected
components. By the minimality of y, if it is 2 or 3 we have more than three
punctures, otherwise y = 1 would already be sufficient. As such, n > 3 ≥ y.

Assume now that y ≥ 4. By the minimality of y, we know that

2− 2g + k

(
x+ y − 3

2

)
< n
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so with the help of inequality (2) we obtain

n > 2− 2g + k

(
x+ y − 3

2

)
= 2− 2g + k

(x+ (y − 3))((x− 1) + (y − 3))

2

= 2− 2g + k
x(x− 1)

2
+ k

(y − 3)2

2
+
k

2
(2x− 1)(y − 3)

(2)

≥ 1 +
k

2
(y − 3)2 +

k

2
(2x− 1)(y − 3)

2x−1≥1
≥ 1 +

k

2
(y − 3)2 +

k

2
(y − 3).

And since the inequality is strict, we can deduce that

n ≥ 2 +
k

2
(y − 3)2 +

k

2
(y − 3).

So it is enough to have

2 +
k

2
(y − 3)2 +

k

2
(y − 3) ≥ y,

which holds, under our assumption y ≥ 4.
Thus we can add punctures in chosen connected components and we ob-

tain a filling set of size N . �

4. The topological setup: case k odd

In this section we will always assume k to be an odd positive integer.
A k-system on a surface S is a set of curves which pairwise intersect at

most k-times. We set Mg(k) to be the maximum cardinality of a k-system
on a closed surface of genus g.

Theorem 4.1. Let S be a surface of signature (g, n), with g ≥ 1 and n ≥ 1.
Then a k-filling set has cardinality at least N , where N is the smallest integer
satisfying

k

2
N(N − 1)− N

2

(
N

Mg(k)
− 1

)
≥ |χ(S)|.

Proof. Let Γ = {γ1, . . . , γN} be a k-filling set on S; up to isotopy we
can assume that there are no triple intersection points and all intersections
are transverse. As in the proof of the lower bound in Theorem 2.1, we
consider the associated surface S0 obtained by forgetting the punctures and
the forgetful map π : S → S0. Let δ1, . . . , δM be the isotopy classes in π(Γ)
and consider the families Fi = π−1(δi). Note that if two curves in Γ belong
to the same family Fi, they are isotopic on S0, so they can only have an
even number of intersections. Since k is odd, this means that they intersect
at most k − 1 times. Let ai be the cardinality of Fi.

As in the proof of Theorem 3.1, we consider the graph G induced by Γ on
S0. Again it is 4-valent, thus e(G) = 2v(G) and f(G) = χ(S0) + v(G) ≥ n.
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We have

v(G) =

M∑
i=1

 ∑
α,β∈Fi

|α ∩ β|


︸ ︷︷ ︸

intersections between curves
in the same family

+
∑
i<j

 ∑
α∈Fi,β∈Fj

|α ∩ β|


︸ ︷︷ ︸

intersections between curves
in different families

By what we said before, the intersections |α∩β| in the first sum are bounded
by k − 1 and the ones in the second sum simply by k. So

v(G) ≤
M∑
i=1

 ∑
α,β∈Fi

(k − 1)

+
∑
i<j

 ∑
α∈Fi,β∈Fj

k


= (k − 1)

M∑
i=1

(
ai
2

)
+ k

∑
i<j

aiaj

By Lagrange, (k − 1)
∑M

i=1

(
ai
2

)
+ k

∑
i<j aiaj is maximized for a1 = · · · =

aM = N
M . Using this and the fact that M ≤Mg(k) we get

v(G) ≤ k

2
N(N − 1)− N

2

(
N

Mg(k)
− 1

)
.

Combining this estimate with χ(S0) + v(G) ≥ n we obtain our claim. �

5. Systoles of punctured surfaces

In this section we prove bounds on how the minimum number of filling
systoles grows in function of the number of punctures of a (finite area com-
plete) hyperbolic surface. Our bounds will show that, like in the case of
closed surfaces (see [AnPP11]), the topological condition of intersecting at
most once or twice is very far from the geometric condition of being systoles.

Theorem 5.1. Let S be a hyperbolic surface of signature (g, n) and systole
length `. If γ1, . . . , γM is a filling set of systoles, then

M ≥ 2π(2g − 1) + π(n− 2)

4`
.

Remark 5.2. Theorem 5.1, together with the systole bounds in [Sch94] and
[FP14], implies that if g is fixed and n goes to infinity, then M ≥ An, for
some constant A. If n is fixed and g goes to infinity, M ≥ B g

log g , for some

constant B.

Proof. The main idea is to use the isoperimetric inequality of the hyperbolic
plane.

Consider a hyperbolic surface S with n punctures and its set of filling sys-
toles γ1, . . . , γM of length `. We begin by considering the unique hyperbolic
metric S′ with cone angle π in every puncture conformally equivalent to S
outside of the cone angle points. This surface is uniquely determined by the
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conformal structure of S (see Troyanov [Tro91a]) and via the Pick–Schwartz
inequality (see Troyanov [Tro91b]) enjoys a certain number of properties.
All closed curves on S′ are of length strictly less than the corresponding
curves of S and in particular

(4) `S′(γk) < `S(γk) = `

for all k = 1, . . . ,M .
Because the curves γk, k = 1, . . . ,M fill S, they also fill S′. Cutting along

the curves then produces a collection of polygons, each with at most one
cone point in its interior. We want to apply the isoperimetric inequality of
the hyperbolic plane to this set – but the cone points are an obstruction.

To get rid of this obstruction we perform the following covering operation
on those with a cone point of angle π: a polygon with a cone point of angle
π is the quotient of a centrally symmetric polygon by an involution so we
replace is by its double cover which is a genuine hyperbolic polygon. We
now have a full collection of hyperbolic polygons P1, . . . , Pp.

By the isoperimetric inequality the boundary lengths of the polygons
satisfy
p∑

k=1

`(∂Pk) >
√

area(S′)2 + 4π area(S′) > area(S′) = 2π(2g − 1) + π(n− 2).

We’ll now look at how the sum above relates to the sum of the `S(γk)s.
Using inequality (4), the fact that each γk contributes exactly twice to the
length of the filling set and finally the fact that the length of a ∂Pj may
have been doubled, we have:

p∑
j=1

`(∂Pj) ≤ 4
M∑
k=1

`S(γk) = 4M`.

Putting the two inequalities above together gives the result. �

Actually, the growth of the lower bound in Theorem 5.1 is roughly correct.
Indeed, we can construct families of surfaces with a filling set of systoles
growing linearly in g + n.

The first example is the family of surfaces {Sg,n(g)}g≥2 constructed in
Lemma 3.5 of [FP14]. For every g ≥ 2, Sg,n(g) has genus g,

n(g) = 46(g − 1)

cusps and an ideal triangulation where all but one vertex have degree 6
and the remaining vertex has degree 12g − 6. Systoles correspond to edges
between two vertices of degree 6, so one can show that there are 36g − 54
systoles. As these correspond to all edges of the triangulation, except the
ones incident to a single vertex, they fill. Moreover, an explicit computation
shows that the length of a systole is precisely arccosh 3 (and thus indepen-
dent of g). Note that Theorem 5.1 gives, for these surfaces, that a set of
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filling systoles on Sg,n(g) must have at least

25π

2 arccosh 3
(g − 1)

systoles. Thus the construction gives surfaces with less than twice the nec-
essary number of curves from Theorem 5.1.

The second example is a family of spheres with a filling set of systoles of
cardinality equal to the set of punctures.

Proposition 5.3. For any n ≥ 4, there is a n-punctured sphere with a set
of filling systoles of cardinality n.

Proof. Consider an ideal maximally symmetric n-gon in the hyperbolic
plane. In the Poincaré disk model, we can think of it as the n-gon with ideal

vertices vk = ei
2πk
n , for k from 0 to n−1. Take two copies of it and glue them

such that the endpoints of orthogonals between two nonconsecutive sides are
identified. In particular this means that the orthogonals give simple closed
geodesics on the sphere. We will show that these are the only systoles. Since
there are n of these curves and they fill the surface, this concludes the proof.

Consider the center of the polygon (in the Poincaré disk model this is
the origin). To compute its distance d to any side, consider the right-angled
triangle given by the orthogonal from the center to a side, the geodesic from
the center to one of the two vertices of the side and the part of the side from
the vertex to the foot of the orthogonal. By hyperbolic trigonometry, the
distance d satisfies

cosh d =
1

sin π
n

.

d

π
n

d dk

πk
n

Figure 2. Computing d and dk

Consider now two nonconsecutive sides a and b. Suppose k − 1 is the
minimum number of sides between them. Then the smallest angle between
the two orthogonals from the center to a and b is 2πk

n . These two orthogonals
and the common orthogonal dk between a and b determine a pentagon with
four right angles and and a 2πk

n angle. By taking the orthogonal from the
center to dk, we cut the pentagon into two quadrilaterals with three right
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angles and a πk
n angle. By hyperbolic trigonometry, we find that

cosh
dk
2

= cosh d sin
πk

n
.

In particular, if k > k′, dk > dk′ and two nonconsecutive sides which are
adjacent to the same side are closer to each other than any other two non-
consecutive sides.

Consider now any simple closed geodesic on the surface. It cannot be
contained in one of the two polygons, otherwise it would be contractible.
Thus it needs to cross two sides. It cannot only cross two consecutive sides,
otherwise it would be homotopic to a cusp. Hence it needs to cross two
nonconsecutive sides and so it contains at least two arcs of length at least
d2. Moreover, it is of length exactly 2d2 only if it is the concatenation of
two orthogonal geodesics between sides adjacent to the same side.

We conclude that the curves we are considering are the only systoles. �
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