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Homogeneous holomorphic hermitian
principal bundles over hermitian

symmetric spaces

Indranil Biswas and Harald Upmeier

Abstract. We give a complete characterization of invariant integrable
complex structures on principal bundles defined over hermitian sym-
metric spaces, using the Jordan algebraic approach for the curvature
computations. In view of possible generalizations, the general setup of
invariant holomorphic principal fibre bundles is described in a system-
atic way.
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1. Introduction

The classification of hermitian holomorphic vector bundles, or more gen-
eral holomorphic principal fibre bundles, over a complex manifold M is a
central problem in algebraic geometry and quantization theory, e.g., for a
compact Riemann surface M. In geometric quantization, where M = G/K
is a co-adjoint orbit, G-invariant principal fibre bundles have been investi-
gated from various points of view [Bo, Ra, OR]. In case M is a hermitian
symmetric space of noncompact type, a complete characterization of invari-
ant integrable complex structures on principal bundles over M was obtained
in [BiM] (for the unit disk) and [Bi] (for all bounded symmetric domains).

Received August 5, 2015.
2010 Mathematics Subject Classification. 32M10, 14M17, 32L05.
Key words and phrases. Irreducible hermitian symmetric space; principal bundle; ho-

mogeneous complex structure; hermitian structure.

ISSN 1076-9803/2016

21

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2016/Vol22.htm


22 INDRANIL BISWAS AND HARALD UPMEIER

The main objective of this paper is to treat the dual case of compact her-
mitian symmetric spaces, and to show that the compact case (as well as the
flat case) leads to exactly the same characterization, resulting in an explicit
duality correspondence for invariant integrable complex principal bundles
(with hermitian structure) between the noncompact type, the compact type
and the flat type as well. The proof is carried out using the Jordan theoretic
approach towards hermitian symmetric spaces [Lo, FK]. Of course, the tra-
ditional Lie triple system approach could be used instead, but Jordan triple
systems (essentially the hermitian polarization of the underlying Lie triple
system) make things more transparent and somewhat more elementary.

More importantly, the Jordan triple approach leads in a natural way to
more general complex homogeneous (nonsymmetric) manifolds G/C where
C is a proper subgroup of K. These manifolds are fibre bundles over G/K
with compact fibres given by Jordan theoretic flag manifolds. Again, there
exists a duality between such spaces of compact, noncompact and flat type,
and in a subsequent paper [BiU] the duality correspondence for invariant
fibre bundles, proved here in the hermitian symmetric case C = K, will be
studied in the more general setting. In view of these more general situations,
the current paper describes the general setup for homogeneous holomorphic
principal fibre bundles in a careful way, specializing to the symmetric case
only in the last section.

As a next step beyond the classification, its dependence on the underlying
complex structure on M is of fundamental importance. While the hermitian
symmetric case G/K has a unique G-invariant complex structure, the more
general flag manifold bundles G/C have an interesting moduli space of in-
variant complex structures. It is a challenging problem whether this moduli
space carries a projectively flat connexion (with values in the vector bundle
of holomorphic sections) similar to the case of abelian varieties, [Mu], [We],
or Chern–Simons theory [ADW], [Wi].

From the geometric quantization point of view, it is also of interest to
describe the spaces of holomorphic sections, given by suitable Dolbeault
operators, in an explicit way.

2. Homogeneous H-bundles

Let M be a manifold and G a connected real Lie group, with Lie algebra
g, acting smoothly on M. Denoting the action G×M →M by (a, x) 7→ a(x),
we define RMx : G→M , x ∈M , by

RMx (a) = a(x) ∀ (a, x) ∈ G×M.

LetH be a connected complex Lie group; its Lie algebra will be denoted by h.
Fix a maximal compact subgroup L ⊂ H; all such subgroups are conjugate
in H. The Lie algebra of L is denoted by l. Let Q be a C∞ principal H-bundle
over M, with projection π : Q→M = Q/H. The free action Q×H → Q is
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written as (q, b) 7→ qb. Define RQb : Q→ Q and LQq : H → Q by

RQb q = LQq b = qb ∀ (q, b) ∈ Q×H.
For notational convenience, we have omitted the parentheses.

Then π ◦ RQb = π and ker(dπ)q ⊂ TqQ is the “vertical” subspace of the
tangent space TqQ at q ∈ Q. We call Q an equivariant H-bundle if there is
a C∞ action G×Q→ Q, denoted by (a, q) 7→ aq, such that π(aq) = aπ(q)
and

a(qb) = (aq)b.

Define LQa : Q→ Q and RQq : G→ Q by

LQa q = RQq a = aq ∀ (a, q) ∈ G×Q.

Then LQa ◦ RQb = RQb ◦ L
Q
a and π ◦ LQa = LMa ◦ π for all a ∈ G, b ∈ H.

A hermitian structure on a principal H-bundle Q is a principal subbundle
P ⊂ Q with structure group L, i.e., we have

RQb : P → P ∀ b ∈ L
and the action of L on the fibre Px is transitive for all x ∈M . We also say
that (Q,P ) is a hermitian H-bundle. An equivariant hermitian H-bundle
is an equivariant H-bundle Q endowed with a hermitian structure P ⊂ Q
such that G · P = P, i.e., we have

LQa P = P ∀ a ∈ G.
In this case P becomes an equivariant L-bundle. When G acts transitively
on M , we call Q a homogeneous H-bundle. In the homogeneous case, fix a
base point o ∈M and put

K = {k ∈ G | k(o) = o}.
Then M = G/K. The Lie algebra of K will be denoted by k.

The following proposition is straightforward to prove.

Proposition 2.1. Let f : K → H be a (real-analytic) homomorphism.
Consider the quotient manifold

Q := G×K,f H
consisting of all equivalence classes

(2.1) 〈g|h〉 = 〈gk−1|f(k)h〉,
with g ∈ G, h ∈ H and k ∈ K. (This bracket notation is used to avoid
confusion with the commutator bracket.) Then Q becomes a homogeneous H-
bundle, with projection π(g|h) = g(o) = RMo (g). The action of (a, b) ∈ G×H
is given by

a〈g|h〉b = 〈ag|hb〉.
If in addition, f(K) ⊂ L, we obtain a hermitian homogeneous principal
H-bundle

P := G×K,f L ⊂ Q := G×K,f H.
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In the set-up of Proposition 2.1, the maps LQa : Q→ Q and RQg|h : G→ Q

have the form
LQa 〈g|h〉 = RQg|h(a) = 〈ag|h〉.

For any ` ∈ H, let
IH` h = `h`−1

be the inner automorphism induced by `. Then deI
H
` = Adh

` . The conjugate
homomorphism

IH` ◦ f : K → H

induces the H-bundle isomorphism

G×K,f H → G×K,IH` ◦f H

mapping the equivalence class 〈g|h〉f to 〈g|IH` h〉IH` ◦f .

Theorem 2.2. Every homogeneous principal H-bundle Q on M = G/K is
isomorphic to G×K,fH for a homomorphism f : K → H, which is unique up
to conjugation by elements ` ∈ H. Similarly, every hermitian homogeneous
H-bundle (Q,P ) is isomorphic to the pair

G×K,f L ⊂ G×K,f H
for a homomorphism f : K → L ⊂ H, which is unique up to conjugation
by an element in L. More precisely, for any base point o ∈ Qo (respectively,
o ∈ Po) there exists a unique homomorphism fo : K → H (respectively,
fo : K → L) such that

(2.2) ko = ofo(k) ∀ k ∈ K,
and

(2.3) 〈g|h〉 7→ goh

defines an isomorphism G ×K,fo H → Q of equivariant H-bundles (respec-
tively, an isomorphism G×K,foL→ P of hermitian equivariant H-bundles).
Another base point o′ = o`−1, with ` ∈ H (respectively, ` ∈ L), corresponds
to the homomorphism fo′ = I` ◦ fo.

Proof. Let Q be a homogeneous H-bundle. Choose o ∈ Q with π(o) = o.
Since the fibre Qo is preserved by K, and H acts freely on Qo, there exists
a unique map fo : K → H such that (2.2) holds for all k ∈ K. Then

ofo(k1k2) = (k1k2)o = k1(k2o) = k1(ofo(k2)) = (k1o)fo(k2)

= (ofo(k1))fo(k2) = o(fo(k1)fo(k2))

for all k1, k2 ∈ K. Since H operates freely on Q, this implies that fo(k1k2) =
fo(k1)fo(k2), and hence fo : K → H is a (real-analytic) homomorphism. For
all b ∈ H we have

kob = (ofo(k))b = o(fo(k)b).

The resulting identity

(ak)ob = a(kob) = a(o(fo(k)b)) = ao(fo(k)b)
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shows that (2.3) defines an isomorphism G ×K,fo H → Q of equivariant
H-bundles, mapping the “base point” 〈e|e〉 to o. If o′ ∈ Qo is another base
point, there exists a unique ` ∈ H such that o′ = o`−1. It follows that

ko′ = ko`−1 = ofo(k)`−1 = o′`fo(k)`−1.

Thus the new base point o′ corresponds to the conjugate homomorphism

fo`−1(k) = `fo(k)`−1 = IH` fo(k).

In the hermitian case, for any base point o ∈ Po ⊂ Qo the defining identity
(2.2) implies fo(k) ∈ L for all k ∈ K. Another base point o′ = o`−1 ∈ Po
differs by a unique element ` ∈ L. In both cases, since G acts transitively
on M, the G-invariance condition implies that the entire construction is
independent of the choice of base point o ∈M. �

In view of (2.2), the homomorphism fo could be denoted by fo = I−1
o ,

i.e., ko = oI−1
o (k). In this notation, the identity I−1

o`−1 = I` ◦ I−1
o is obvious.

It will be convenient to express the tangent spaces in an explicit manner
using equivalence classes. Note that the differential def : k → h of f at the
unit element e ∈ K is a Lie algebra homomorphism.

Lemma 2.3. For a given class 〈g|h〉 ∈ Q := G ×K,f H the tangent space
Tg|hQ consists of all equivalence classes

〈ġ|ḣ〉 =
〈

(dgR
G
k−1)ġ − (deL

G
gk−1)κ|(dhLHf(k))ḣ+ (deR

H
f(k)h)(def)κ

〉
,

where ġ ∈ TgG, ḣ ∈ ThH, k ∈ K and κ ∈ k.

Here we regard TG and TH as the disjoint union of the respective tan-
gent spaces, so that the first expression is evaluated at 〈g|h〉 whereas the
second expression is evaluated at the same class written as 〈gk−1|f(k)h〉. The
identity follows from differentiating the relation 〈gt|ht〉 = 〈gtk−1

t |f(kt)ht〉 at
t = 0, where kt ∈ K satisfies k0 = k and ∂0

t kt = κ. As special cases we
obtain

〈ġ|ḣ〉 =
〈

(dgR
G
k−1)ġ|(dhLHf(k))ḣ

〉
(2.4)

=
〈
ġ − (deL

G
g )κ|ḣ+ (deR

H
h )(def)κ

〉
putting κ = 0 or k = e, respectively. The projection π has the differential

(dg|hπ)〈ġ|ḣ〉 =

(
d

dt
(gt)(0)

)
(o) = (dgR

M
o )ġ.

Thus the vertical subspace is given by

ker(dg|hπ) = {〈ġ|ḣ〉 | ġ ∈ ker(dgR
M
o ) ⊂ TgG, ḣ ∈ ThH}.

For β ∈ h, the fundamental vector field ρQβ has the form

(ρQβ )g|h = ∂0
t 〈g|hbt〉 = 〈0g|(deLHh )β〉 = 〈0g|(deRHh ) AdHh β〉.
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3. Connexions and complexions

A connexion on a principal H-bundle Q is a smooth distribution q 7→ TΘ
q Q

of “horizontal” subspaces of TqQ such that TqQ = TΘ
q Q⊕ ker(dqπ) and

TΘ
qbQ = (dqR

Q
b )(TΘ

q Q) ∀ (q, b) ∈ Q×H.

We use the same symbol for the associated connexion 1-form Θq : TqQ→ h
on Q, uniquely determined by the condition that X ∈ TqQ has the horizontal
projection

XΘ = X − (deL
Q
q )(Θq(X)).

A connexion Θ on an equivariant H-bundle Q is called invariant if

(dqL
Q
a )(TΘ

q Q) = TΘ
aqQ ∀ a ∈ G.

In this case the associated connexion 1-form satisfies

Θq = Θaq(dqL
Q
a ).

Let Q×H h denote the associated bundle of type AdH , with fibres

(Q×H h)x = {[q : β] = [qh : Ad−1
h β] | q ∈ Qx, β ∈ h}

for x ∈M, with h ∈ H being arbitrary. By [KN, Section II.5] every tensorial
i-form on Q is given by

(CQ
q ◦ dqπ)(X1

q , · · · , Xi
q) := CQ

q ((dqπ)X1
q , · · · , (dqπ)Xi

q)

for X1
q , · · · , Xi

q ∈ TqQ, where

Cx(v1 ∧ · · · ∧ vi) = [q : CQ
q (v1 ∧ · · · ∧ vi)] ∀ q ∈ Qx

is an i-form of type AdH (on M), with homogeneous lift CQ
q :

i∧
TxM → h

having the right invariance property

CQ
qb = AdHb−1 CQ

q ∀ b ∈ H.

An i-form C of type AdH is called invariant if

(3.1) CQ
aq(dxL

M
a ) = CQ

q ∀ (a, q) ∈ G×Q.

Proposition 3.1.

(i) Let Θ0 be a connexion on Q. If C is a 1-form of type AdH , then

(3.2) Θq = Θ0
q + CQ

q ◦ dqπ ∀ q ∈ Q

is a connexion 1-form on Q. Every connexion 1-form Θ on Q arises
this way.

(ii) In the equivariant case, let Θ0 be an invariant connexion on Q.
Then Θ is invariant if and only if C is invariant, i.e.,

(3.3) CQ
aq(dxL

M
a ) = CQ

q ∀ (a, q) ∈ G×Q.
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Proof. Part (i) is well-known. For part (ii) let the connexion Θ be invariant.

The condition π ◦ LQa = LMa ◦ π implies that (daqπ)(dqL
Q
a ) = (dxL

M
a )(dqπ),

and hence we have

CQ
q (dqπ) = Θq −Θ0

q = (Θaq −Θ0
aq)(dqL

Q
a )

= CQ
aq(daqπ)(dqL

Q
a ) = CQ

aq(dxL
M
a )(dqπ) .

Since dqπ is surjective, (3.3) follows. The converse is proved in a similar
way. �

If (3.2) holds, we say that Θ is related to Θ0 via C. For a hermitian
H-bundle (Q,P ) a connexion Ξ on P is called invariant if

(dpL
P
a )TΞ

p P = TΞ
apP ∀ (a, p) ∈ G× P.

In this case the associated connexion 1-form satisfies

Ξp = Ξap(dpL
P
a ).

By [KN, Proposition II.6.2] every connexion Ξ on P has a unique extension
to a connexion ιΞ on Q such that

TΞ
p P = T ιΞp Q ∀ p ∈ P ⊂ Q.

Equivalently, the connexion forms satisfy

(ιΞ)p|TpP = Ξp ∀ p ∈ P.

A connexion Θ on Q is called hermitian if Θ = ιΞ for a (unique) connexion
Ξ on P. Thus hermitian connexions on Q are in 1-1 correspondence with
connexions on P. A connexion Ξ on P is invariant if and only if its extension
ιΞ is invariant.

For hermitian H-bundles (P,Q), we have i-forms of type AdL written as

Ax(v1 ∧ · · · ∧ vi) = [p : AP
p (v1 ∧ · · · ∧ vi)] ∀ p ∈ Px,

with homogeneous lift AP
p :

i∧
TxM → l having the right invariance property

(3.4) AP
p` = AdL`−1 AP

p ∀ ` ∈ L.

Let l be the Lie algebra of L. For each x ∈ M , there is a linear injection of
fibres

ιx : (P ×L l)x → (Q×H h)x, [p, β] 7→ [p, ιβ],

where p ∈ Px, β ∈ l and ι : l → h is the inclusion map. The map ιx is
well-defined because

[p1, β1] = [p2, β2] ∈ (P ×L l)x

implying that p2 = p1` and β2 = AdL`−1 β1 for some ` ∈ L. Therefore, we

also have ιβ2 = AdH`−1 ιβ1. To show that ιx is injective, suppose that

[p1, ιβ1] = [p2, ιβ2] ∈ (Q×H h)x.
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Then we have p2 = p1h and ιβ2 = AdHh−1 ιβ1 for some h ∈ H. Since p1, p2 ∈
Px it follows that h ∈ L and hence β2 = AdLh−1 β1.

As a consequence, an i-form A of type AdL induces an i-form ιA of type
AdH , with homogeneous lift

(ιA)Qph := AdHh−1 AP
p :

i∧
ToM → h ∀ (p, h) ∈ P ×H.

Then A is invariant in the sense that

AP
ap(dxL

M
a ) = AP

p ∀ (a, p) ∈ G× P

if and only if ιA is invariant as in (3.1).

Proposition 3.2.

(i) For a hermitian bundle (P,Q), let Ξ0 be a connexion on P . If A is
a 1-form of type AdL, then

(3.5) Ξp = Ξ0
p + AP

p ◦ dpπ ∀ p ∈ P
is a connexion 1-form on P . Every connexion 1-form Ξ on P arises
this way. We also have

(ιΞ)q = (ιΞ)0
q + (ιA)Qq ◦ dqπ ∀ q ∈ Q.

(ii) In the equivariant case, let Ξ0 be an invariant connexion on P. Then
Ξ is invariant if and only if A is invariant, i.e.,

(3.6) AP
ap(dxL

M
a ) = AP

p ∀ (a, p) ∈ G× P.

If (3.5) holds, we say that Ξ is related to Ξ0 via A. In this case, ιΞ
is related to ιΞ0 via ιA. Now suppose that (M, j) is an almost complex
manifold, with almost complex structure jx ∈ End(TxM), x ∈ M, having
the left invariance property

(dxL
M
g )jx = jgx(dxL

M
g ) ∀ (g, x) ∈ G×M.

Let H be a complex Lie group. Consider the bi-invariant complex structure
ih ∈ End(ThH) on H such that ie ∈ End(h) is multiplication by

√
−1. See

[At], [Kos] for complex structures on principal bundles.

Definition 3.3. An almost complex structure Jq ∈ End (TqQ) on an H-
bundle Q is called a complexion if

(3.7) (dqπ)Jq = jx(dqπ)

and the map Q×H → Q is almost-holomorphic. Writing

qb = LQq (b) = RQb (q)

for q ∈ Q, b ∈ H, this means that

(dqR
Q
b )Jq = Jqb(dqR

Q
b )(3.8)

Jqb(dbL
Q
q ) = (dbL

Q
q )ib.(3.9)
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In the equivariant case, a complexion J is called invariant if in addition

(dqL
Q
a )Jq = Jaq(dqL

Q
a ) ∀ a ∈ G.

By right invariance the condition (3.9) is equivalent to

Jq(deL
Q
q )β = (deL

Q
q )(
√
−1β) ∀ β ∈ h.

Since the fibre (Q×H h)x is a complex vector space, the notion of (p, q)-forms
of type AdH makes sense.

Proposition 3.4.

(i) Let J0 be a complexion on Q. If B is a (0, 1)-form of type AdH ,
then

(3.10) Jq = J0
q + (deL

Q
q )(BQ

q ◦ dqπ)

defines a complexion J on Q. Every complexion J on Q arises this
way.

(ii) Let J0 be an invariant complexion on an equivariant bundle Q. Then
J is invariant if and only if B is invariant, i.e.,

(3.11) BQ
aq(dxL

M
a ) = BQ

q ∀ (a, q) ∈ G×Q.

Proof. By (3.7) we have

(dqπ)(Jq − J0
q ) = (jx − jx)(dqπ) = 0 .

Thus Image(Jq − J0
q ) ⊂ Ker(dqπ). Since deL

Q
q : h→ Ker(dqπ) is an isomor-

phism, there exists a 1-form Ψq : TqQ→ h such that

Jq − J0
q = (deL

Q
q )Ψq.

For b ∈ H we have RQb ◦ L
Q
q = LQqb ◦ I

H
b−1 , and hence

(dqR
Q
b )(deL

Q
q ) = (deL

Q
qb) AdHb−1 .

It follows that

(deL
Q
qb)Ψqb(dqR

Q
b ) = (Jqb − J0

qb)(dqR
Q
b ) = (dqR

Q
b )(Jq − J0

q )

= (dqR
Q
b )(deL

Q
q )Ψq = (deL

Q
qb) AdHb−1 Ψq.

Therefore, we have Ψqb(dqR
Q
b ) = AdHb−1 Ψq, so Ψ is pseudo-tensorial. For

β ∈ h we have

Jq(deL
Q
q )β = (deL

Q
q )(
√
−1β) = J0

q (deL
Q
q )β.

Therefore, we have (Jq − J0
q )|Ker(dqπ) = 0, which implies that Ψ is tensorial.

Hence there exists a unique 1-form B of type AdH such that Ψq = BQ
q (dqπ).
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We also have (Jq − J0
q )2 = 0 and hence

(deL
Q
q )(BQ

q jx +
√
−1BQ

q )(dqπ) = (deL
Q
q )BQ

q jx(dqπ) + (deL
Q
q )
√
−1BQ

q (dqπ)

= (deL
Q
q )BQ

q (dqπ)J0
q + J0

q (deL
Q
q )BQ

q (dqπ)

= (Jq − J0
q )J0

q + J0
q (Jq − J0

q )

= J2
q − (Jq − J0

q )2 − (J0
q )2 = J2

q − (J0
q )2

= −id+ id = 0.

Since deL
Q
q is invertible, we obtain

BQ
q jx +

√
−1BQ

q = 0.

Thus B is of type (0, 1).

For part (ii) , let J be invariant. Using LQa ◦LQq = LQaq and LMa ◦π = π◦LQa
we obtain

(deL
Q
aq)B

Q
aq(dxL

M
a )(dqπ) = (deL

Q
aq)B

Q
aq(daqπ)(dqL

Q
a ) = (Jaq − J0

aq)(dqL
Q
a )

= (dqL
Q
a )(Jq − J0

q ) = (dqL
Q
a )(deL

Q
q )BQ

q (dqπ)

= (deL
Q
aq)B

Q
q (dqπ).

Since deL
Q
aq is invertible, (3.11) follows. The converse is proved in a similar

way. �

If (3.10) holds, we say that J is related to J0 via B. There is a close rela-
tionship between (invariant) connexions and complexions: Every connexion
Θ on Q induces a unique complexion JΘ which is “horizontal” in the sense
that

JΘ
q : TΘ

q Q→ TΘ
q Q ∀ q ∈ Q.

In fact, for vertical tangent vectors we have

(3.12) JΘ
q (deL

Q
q )β = (deL

Q
q )(
√
−1β) ∀β ∈ h,

and if Y ∈ TΘ
q Q is horizontal, then JΘ

q (Y ) ∈ TΘ
q Q is uniquely determined

by the condition (dqπ)JΘ
q (Y ) = jx(dqπ)(Y ). If Θ is invariant, then the asso-

ciated complexion JΘ is also invariant.

Proposition 3.5.

(i) If a connexion Θ is related to Θ0 via C, then the induced complexion
JΘ is related to J0 via B, where

(3.13) Bx =
√
−1Cx −Cx jx ∀ x ∈M.

(ii) Θ and Θ0 induce the same complexion if and only if C is a (1, 0)-

form, i.e., CQ
q : TxM → h is C-linear.
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(iii) If J0 is induced by a connexion Θ0 and J is related to J0 via B,
then J is induced by the connexion

Θq = Θ0
q −
√
−1

2
BQ
q (dqπ)

which is related to Θ0 via −
√
−1
2 B.

Proof. In order to check (3.10) on a tangent vector X ∈ TqQ, we may
assume that X is Θ0-horizontal, since for vertical vectors of the form X =

(deL
Q
q )β, β ∈ h, both sides of (3.10) agree. Thus assume that Θ0

qX = 0.

Then ΘqX = CQ
q (dqπ)X. Since J0 is induced by Θ0, it follows that J0

qX is

also Θ0-horizontal, and hence ΘqJ
0
qX = CQ

q (dqπ)J0
qX. Therefore,

X − (deL
Q
q )CQ

q (dqπ)X = X − (deL
Q
q )ΘqX

is Θ-horizontal. It follows that

U := JΘ
q X − (deL

Q
q )iCQ

q (dqπ)X = JΘ
q

(
X − (deL

Q
q )CQ

q (dqπ)X
)
,

V := J0
qX − (deL

Q
q )CQ

q (dqπ)J0
qX = J0

qX − (deL
Q
q )ΘqJ

0
qX

are both Θ-horizontal. Since (dqπ)U = jx(dqπ)X = (dqπ)V , it follows that
U = V , i.e.,

JΘ
q X − (deL

Q
q )
√
−1CQ

q (dqπ)X = J0
qX − (deL

Q
q )CQ

q (dqπ)J0
qX .

Therefore, we have

(deL
Q
q )BQ

q (dqπ)X = JΘ
q X − J0

qX

= (deL
Q
q )
(√
−1CQ

q (dqπ)X −CQ
q (dqπ)J0

qX
)
.

Since deL
Q
q is injective, using (3.7) it follows that

BQ
q (dqπ)X =

√
−1CQ

q (dqπ)X −CQ
q (dqπ)J0

qX = (
√
−1CQ

q −CQ
q jx)(dqπ)X.

We now have BQ
q =
√
−1CQ

q −CQ
q jx on TxM because dqπ is surjective. This

proves part (i).
Part (ii) is a direct consequence, since B = 0 if and only if C is C-linear.

For part (iii) , since BQ
q : TxM → h is C-antilinear, the 1-form

Cx := −
√
−1

2
Bx

yields Bx via (3.13). �

In the hermitian case, we can sharpen the correspondence as follows:

Proposition 3.6.

(i) For a hermitian H-bundle (Q,P ), a complexion J on Q is induced
by a unique hermitian connexion ιΞ, with Ξ being a connexion on
P. Thus there is a 1− 1 correspondence between complexions on Q,
connexions on P, and hermitian connexions on Q.
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(ii) In the equivariant case, J is invariant if and only if Ξ (equivalently,
ιΞ) is invariant.

Proof. Let Ξ0 be a connexion on P , and let J0 be the complexion on Q
induced by ιΞ0. The complexion J is related to J0 via a unique (0, 1)-form
B of type AdH . Since the Lie algebra splitting

(3.14) h = l⊕
√
−1l

is AdL-invariant, the anti-linear map Bx : TxM → (Q×H h)x has a unique
decomposition

(3.15) Bxv =
√
−1(ιxAx)v − (ιxAx)jxv =

√
−1(ιA)xv − (ιA)xjxv

∀ x ∈ M , where Ax : TxM → (P ×L l)x is a 1-form of type AdL . Let Ξ be
the connexion on P related to Ξ0 via A. By Proposition 3.5, the complexion
J is induced by the hermitian connexion

(ιΞ0)q + (ιA)Qq ◦ dqπ = (ιΞ)q.

For uniqueness, suppose that for two connexions Ξ0 and Ξ on P , the
extensions induce the same complexion. The connexion Ξ is related to Ξ0

via a unique 1-form A of type AdL . Then ιΞ is related to ιΞ0 via ιA,
and both induce the same complexion. Proposition 3.5 implies that ιA is
a (1, 0)-form of type AdH . Since AP

p is l-valued, it follows that AP
p = 0.

Hence A = 0 and Ξ = Ξ0. As Ξ is invariant if and only if the complexion
induced by ιΞ is invariant, the assertion (ii) follows. �

4. Homogeneous connexions and complexions

We now turn to the homogeneous case. By Theorem 2.2 we may assume
that the homogeneous H-bundle Q is given by Q = G ×K,f H for a homo-
morphism f : K → H, with f(K) ⊂ L in the hermitian case. We fix an
AdK-invariant splitting

(4.1) g = k⊕m.

Thus [k,m] ⊂ m but not necessarily [m,m] ⊂ k. Let Pk : g→ k and Pm : g→ m
denote the projection maps given by (4.1).

Definition 4.1.

(i) The tautological connexion Θ0 on Q = G ×K,f H is defined by the
horizontal subspaces

T 0
g|hQ :={〈(deLGg )τ |0h〉 : τ ∈ m}

={〈(deLGg )γ|(deRHh )η〉 : γ ∈ g, η ∈ h, (def)Pkγ + η = 0}

={〈ġ|ḣ〉 : ġ ∈ TgG, ḣ ∈ ThH, (def)Pk(deL
G
g )−1ġ + (deR

H
h )−1ḣ = 0}.
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(ii) For a hermitian homogeneous H-bundle (Q,P ), the tautological
connexion is the extension of the “tautological” connexion Ξ0 on P
with horizontal subspaces

T 0
g|`P := {〈(deLGg )τ |0`〉 | τ ∈ m} ∀ 〈g|`〉 ∈ P = G×K,f L.

The equivalence of the various realizations of the horizontal subspaces
follows from the definition. Under right translations, we have

(dg|hR
Q
b )〈ġ|ḣ〉 = ∂0

t 〈gt|htb〉 = 〈ġ|(dhRHb )ḣ〉.

It follows that (Tg|hR
Q
b )T 0

g|hQ = T 0
〈g|hb〉Q, showing that Θ0 is indeed a con-

nexion on Q. Since

(dg|hL
Q
a )〈ġ|ḣ〉 = 〈(dgLGa )ġ|ḣ〉,

it follows that

(dg|hL
Q
a )〈(deLGg )τ |0h〉 = 〈(dgLGa )(deL

G
g )τ |0h〉 = (deL

G
agτ |0h〉.

Thus Θ0 is an invariant connexion. In the hermitian case, the connexion Ξ0

on P is also invariant.

Proposition 4.2. The connexion 1-form of the tautological connection is
given by

Θ0
g|h〈(deL

G
g )γ|(deLHh )η〉 = AdHh−1(def)Pkγ + η ∀ (γ, η) ∈ g× h.

In particular, Θ0
e|e〈γ|η〉 = (def)Pkγ + η.

Proof. Applying (2.4) to κ = Pkγ we conclude that

〈(deLGg )γ|(deLHh )η〉 = 〈(deLGg )Pmγ|(deRHh )(def)Pkγ + (deL
H
h )η〉.

= 〈(deLGg )Pmγ|0h〉+ 〈0g|(deRHh )(def)Pkγ + (deL
H
h )η〉.

This gives the direct sum decomposition into horizontal and vertical com-
ponents, and

β := Θ0
g|h〈(deL

G
g )γ|(deLHh )η〉 ∈ h

is determined by the condition

〈0g|(deRHh )(def)Pkγ + (deL
H
h )η〉 = (deLg|h)β = ∂0

t 〈g|h〉bt
= ∂0

t 〈g|hbt〉 = 〈0|(deLHh )β〉 .
Therefore, we have

β = (deL
H
h )−1(deR

H
h )(def)Pkγ + η = AdHh−1(def)Pkγ + η. �

In the homogeneous case, invariance can be checked at the base point
o ∈M. An i-linear map

c :

i∧
ToM → h

will be called f -covariant if

AdHf(k) ◦c = c ◦ (doL
M
k ) ∀ k ∈ K.
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Every such map induces an invariant i-form C of type AdH via

Cgo(doL
M
g )v = [〈g|h〉,Ad−1

h cv]

for all (g, h) ∈ Q = G×K,fH and v ∈
i∧
ToM. Equivalently, the homogeneous

lift satisfies

(4.2) CQ
g|h(doL

M
g ) = AdHh−1 ◦c.

Conversely, for any invariant i-form C of type AdH , the map

c := CQ
e|e :

i∧
ToM → h

is f -covariant. If the homomorphism f is replaced by the conjugate f ′ =

I` ◦ f, then c′ :
i∧
ToM → h is f ′-covariant if and only if c := AdH`−1 ◦c′ is

f -covariant. In the homogeneous case Proposition 3.1 yields the following:

Proposition 4.3. Let c : ToM → h be a linear map which is f -covariant,
i.e.,

AdHf(k) ◦c = c ◦ (doL
M
k )

for all k ∈ K. Then the 1-form C of type AdH defined by

CQ
g|h(doL

M
g ) = AdHh−1 ◦c, ∀ (g, h) ∈ G×H

is invariant. Hence the connexion Θ on Q = G×K,f H, related to the tauto-
logical connexion Θ0 via C, is invariant, and also every invariant connexion
is of this form.

In this case we say that Θ is generated by c, the choice of the (invariant)
tautological connexion Θ0 being understood. In the hermitian homogeneous
case Proposition 3.2 yields the following:

Proposition 4.4. Let a : ToM → l be a linear map which is f -covariant,
i.e., satisfies AdLf(k) ◦a = a ◦ (doL

M
k ) for all k ∈ K. Then the 1-form A of

type AdL defined by

AQ
g|`(doL

M
g ) = AdL`−1 ◦a ∀ (g, `) ∈ G× L,

is invariant. Hence the connexion Ξ on P = G×K,f l, related to the tauto-
logical connexion Ξ0 via A, is invariant, and every invariant connexion is
of this form.

In this case we say that Ξ is generated by a, the choice of the (invariant)
tautological connexion Ξ0 being understood. Since ιΞ0 = Θ0, the invariant
connexion ιΞ is generated by the f -covariant map ι ◦ a : ToM → h. Com-
bining Propositions 4.3 and 4.4 with Theorem 2.2 we obtain the following:
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Theorem 4.5.

(i) The homogeneous H-bundles Q endowed with an invariant con-
nexion are in 1 − 1 correspondence with pairs (f, c) consisting of
a homomorphism f : K → H and an f -covariant linear map
c : ToM → h, modulo the equivalence

(f, c) ∼ (IH` ◦ f,AdH` c),

where ` ∈ H is arbitrary.
(ii) The hermitian homogeneous H-bundles (P,Q) endowed with an in-

variant hermitian connexion are in 1− 1 correspondence with pairs
(f,a) consisting of a homomorphism f : K → L and an f -covariant
linear map a : ToM → l, modulo the equivalence

(f,a) ∼ (IL` ◦ f,AdH` a),

where ` ∈ L is arbitrary.

In the complex homogeneous case, Proposition 3.4 yields the following:

Proposition 4.6. Let b : ToM → h be an anti-linear map which is f -
covariant, i.e.,

AdHf(k) ◦b = b ◦ (doL
M
k ), ∀ k ∈ K.

Then the (0, 1)-form B of type AdH defined by

BQ
g|h(doL

M
g ) = AdHh−1 ◦b ∀ (g, h) ∈ G×H

is invariant. Hence the complexion J on Q = G×K,f H, related to the tau-
tological complexion J0 via B, is invariant, and every invariant complexion
J is of this form.

In this case we say that J is generated by b, the choice of the (invariant)
tautological complexion J0 being understood. Using the K-invariant inverse
map ToM 3 v 7→ ṽ ∈ m of deR

M
o , the tautological complexion J0 has the

value

J0
e|e(〈ṽ|0e〉) = 〈(jo v)∼|0e〉

at the base point. For a general invariant complexion J generated by b :
ToM → h we have

LQe|eh = 〈e|e〉h = 〈e|h〉

and hence de|eL
Q
e|eη = 〈0e|η〉. Therefore

Je|e(〈ṽ|0e〉)− J0
e|e(〈ṽ|0e〉) = (de|eL

Q
e|e)b(de|eπ)(〈ṽ|0e〉)

= (de|eL
Q
e|e)bv = 〈0e|b v〉

and hence

Je|e(〈ṽ|0e〉) = 〈(jo v)∼|0e〉+ 〈0e|b v〉 = 〈(jo v)∼|b v〉.
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All other values can be computed via G × H-invariance. In the complex
homogeneous case Proposition 3.5 yields the following:

Proposition 4.7.

(i) If an invariant connexion Θ is generated by c, then the induced
invariant complexion JΘ is generated by

(4.3) b =
√
−1c− c jo.

(ii) Θ induces the tautological complexion if and only if c : ToM → h is
C-linear.

(iii) If the invariant complexion J is generated by b, then J is induced

by the invariant connexion Θ generated by −
√
−1
2 b.

In the hermitian homogeneous case. there is a 1-1 correspondence

(4.4) bv =
√
−1a(v)− a jov ∀ v ∈ ToM

between f -covariant anti-linear maps b : ToM → h and f -covariant maps A :
ToM → l, since jo commutes with doL

M
k for all k ∈ K. This correspondence

realizes the correspondence between invariant complexions and invariant
hermitian connexions addressed in Proposition 3.6. Combining Propositions
4.6 and 4.7 with Theorem 2.2, we obtain the following:

Theorem 4.8. The homogeneous H-bundles Q (respectively, the hermitian
homogeneous H-bundles (P,Q)) endowed with an invariant complexion J
are in 1− 1 correspondence with pairs (f, b) consisting of a homomorphism
f : K → H (respectively, f : K → L) and an f -covariant anti-linear map

b : ToM → h,

modulo the equivalence (f, b) ∼ (IH` ◦ f,AdH` b), where ` ∈ H (respectively,
` ∈ L) is arbitrary. In the hermitian case, we may equivalently consider
pairs (f,a) where a : ToM → l is any f -covariant R-linear map.

5. Curvature and Integrability

For any connexion Θ on a principal H-bundle Q there exists a 2-form K
of type AdH giving the curvature

dΘ(X,Y ) +
1

2
[ΘX,ΘY ] = KQ

q ((dqπ)X, (dqπ)Y ) ∀ X,Y ∈ TqQ.

If Θ is invariant, the associated curvature form K is also invariant. For

β ∈ h define the right action vector field ρQβ on Q by

(ρQβ )q = ∂0
t q exp(tβ) = (deL

Q
q )β ∀ q ∈ Q.

Let J be a complexion on Q. For vector fields X,Y the (0, 2)-part of the
bilinear bracket [X,Y ] defined by

N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]
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is called the Nijenhuis tensor. It is well-known that J is integrable if and
only if N vanishes.

Lemma 5.1. Let J be a complexion on Q. Then N(ρQβ , Y ) = 0 for β ∈ h

and any vector field Y on Q.

Proof. Let

bt = exp(tβ) .

Applying [KN, Proposition I.1.9] to ρQβ = ∂0
t exp(RQbt) we have

[ρQβ , Y ]q = lim
t→0

(Yq − (dqb−tR
Q
bt

)Yqb−t) = lim
t→0

(Yq − (dqbtR
Q
b−t

)Yqbt)

for every vector field X on Q. Since J commutes with right translations RQb
on Q it follows that

Jq[ρ
Q
β , Y ]q = lim

t→0
(JqYq − Jq(dqbtR

Q
b−t

)Yqbt)

= lim
t→0

(JqYq − (dqbtR
Q
b−t

)JqbtYqbt) = [ρQβ , JY ]q .

Thus J [ρQβ , Y ] = [ρQβ , JY ] as vector fields. Since

JJY = −Y and JρQβ = ρQ√−1β
,

we obtain

N(ρQβ , Y ) = [ρQβ , Y ] + J [ρQβ , JY ] + J [ρQ√−1β
, Y ]− [ρQ√−1β

, JY ]

= [ρQβ , Y ] + [ρQβ , JJY ] + [ρQ√−1β
, JY ]− [ρQ√−1β

, JY ] = 0. �

Theorem 5.2. Let (M, j) be integrable. Then the complexion JΘ has the
Nijenhuis tensor

Nq(X,Y ) = −2(deL
Q
q )K

Q
q ((dqπ)X, (dqπ)Y ) ∀ X,Y ∈ TqQ ,

where the (0, 2)-part K of K is defined by

Kx(u, v) = Kx(u, v) +
√
−1Kx(jxu, v) +

√
−1Kx(u, jxv)−Kx(jxu, jxv)

∀ u, v ∈ TxM.

Proof. Every X ∈ TqQ is given by X = (ξΘ+ρQβ )q for some vector field ξ on

M and β ∈ h. Thus it suffices to consider vector fields of the form ξΘ + ρQβ .

By Lemma 5.1 it is enough to consider horizontal lifts of vector fields ξ, η
on M. Denoting the Nijenhuis tensor of (M, j) by n(ξ, η), the integrability
assumption on (M, j) implies that

(5.1) n(ξ, η) = [ξ, η] + j[jξ, η] + j[ξ, jη]− [jξ, jη] = 0.

From [KN, Corollary I.5.3] we have

Θq[ξ
Θ, ηΘ]q = −2Ωq(ξ

Θ
q , η

Θ
q ) = −2KQ

q (ξx, ηx).
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By [KN, Proposition I.1.3] the horizontal part of [ξΘ, ηΘ]q coincides with
[ξ, η]Θq . It follows that

[ξΘ, ηΘ]q = [ξ, η]Θq + (deL
Q
q )Θq[ξ

Θ, ηΘ]q = [ξ, η]Θq − 2(deL
Q
q )KQ

q (ξx, ηx).

Using (3.12) and JΘξΘ = (jξ)Θ this implies that

JΘ
q [ξΘ, ηΘ]q = JΘ

q [ξ, η]Θq − 2JΘ
q (deL

Q
q )KQ

q (ξx, ηx)

= (j[ξ, η])Θ
q − 2(deL

Q
q )
√
−1KQ

q (ξx, ηx)

and [JΘξΘ, ηΘ]q = [jξ, η]Θq − 2(deL
Q
q )KQ

q (jξx, ηx). Therefore, we have

Nq(ξ
Θ
q , η

Θ
q ) = [ξΘ, ηΘ]q + JΘ

q [JΘξΘ, ηΘ]q + JΘ
q [ξΘ, JΘηΘ]q − [JΘξΘ, JΘηΘ]q

= (n(ξ, η))Θ
q − 2(deL

Q
q )
(
KQ
q (ξx, ηx) +

√
−1KQ

q (jξx, ηx)

+
√
−1KQ

q (ξx, jηx)−KQ
q (jξx, jηx)

)
= (n(ξ, η))Θ

q − 2(deL
Q
q )K

Q
q (ξx, ηx) .

In view of (5.1) the proof is now complete. �

Corollary 5.3. If (M, j) is integrable, then the complexion JΘ is integrable
on Q if and only if the curvature form K of Θ has vanishing (0, 2)-part.

In the homogeneous case the curvature form K of an invariant connexion

Θ is induced by a unique f -covariant map k :
2∧
ToM → h as in (4.2).

Theorem 5.4. The curvature K0 of the tautological connection Θ0 satisfies
the equation

2k0(u, v) = −(def)Pk[ũ, ṽ] ∀ u, v ∈ ToM,

where ũ ∈ m is uniquely determined by (deR
M
o )ũ = u.

Proof. Let α, γ ∈ g. Consider the left action vector field

(λQα )g|h = ∂0
t 〈atg|h〉 = 〈(deRGg )α|0h〉

on Q. The identity RGg = LGg ◦IGg−1 implies deR
G
g = (deL

G
g ) AdGg−1 . Therefore

Proposition 4.2 yields

(Θ0λQα )g|e = Θ0
g|e〈(deR

G
g )α|0h〉 = (def)Pk AdGg−1 α.

Putting gt = exp(t γ) ∈ G we conclude that

(Θ0λQα )gt|e = (def)Pk AdG
g−1
t
α = (def)Pk exp(−t adγ)α

and hence

de|e(Θ
0λQα )〈γ|0e〉 = ∂0

t (Θ0λQα )gt|e

= (def)Pk ∂
0
t exp(−t adγ)α

= (def)Pk[α, γ] .
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Since [λQα , λ
Q
γ ] = λQ[γ,α] for left actions we have

Θ0
e|e[λ

Q
α , λ

Q
γ ]e|e = Θ0

e|e(λ
Q
[γ,α])e|e = (def)Pk [γ, α].

Therefore, we have

2K0
e|e(〈α|0e〉, 〈γ, 0e〉) = 2(dΘ0)e|e(〈α|0e〉, 〈γ, 0e〉) + [Θ0

e|e〈α|0e〉,Θ
0
e|e〈γ|0e〉]

= de|e(Θ
0λQγ )〈α|0e〉 − de|e(Θ0λQα )〈γ|0e〉

−Θ0
e|e[λ

Q
α , λ

Q
γ ]e|e + [Θ0

e|e〈α|0e〉,Θ
0
e|e〈γ|0e〉]

= (def)(Pk[γ, α])− (def)(Pk[α, γ])− (def)(Pk[γ, α])

+ [(def)(Pkα), (def)(Pkγ)]

= (def)([Pkα, Pkγ]− Pk[α, γ]) .

Since Pkũ = 0 we obtain

2k0(u, v) = 2Ω0
e|e(〈ũ|0〉, 〈ṽ|0〉) = −(def)(Pk[ũ, ṽ]). �

Every α ∈ g induces a left action vector field λMα on M by putting

(λMα )x = (deR
M
x )α = ∂0

t (atx),

where at = exp(tα). For left actions we have the reverse commutator identity
[λMα , λ

M
γ ] = λM[γ,α] for α, γ ∈ g.

Lemma 5.5. For τ ∈ m the vector field λMτ has the horizontal lift

(5.2) Xτ
g|h := 〈(deLGg )Pm AdGg−1 τ |0h〉.

Proof. Let (g, h) ∈ G×H and k ∈ K. Then the equality

RGk−1 ◦ LGg = LGgk−1 ◦ IGk
implies that

(dgR
G
k−1)(deL

G
g ) = (deL

G
gk−1) AdGk .

Since [AdGk , Pm] = 0, we have

AdGk Pm AdGg−1 = Pm AdGk AdGg−1 = Pm AdGkg−1

and therefore

〈(dgRGk−1)(deL
G
g )Pm AdGg−1 τ |(dhLHf(k))0h〉

= 〈(deLGgk−1) AdGk Pm AdGg−1 τ |0f(k)h〉

= 〈(deLGgk−1)Pm AdGkg−1 τ |0f(k)h〉 .

This shows that (5.2) depends only on the class of (g, h) and therefore defines
a vector field on Q which is Θ0-horizontal by construction. Moreover the
equality RMo ◦ LGg = LMg ◦RMo implies that

(dgR
M
o )(deL

G
g ) = (doL

M
g )(deR

M
o ),
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and the equality LMg ◦RMo ◦ IGg−1 = RMgo implies that

(doL
M
g )(deR

M
o ) AdGg−1 = deR

M
go .

Since (deR
M
o )Pm = deR

M
o it follows that

(Xτπ)〈g|h〉 = (dg|hπ)Xτ
g|h = (dgR

M
o )(deL

G
g )Pm AdGg−1 τ

= (doL
M
g )(deR

M
o )Pm AdGg−1 τ

= (doL
M
g )(deR

M
o ) AdGg−1 τ

= (deR
M
go)τ = (λMτ )go . �

6. The symmetric case

Now we consider the special case where M = G/K is a symmetric space.
These spaces have a well-known algebraic description using the so-called Lie
triple systems [He]. As discovered by M. Koecher [Koe], in the hermitian
symmetric case there is a more “elementary” approach using instead the
so-called hermitian Jordan triple systems [Lo]. These are (complex) vector
spaces Z which carry a Jordan triple product

(u, v, w) 7→ {uv∗w} ∀ u, v, w ∈ Z

which is symmetric bilinear in (u,w) and conjugate-linear in v. The Jacobi
identity is replaced by the Jordan triple identity

[u�v∗, z�w∗] = {uv∗z}�w∗ − z�{wu∗v}∗ ∀ u, v, z, w ∈ Z.

Here u�v∗ ∈ End(Z) is defined by

(u�v∗)z = {uv∗z} ∀ z ∈ Z.

The basic example is the matrix space Z = Cr×s with Jordan triple product

{uv∗w} =
1

2
(uv∗w + wv∗u).

The Jordan theoretic approach applies to all complex hermitian symmetric
spaces, including the two exceptional types, and also to all classical real
symmetric spaces. More generally, all real forms of complex hermitian sym-
metric spaces, for example symmetric convex cones [FK], and therefore also
some exceptional real symmetric spaces, are included. (On the other hand,
there exist nonclassical real symmetric spaces which cannot be treated this
way.)

We first consider both the real and complex case. Given a (real or com-
plex) Jordan triple Z, we put

Qzw := {zw∗z} ∀ z, w ∈ Z

and define the Bergman operator

Bz,w = idZ − 2z�w∗ +QzQw ∀ z, w ∈ Z,
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acting linearly on Z. In case Bz,w ∈ GL(Z) is invertible, we define the quasi-
inverse

zw := B−1
z,w(z −Qzw).

Define ε to be ε = −1 for the noncompact case, ε = 1 for the compact
case, and ε = 0 for the flat case. We define symmetric spaces M ε associated
with the Jordan triple Z as follows: M0 = Z is the flat model, M− is the
connected component

M− ⊂ {z ∈ Z | detB(z, z) 6= 0}

containing the origin o = 0 ∈ Z (a bounded symmetric domain, more pre-
cisely a norm unit ball of Z), and

M+ = (Z × Z)/ ∼

is a compact manifold consisting of all equivalence classes [z, a] = [zb−a, b],
whenever B(z, a − b) is invertible [Lo]. (In view of the ”addition formula”
(zu)v = zu+v for quasi-inverses [Lo], we may informally regard M+ as the
set of all quasi-inverses za, even when B(z, a) is not invertible.) Thus we
have natural inclusions

M− ⊂ Z = M0 ⊂M+,

under the embedding Z ⊂ M+ given by z 7→ z0 = [z, 0]. The points at
infinity are precisely the classes [z, a] where detB(z, a) = 0. The compact
dual M+ is also called the conformal compactification of Z. At the origin the
tangent space ToM = Z is independent of the choice of ε. Let K ⊂ GL(Z) be
the identity component of the Jordan triple automorphism group of Z, i.e.,
all linear isomorphisms of Z preserving the Jordan triple product. The group
K acts by linear transformations on every type M ε. For fixed w ∈ Z ∩M ε,
the (nonlinear) transvection, defined by

(6.1) tεw(z) := w +B
1/2
w,−εwz

εw,

is a birational automorphism of M ε. For ε = 1, 0,−1 let Gε denote the
connected real Lie group generated by K together with the transvections
(6.1). In the flat case ε = 0 we obtain the so-called Cartan motion group
G0 := K × Z which is a semi-direct product of K and the translations
t0w(z) = z + w for w ∈ Z. If ε 6= 0, then Gε is a reductive Lie group of
compact type (ε = 1) or noncompact type (ε = −1), respectively. We treat
all three cases simultaneously, using the notation M ε and Gε to denote the
curvature type. In all three cases we have

K = {k ∈ Gε | ko = o}.

In the Jordan theoretic setting, the Lie algebra gε of Gε can be described
using polynomial vector fields

ξ = ξ(z)
∂

∂z
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(or degree ≤ 2) on the underlying vector space Z. More precisely, there is a
Cartan decomposition

(6.2) gε = k⊕ pε,

where the Lie algebra k ⊂ gl(Z) of K, consisting of all Jordan triple deriva-
tions of Z, is identified with a space of linear vector fields, whereas the Lie
triple system pε consists of all nonlinear vector fields

vε := v + εQzv = (v + ε{zv∗z}) ∂
∂z

∀ v ∈ Z = ToM
ε.

The projection gε → k is realized as the derivative

Pkγ = γ′(o)

at the origin o = 0 ∈ Z. One can show that exp vε = tεw, where w := tanε v ∈
M ε is given by a “tangent” power series defined via the Jordan triple calculus
[Lo].

Proposition 6.1. In the symmetric case the tautological connection Θ0

induced by the Cartan decomposition (6.2) satisfies

(6.3) k0(u, v) = −ε(def)(u�v∗ − v�u∗) ∀ u, v ∈ Z.

Proof. Denoting by u∂ the (holomorphic) partial derivative in direction
u ∈ Z, we have the commutator identity

[uε, vε] = [u+ εQzu, v + εQzv] = ε
(
u∂Qzv − v∂Qzu

)
= 2ε(u�v∗ − v�u∗) ∈ k.

Thus we obtain a linear vector field satisfying [uε, vε]′(o) = [uε, vε], and
Theorem 5.4 implies

2k0(u, v) = −df([uε, vε]′(o)) = −2ε df(u�v∗ − v�u∗). �

Theorem 6.2. In the symmetric case, let Θ be an invariant connexion
related to Θ0 by an f -covariant linear map c : ToM → h. Then the respective
curvatures satisfy

k(u, v)− k0(u, v) =
1

2
[cu, cv] ∀ u, v ∈ ToM.

Proof. For v ∈ Z let Xv be the Θ0-horizontal lift of λMvε , as in Lemma 5.5.
Consider the tensorial 1-form Φ := Θ−Θ0 on Q. Then

Ω(Xu, Xv)− Ω0(Xu, Xv) = dΦ(Xu, Xv) +
1

2
[ΦXu,ΦXv] ∀ u, v ∈ ToM.

Since LMg ◦RMo ◦IGg−1 = RMgo implies (doL
M
g )(deR

M
o ) AdGg−1 = deR

M
go , it follows

that

(ΦXv)〈g|e〉 = CQ
g|e(dg|eπ)Xv

g|e = CQ
g|e(deR

M
go)vε

= CQ
g|e(doL

M
g )(deR

M
o ) AdGg−1 v

ε = c(deR
M
o )(AdGg−1)vε,
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since CQ
g|e(doL

M
g ) = c as a special case of (4.2). With gt := exp(t uε) we

obtain

(ΦXv)〈gt|e〉 = c(deR
M
o )(AdGg−t)v

ε = c(deR
M
o ) exp(−t aduε)vε.

Since the linear map c(deR
M
o ) commutes with taking the ∂t-derivative, it

follows that

Xu(ΦXv)〈e|e〉 = de|e(ΦX
v)〈uε|0e〉 = ∂0

t (ΦXv)〈gt|e〉
= c(deR

M
o )∂0

t exp(−t aduε)vε = −c(deR
M
o ) aduεv

ε

= −c(deR
M
o ) [uε, vε] = 0,

since [uε, vε] ∈ [pε, pε] ⊂ k implies (deR
M
o )[uε, vε] = 0. On the other hand,

Xu(Xvπ)〈e|e〉 = de|e(X
vπ)Xu

e|e = de|e(X
vπ)〈uε|0e〉

= ∂0
t (Xvπ)〈gt|e〉 = ∂0

t (λMvε )gto

= ∂0
t (v + εQgt(0)v) = 0,

since applying the product rule to the quadratic term yields a term g0(0) = 0.
Thus

(de|eπ)[Xu, Xv]e|e = ([Xu, Xv]π)〈e|e〉 =
(
Xu(Xvπ)−Xv(Xuπ)

)
〈e|e〉 = 0

and hence

dΦ(Xu, Xv)〈e|e〉 = Xu(ΦXv)〈e|e〉 −Xv(ΦXu)〈e|e〉 − Φe|e[X
u, Xv]e|e

= −c(de|eπ)[Xu, Xv]e|e = 0 .

It follows that

k(u, v)− k0(u, v) = Ωe|e(X
u, Xv)− Ω0

e|e(X
u, Xv)

= dΦ(Xu, Xv)〈e|e〉+
1

2
[(ΦXu)〈e|e〉, (ΦXv)〈e|e〉]

=
1

2
[cu, cv]. �

Now we consider the case where M = G/K is an (irreducible) hermitian
symmetric space. In this case Z is a complex hermitian Jordan triple, G−

is the identity component of the real Lie group of all biholomorphic auto-
morphisms of M−, and G+ is the identity component of the biholomorphic
isometry group of M+, i.e., the biholomorphic automorphisms of M+ that
preserve the Kähler metric. Both Lie groups are semi-simple. The identity
(6.3) can be polarized and hence defines the Jordan triple product in terms
of the curvature tensor at the base point o.

Proposition 6.3. In the hermitian symmetric case, the tautological com-
plexion J0 is integrable.



44 INDRANIL BISWAS AND HARALD UPMEIER

Proof. By Corollary 5.3 we have to show that the curvature 2-form K0 of
the tautological connexion Θ0 has vanishing (0, 2)-part. By invariance under
G×H it suffices to consider the base point 〈e|e〉. The R-bilinear map

(u, v) 7→ D(u, v) = u�v∗ − v�u∗ ∈ k,

for u, v ∈ Z, satisfies

D(u,
√
−1v) +D(

√
−1u, v) = 0 and D(

√
−1u,

√
−1v) = D(u, v).

It follows that

D(u, v) +
√
−1D(

√
−1u, v) +

√
−1D(u,

√
−1v)−D(

√
−1u,

√
−1v) = 0.

Therefore, Theorem 6.2 shows that

k0(u, v) = ε(def)(u�v∗ − v�u∗) = ε(def)D(u, v)

has vanishing (0, 2)-part. �

If b : Z → h is an f -covariant anti-linear map, then [b∧b](u, v) := [bu, bv]
defines an f -covariant anti-bilinear map

[b ∧ b] : Z ∧ Z → h.

Theorem 6.4. In the hermitian symmetric case, the invariant complexion
J generated by b is integrable if and only if [b ∧ b] = 0.

Proof. By Proposition 4.7 the complexion J is induced by the invariant

connexion Θ generated by −
√
−1
2 b. Applying Theorem 6.2 we have

k(u, v)− k0(u, v) =
1

2

[√
−1

2
bu,

√
−1

2
bv

]
= −1

8
[bu, bv]

for all u, v ∈ Z. By Theorem 5.2 the Nijenhuis tensor for J satisfies

Ne|e(X,Y ) = −2k((deπ)X, (deπ)Y ) ∀ X,Y ∈ Te|eQ,
where

k(u, v) = k(u, v) +
√
−1k(

√
−1u, v) +

√
−1k(u,

√
−1v)− k(

√
−1u,

√
−1v)

is the (0, 2)-part of the curvature k of Θ. Since the tautological complexion
J0 on Q is integrable by Proposition 6.3, it follows that

k
0
(u, v)

= k0(u, v) +
√
−1k0(

√
−1u, v) +

√
−1k0(u,

√
−1v)− k0(

√
−1u,

√
−1v)

= 0.

On the other hand, [b∧b] is of type (0, 2) since b is anti-linear by Proposition
4.6. Therefore

k(u, v) = −1

8
[bu, bv]

and hence

Ne|e(X,Y ) =
1

4
[b(deπ)X, b(deπ)Y ] =

1

4
[b ∧ b](X ⊗ Y ) ∀ X,Y ∈ Te|eQ.
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This implies that N vanishes at the base point 〈e|e〉 if and only if [b∧b] = 0.
ByG×H-invariance, this implies thatN vanishes at all points 〈g|h〉 ∈ Q. �

Theorem 6.5. In the hermitian symmetric case, the hermitian homoge-
neous H-bundles Q endowed with an integrable invariant complexion J are
in 1 − 1 correspondence with pairs (f, b) consisting of a homomorphism
f : K → L ⊂ H and an f -covariant anti-linear map b : ToM → h satisfying

(6.4) [b ∧ b] = 0,

modulo the equivalence (f, b) ∼ (IH` ◦ f,AdH` b), where ` ∈ L is arbitrary.
Via the relation (4.4), we may equivalently consider pairs (f,a) where

a : ToM → l

is any f -covariant R-linear map such that

(6.5) [au,av] = [ajou,ajov] ∀ u, v ∈ ToM.

Proof. If a and b are related by (4.4), then the conditions (6.4) and (6.5)
are equivalent. �

Since the classification of Theorem 6.5 uses only data coming from the
group K, which is the same for the hermitian symmetric spaces M ε = Gε/K,
for ε = 0, 1,−1, we obtain:

Corollary 6.6. There is a canonical 1− 1 correspondence between the sets
classifying the hermitian homogeneous H-bundles (P,Q), endowed with an
integrable invariant complexion J, over the hermitian symmetric spaces of
compact type, noncompact type and flat type, respectively.

7. Concluding remarks

In order to put our results in perspective, and motivate the general treat-
ment in the first four Sections, we outline possible generalizations of our ap-
proach. In the geometric quantization program, one considers more general
nonsymmetric G-homogeneous spaces N = G/C, endowed with an invariant
complex structure j. An interesting class of examples is obtained as follows:
Let M = G/K be an irreducible hermitian symmetric space of compact,
noncompact or flat type (depending on the choice of G). Then the tangent
space Z = To(M) at the origin o ∈M is a hermitian Jordan triple. The so-
called principal inner ideals U ⊂ Z are precisely the Peirce 2-spaces U = Z2

c

for a given tripotent c ∈ Z. Let Fj denote the Grassmann type manifold of
all such Peirce 2-spaces of fixed rank j ≤ r. More generally, for any increas-
ing sequence 1 ≤ j1 < j2 < . . . < j` ≤ r there is a flag type manifold Fj1,...,j`
consisting of all flags U1 ⊂ U2 ⊂ . . . ⊂ U` of Peirce 2-spaces Ui of rank
ji. Using the G-action, one can define such flag manifolds for any tangent
space Tx(M), x ∈M, and obtains a fibre bundle Nj1,...,j` →M with typical
fibre Fj1,...,j` . This fibre bundle is homogeneous Nj1,...,j` = G/Kj1,...,j` , where
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Kj1,...,j` is a closed subgroup of K which is the same for the compact, non-
compact and flat case. Our principal result, concerning the classification of
holomorphic principal fibre bundles and the duality between the compact
and noncompact case, may be generalized to this setting [BiU].

Another important problem, of interest in quantization theory, is the
explicit construction of Dolbeault cohomology operators depending on the
given complex structure, in the symmetric case or the more general setting
outlined above. A first step towards this goal is a more explicit realization
of the classifying space of holomorphic principal fibre bundles, described
in Theorem (6.5) in the symmetric case. According to (6.4), the basic
case H = GLn(C) involves pairwise commuting n× n-matrices B1, . . . , Bd,
where d = dimCG/K, modulo joint conjugation; already a quite compli-
cated object in algebraic geometry. Finally, the whole construction depends
on the underlying invariant complex structure j of N = G/C which may not
be unique if C is a proper subgroup of K. Analogous to the Narasimhan-
Seshadri Theorem for Riemann surfaces, the moduli space of invariant com-
plex structures may carry a canonical projectively flat connexion on the
bundle of holomorphic sections.
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[FK] Faraut, Jacques; Korányi, Adam. Analysis on symmetric cones. Oxford Math-
ematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York, 1994. xii+382 pp. ISBN: 0-19-853477-9. MR1446489
(98g:17031), Zbl 0841.43002.

[He] Helgason, Sigurdur. Differential geometry, Lie groups, and symmetric spaces.
Corrected reprint of the 1978 original. Graduate Studies in Mathematics, 34.
American Mathematical Society, Providence, RI, 2001. xxvi+641 pp. ISBN: 0-
8218-2848-7. MR1834454 (2002b:53081), Zbl 0993.53002.

[KN] Kobayashi, Shoshichi; Nomizu, Katsumi. Foundations of differential geometry.
I. Interscience Publishers, a division of John Wiley & Sons, New York-London,
1963. xi+329 pp. MR0152974, Zbl 0119.37502.

http://www.ams.org/mathscinet-getitem?mr=0086359
http://zbmath.org/?q=an:0078.16002
http://dx.doi.org/10.2307/1992969
http://www.ams.org/mathscinet-getitem?mr=1100212
http://zbmath.org/?q=an:0697.53061
http://www.ams.org/mathscinet-getitem?mr=3334089
http://zbmath.org/?q=an:1317.32044
http://zbmath.org/?q=an:1317.32044
http://dx.doi.org/10.1515/forum-2012-0131
http://www.ams.org/mathscinet-getitem?mr=2380469
http://zbmath.org/?q=an:1158.53043
http://zbmath.org/?q=an:1158.53043
http://dx.doi.org/10.1142/S0129167X08004534
http://www.ams.org/mathscinet-getitem?mr=0089473
http://zbmath.org/?q=an:0094.35701
http://dx.doi.org/10.2307/1969996
http://www.ams.org/mathscinet-getitem?mr=1446489
http://zbmath.org/?q=an:0841.43002
http://www.ams.org/mathscinet-getitem?mr=1834454
http://zbmath.org/?q=an:0993.53002
http://www.ams.org/mathscinet-getitem?mr=0152974
http://zbmath.org/?q=an:0119.37502


HOMOGENEOUS BUNDLES ON HERMITIAN SYMMETRIC SPACES 47

[Koe] Koecher, Max. An elementary approach to bounded symmetric domains. Rice
University, Houston, Tex., 1969. iii+143 pp. MR0261032, Zbl 0217.10901.

[Kos] Koszul, J.-L.. Lectures on fibre bundles and differential geometry. Notes by
S. Ramanan. Tata Institute of Fundamental Research Lectures on Mathemat-
ics, 20. Tata Institute of Fundamental Research, Bombay, 1965. ii+130+iii pp.
MR0268801, Zbl 0244.53026, http://www.math.tifr.res.in/~publ/ln/tifr20.
pdf.

[Lo] Loos, Ottmar. Bounded symmetric domains and Jordan pairs. University of
California, Irvine, 1977.

[Mu] Mumford, D. On the equations defining abelian varieties. I. Invent. Math. 1
(1966), 287–354. MR0204427, Zbl 0219.14024, doi: 10.1007/BF01389737.

[OR] Ottaviani, Giorgio; Rubei, Elena. Quivers and the cohomology of homoge-
neous vector bundles. Duke Math. J. 132 (2006), no. 3, 459–508. MR2219264
(2008b:14075), Zbl 1100.14012, arXiv:math/0403307, doi: 10.1215/S0012-7094-06-
13233-7.

[Ra] Ramanan, S. Holomorphic vector bundles on homogeneous spaces. Topology 5
(1966), 159–177. MR0190947, Zbl 0138.18602, doi: 10.1016/0040-9383(66)90017-
6.

[We] Welters, Gerald E. Polarized abelian varieties and the heat equations. Com-
positio Math. 49 (1983), no. 2, 173–194. MR0704390 (85f:14045), Zbl 0576.14042.

[Wi] Witten, Edward. Quantum field theory and the Jones polynomial. Comm.
Math. Phys. 121 (1989), no. 3, 351–399. MR0990772 (90h:57009), Zbl 0667.57005,
doi: 10.1007/BF01217730.

(Indranil Biswas) School of Mathematics, Tata Institute of Fundamental Re-
search, 1 Homi Bhabha Road, Mumbai 400005, India
indranil@math.tifr.res.in

(Harald Upmeier) Fachbereich Mathematik und Informatik, Philipps-Universität
Marburg, Lahnberge, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
upmeier@mathematik.uni-marburg.de

This paper is available via http://nyjm.albany.edu/j/2016/22-2.html.

http://www.ams.org/mathscinet-getitem?mr=0261032
http://zbmath.org/?q=an:0217.10901
http://www.ams.org/mathscinet-getitem?mr=0268801
http://zbmath.org/?q=an:0244.53026
http://www.math.tifr.res.in/~publ/ln/tifr20.pdf
http://www.math.tifr.res.in/~publ/ln/tifr20.pdf
http://www.ams.org/mathscinet-getitem?mr=0204427
http://zbmath.org/?q=an:0219.14024
http://dx.doi.org/10.1007/BF01389737
http://www.ams.org/mathscinet-getitem?mr=2219264
http://zbmath.org/?q=an:1100.14012
http://arXiv.org/abs/math/0403307
http://dx.doi.org/10.1215/S0012-7094-06-13233-7
http://dx.doi.org/10.1215/S0012-7094-06-13233-7
http://www.ams.org/mathscinet-getitem?mr=0190947
http://zbmath.org/?q=an:0138.18602
http://dx.doi.org/10.1016/0040-9383(66)90017-6
http://dx.doi.org/10.1016/0040-9383(66)90017-6
http://www.ams.org/mathscinet-getitem?mr=0704390
http://zbmath.org/?q=an:0576.14042
http://www.ams.org/mathscinet-getitem?mr=0990772
http://zbmath.org/?q=an:0667.57005
http://dx.doi.org/10.1007/BF01217730
mailto:indranil@math.tifr.res.in
mailto:upmeier@mathematik.uni-marburg.de
http://nyjm.albany.edu/j/2016/22-2.html

	1. Introduction
	2. Homogeneous H-bundles
	3. Connexions and complexions
	4. Homogeneous connexions and complexions
	5. Curvature and Integrability
	6. The symmetric case
	7. Concluding remarks
	References

